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Greywater constitutes a significant portion of urban wastewater and is laden with numerous emerging

contaminants that have the potential to adversely impact public health and the ecosystem.

Understanding greywater's characteristics and measuring the contamination levels is crucial for

designing an effective recycling system. However, wastewater treatment is an intricate process involving

significant uncertainties, leading to variations in effluent quality, costs, and environmental risks. This

review addresses the existing knowledge gap in utilising artificial intelligence (AI) to enhance the laundry

greywater recycling process and elucidates the optimal treatment technologies for the most prevalent

micropollutants, including microplastics, nutrients, surfactants, synthetic dyes, pharmaceuticals, and

organic matter. The development of laundry greywater treatment technologies is also highlighted with

a critical discussion of physicochemical, biological, and advanced oxidation processes (AOPs) based on

their functions, methods, associated limitations, and future trends. Artificial neural networks (ANN) stand

out as the most prevalent and extensively applied AI model in the domain of wastewater treatment.

Utilising ANN models mitigates certain limitations inherent in traditional adsorption models, particularly

by offering enhanced predictive accuracy under varied operating conditions and multicomponent

adsorption systems. Moreover, tremendous success has been recorded with the random forest (RF)

model, exhibiting 100% prediction accuracy for both sessile and effluent microbial communities within

a bioreactor. The precise prediction or simulation of membrane fouling behaviours using AI techniques is

also of paramount importance for understanding fouling mechanisms and formulating efficient strategies

to mitigate membrane fouling.
1. Introduction

Natural water recycling processes are vital for life on Earth.
However, as the demand for water grows due to increasing
population and industry requirements, these natural methods
may not keep up with the rate at which water is contaminated
and disposed of. For instance, a typical laundry facility with
a processing capacity of 10 metric tons of linen generates 150
cubic meters of wastewater each day; it takes approximately 15
litres of fresh water to process a kilogram of linen in
a commercial laundry. Industrial laundry wastewater consti-
tutes approximately 10% of the total urban wastewater
produced.1,2 While the demand for water continues to rise,
freshwater resources per capita are projected to decrease by
around 22% for the period from 2000 to 2025.3 This decline in
freshwater availability is a critical issue that calls for immediate
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action, prompting the UN to prioritize water sustainability
(SDG6).4 Wastewater treatment plants aid but cannot meet
demand alone; industrial users must contribute to recycling.
Understanding the characteristics of wastewater andmeasuring
the level of contamination is crucial for designing an effective
recycling system.

Traditional greywater treatment employs physical, chemical,
biological and advanced oxidation processes that typically
necessitate continuous monitoring and manual adjustments.
Recent advancements in articial intelligence (AI) and machine
learning present novel opportunities for real-time monitoring,
predictive analytics, and optimisation of treatment systems.
However, the integration of AI in greywater micropollutant
removal remains in its infancy, with challenges such as data
availability, model accuracy, and scalability. Therefore, there is
a pressing need to explore innovative AI-driven strategies for
effective micropollutant removal, assess their feasibility, and
outline future directions for sustainable and intelligent grey-
water treatment. This comprehensive review investigates the
current knowledge gap in applying articial intelligence (AI) to
optimise the recycling of laundry greywater and identies the
most effective treatment technologies for common
RSC Adv., 2025, 15, 12125–12151 | 12125
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micropollutants, including microplastics, nutrients, surfac-
tants, synthetic dyes, pharmaceuticals, and organic matter.
Furthermore, it critically examines the development of laundry
greywater treatment technologies, focusing on physicochem-
ical, biological, and advanced oxidation processes (AOPs) by
analyzing their mechanisms, methodologies, limitations, and
emerging trends. There are few studies that focus on deter-
mining the most suitable greywater treatment method for
specic pollutants under varying conditions or discussing
laundry greywater recycling process in wholistic approach that
includes both advances in treatment technologies and AI-driven
solutions.
1.1. Wastewater classication

Human activities can cause various levels of damage to the used
water. For instance, in domestic use, the produced wastewater
can be categorised mainly to blackwater that is highly polluted
with human waste and greywater which is less contaminated
and includes predominantly detergents.5 The term greywater
indicates the change of water colour to grey during storage or
even before any storing period, such as when the water is
generated during laundry operations. However, this term is
oen used to refer to wastewater produced from domestic
activities, except for that generated from toilet seats.6,7 This
exception is because black water generated from toilet seats has
a high concentration of organic matter, nutrients, and patho-
gens.8 Bodnar et al.9 classied laundry and cooking wastewater
as dark greywater and bath wastewater as light greywater. As
shown in Table 1, light greywater contains various types of
soaps, body care chemicals and some traces of urine and
excrement. While dishwashing detergents, oil, grease, and food
remains are common constituents found in kitchen greywater.
On the other hand, laundry greywater mainly contains soaps,
bleaches, oils, paint, solvents, and non-biodegradable bres
from clothing. Furthermore, laundry greywater is oen hot
saline water with a high pH level and includes elevated
concentrations of nitrate, phosphate, and sodium.10
Fig. 1 Laboratory tests and analytical categories of wastewater.
1.2. Wastewater pollutants and laboratory tests

Pollutants in wastewater exist as solids, liquids, gases, or
mixtures and are classied by solubility as dissolved or undis-
solved. Undissolved pollutants include food residues, human
waste, oils, suspended solids, and microorganisms. Dissolved
pollutants form anions, cations, or complex compounds, while
certain gases react with wastewater, generating pollutants such
as carbon dioxide, nitrogen dioxide and ammonia.12,13
Table 1 Greywater sources and their constituents10,11

Light greywater

Wash basin Bathroom

Body care chemicals, toothpaste,
soaps, hair, skin cells and shaving
waste

Shampoo, lint, body fats, hair, san
clay, traces of urine and excremen

12126 | RSC Adv., 2025, 15, 12125–12151
Pollutants are further categorized by chemical composition and
origin as organic, inorganic, volatile, non-volatile, biodegrad-
able, refractory, or of animal, mineral, or vegetable origin.14

Wastewater quality is assessed by measuring organic matter,
particulate solids, nutrients, and physical properties. As shown
in Fig. 1, the evaluation of these four types of measurements or
analytical categories can be achieved with various combinations
of laboratory tests.15 For instance, chemical oxygen demand
(COD), biochemical oxygen demand (BOD), total organic carbon
(TOC) and oil and grease (O&G) tests, which identify the
concentration of the carbon-based compounds in the tested
sample, are oen performed to indicate the level of organic
pollutants. Additionally, total suspended solids (TSS), total
dissolved solids (TDS), total solids (TS), total xed solids (TFS),
and total volatile solids (TVS) are all measurements of particu-
late solids that can be found in wastewater. There are no solid
boundaries between these analytical categories; for example,
organics in a wastewater sample BOD will also be represented in
the spectrum of solids as suspended TSS or dissolved TDS
particulates. Moreover, the concentration of nutrients,
including nitrogen, phosphorous, and sulfate, can be measured
to help determine the rate of eutrophication. In addition,
measuring the turbidity, hardness, odour, pH, colour, and
temperature are used to evaluate the physical properties of the
wastewater samples.8

The remainder of this review is systematically organised into
ve subsequent sections. The rst section presents a compre-
hensive overview of laundry wastewater, encompassing its
fundamental characterisation parameters, predominant
Dark greywater

Laundry wastewater Kitchen sinks

d/
t

Fibres from clothing, paint, oils,
soaps, bleaches and solvents

Oil and grease, food remains
and dishwashing detergents

© 2025 The Author(s). Published by the Royal Society of Chemistry
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micropollutants, optimal treatment methodologies, and an
assessment of microplastics as an emerging contaminant. The
second section delves into the advancement of greywater
treatment technologies, offering a critical evaluation of physi-
cochemical, biological, and advanced oxidation processes
(AOPs), with an emphasis on their underlying mechanisms,
methodologies, inherent limitations, and novel innovations.
The third section examines AI-driven solutions in greywater
treatment, elucidating the integration of articial intelligence
within these technologies. The fourth section addresses the
limitations and future trends of the eld, discussing the chal-
lenges associated with AI models implementation in real-world
applications, their applicability in laundry greywater treatment,
and prospective research directions. Finally, the concluding
section synthesises the key ndings presented throughout the
review.

2. Laundry wastewater
2.1. Laundry wastewater properties

The properties of laundry greywater and the level of contami-
nation depend on the laundry wastewater generating sources.
For instance, while domestic laundry greywater includes fat, oil,
grease, and dirt in addition to soap and soda, hospitals' laundry
greywater can contain traces of medicine drugs and chemical
products, which can pose a public health threat by increasing
the environmental antimicrobial resistance.16 Furthermore,
greywater produced in commercial laundries oen includes
dyes, soaps, phosphate-based detergents, peroxide-based
bleaches (e.g. sodium percarbonate), and surfactants,
Table 2 Characteristics of domestic, industrial and hospital Laundry wa

Parameters Domestic laundry

pH 9.3–10
ECa (mS cm−1) 0.190–1.400
TDS (mg L−1) 400–6000
TSS (mg L−1) 200–987
TAa (mg per L CaCO3) 83–200
Phosphate (mg L−1) 4–27.6
COD (mg L−1) 375–4155
BOD5 (mg L−1) 48–1200
THa (mg per L CaCO3) —

a EC: electrical conductivity, TA: alkalinity rate, TH: hydrotimetric rate (w

Table 3 Water recycling standards and suitability for the intended reuse

Parameters Laundry water

pH 6.0–9.0
Turbidity (NTU) 2
TDS (mg L−1) 2000
TSS (mg L−1) 10
TH (mg per L CaCO3) 90
BOD5 (mg L−1) 10
Fecal coliform (CFU/100 mL) 75% not detecteda, 25 max

a Not detected in 75% of samples. b 200 CFU/100 mL average for year.

© 2025 The Author(s). Published by the Royal Society of Chemistry
including anionic surfactants like linear alkylbenzene sulfonate
(LAS) and non-ionic surfactants such as nonylphenol ethox-
ylates (NPEOs).17,18 Table 2 summarises the results of analysing
laundry wastewater collected from various sources, which
include households, industries, and hospitals.19 The main
factors that can cause variations in laundry greywater charac-
teristics are the number and habits of the people using the
service, as well as the washing behaviour which includes
average load size, water temperature, the composition of the
used cleaning products, and the number of washing cycles such
as prewash, main wash and rinsing. Washing machine type can
also play a role in the nal characteristics of the greywater and
the level of water consumption.21,22

Due to its low level of pollutants concentration, laundry
greywater has a high potential for recycling and can be reused as
service water for irrigation, toilet ushing or even in washing
activities.23 However, microbe proliferation and the spread of
infection must be considered when reusing laundry greywater,
especially in cases of bad levels of maintenance for water
storage systems.22 Table 3 shows the recycled water quality
standards based on the protection of human health and the
environment and suitability for reuse in applications such as
laundry, toilet ushing and irrigation.
2.2. Laundry wastewater micropollutants

The selection of which technology or method to use in recycling
laundry wastewater depends on the properties and the type of
the associated micropollutants.26 For instance, using
a membrane bioreactor (MBR) technology in recycling laundry
stewater.19,20

Industrial laundry Hospital laundry

9–11 11.4–11.6
0.640–3.000 0.808–2.000
640–3000 456–800
4–7000 66–71
128 302–372
3.43 10.8–167
80–212000 477–876
218–9810 44–50
44 53–68

ater hardness).

application adapted from ref. 19, 24 and 25

Toilet ushing Irrigation

6.0–9.0 6.0–8.5
2 No limits
1000 No limits
30 15–35
No limits No limits
10–30 15–30
200 averageb, 800 max 200 averageb, 800 max

RSC Adv., 2025, 15, 12125–12151 | 12127

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ra00489f


T
ab

le
4

T
h
e
im

p
ac

t
o
f
w
as
te
w
at
e
r
tr
e
at
m
e
n
t
te
ch

n
o
lo
g
ie
s
o
n
la
u
n
d
ry

w
as
te
w
at
e
r
m
ic
ro
p
o
llu

ta
n
ts

a

M
ic
ro
po

llu
ta
n
ts

St
ud

y
T
re
at
m
en

t
C
on

di
ti
on

s
T
re
at
m
en

t
im

pa
ct

M
ic
ro
pl
as
ti
c/

m
ic
ro

be

rs
:(
si
ze

1
m
m
–

5
m
m
)

T
al
vi
ti
e
et

al
.3
7

M
em

br
an

e
bi
or
ea
ct
or

(M
B
R
)

M
em

br
an

e
po

re
si
ze

=
0.
4
m
m
,e

ff
ec
ti
ve

m
em

br
an

e
ar
ea

=
8
m

2
,H

R
T
*
fr
om

20
to

10
0
h
an

d

ow

ra
te

be
tw

ee
n
40

an
d
90

l
h
−1

R
em

ov
al

effi
ci
en

cy
of

M
Ps

is
99

.9
%

Y
ar
an

al
et

al
.3
6

E
le
ct
ro
co
ag

ul
at
io
n
(a
lu
m
in
um

sh
ee
ts

el
ec
tr
od

es
)

E
le
ct
ro
de

s
su

rf
ac
e
ar
ea

=
6.
42

×
10

−3
m

2
,

op
er
at
in
g
ti
m
e
=
25

m
in

an
d
cu

rr
en

td
en

si
ty

=
30

0
A
m

−2

R
em

ov
al

effi
ci
en

cy
of

M
Ps

is
97

.9
%

N
ap

pe
r
et

al
.2
8

E
xt
er
n
al


lt
er
s

M
es
h
po

re
si
ze

=
60

m
m

R
em

ov
al

effi
ci
en

cy
of

M
Ps

is
78

%
E
as
to
n
et

al
.2
7

(a
)
U
V
C
/H

2
O
2
*

H
2
O
2
do

se
=

50
0
m
g
l−

1
,U

V
C
ir
ra
di
at
io
n
=

4.
0
m
W

cm
−2

op
er
at
in
g
ti
m
e
=

48
h

(a
)
M
as
s
lo
ss

of
M
Ps

is
52

.7
%

(b
)
U
V
C
tr
ea
tm

en
t
on

ly
(b
)
M
as
s
lo
ss

of
M
Ps

is
23

.6
%

M
ai
s
et

al
.3
8

E
le
ct
ro
ly
si
s
(m

ix
ed

m
et
al

ox
id
e

an
od

es
)

C
ur
re
n
t
de

n
si
ty

=
20

m
A
cm

−2
W
ei
gh

t
lo
ss

of
M
Ps

is
70

%

N
ut
ri
en

ts
:p

h
os
ph

at
es

n
it
ro
ge
n
(N

)
co
m
po

un
ds

A
de

so
ye

et
al
.3
9

C
h
em

ic
al

co
ag

ul
an

ts
(a
lu
m

an
d

fe
rr
ou

s
su

lp
h
at
e)

pH
=

10
.2
0
A
l 2
(S
O
4
) 3
$1
8H

2O
(a
lu
m
)
=

0.
00

25
g
Fe

SO
4$
7H

2
O

(f
er
ro
us

su
lp
h
at
e)

=
0.
00

13
g

Ph
os
ph

at
e
re
m
ov
al

30
%

A
gu

st
in
a
et

al
.3
0

(a
)A

ds
or
pt
io
n
(a
ct
iv
e
ca
rb
on

–
A
C
)

A
ds

or
be

n
t
h
ei
gh

t
=

40
cm

in
it
ia
lp

h
os
ph

at
e

co
n
ce
n
tr
at
io
n
=

2
m
g
l−

1
A
C
sp

ec
i
c
su

rf
ac
e

ar
ea

=
26

m
2
g−

1
N
Z
sp

ec
i
c
su

rf
ac
e
ar
ea

=
48

m
2
g−

1

(a
)
Ph

os
ph

at
e
re
m
ov
al

60
%

(b
)
A
ds

or
pt
io
n
(n
at
ur
al

ze
ol
it
e
–
N
Z)

(b
)
Ph

os
ph

at
e
re
m
ov
al

90
%

T
it
ah

&
N
as
ir
4
0

A
ds

or
pt
io
n
(g
ra
n
ul
ar

ac
ti
va
te
d

ca
rb
on

+
ze
ol
it
e)

A
ds

or
be

n
t
co
m
po

si
ti
on

ra
ti
on

=
50

:5
0,

ad
so
rb
en

t
m
as
s
=

12
g
co
n
ta
ct

ti
m
e
=

15
0

m
in
ut
es

Ph
os
ph

at
e
re
m
ov
al

57
.1
4%

R
od

zi
et

al
.3
1

B
io
re
m
ed

ia
ti
on

(a
lg
ae

an
d

ba
ct
er
ia

m
ix
tu
re
)

In
it
ia
l
am

m
on

ia
-N

=
1.
29

m
g
l−

1
,n

it
ra
te

=

0.
11

9
m
g
l−

1
an

d
n
it
ri
te

=
0.
00

1
m
g
l−

1

m
ix
tu
re

m
as
s
=
0.
5
g
fo
r
am

m
on

ia
–n

it
ro
ge
n
,

2
g
fo
r
n
it
ra
te
-N

an
d
1
g
fo
r
n
it
ri
te
-N

R
em

ov
al

effi
ci
en

cy
of

am
m
on

ia
-N

is
71

%
,n

it
ra
te
-N

is
99

%
an

d
n
it
ri
te
-N

is
96

%

A
n
io
n
ic

su
rf
ac
ta
n
ts
:

LA
S*

M
B
A
S*

SD
B
S*

M
el
iá
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wastewater can remove up to 99.9% of microplastic pollutants.
However, using UV irradiation treatment can only cause
a microplastic mass loss of about 23.6%.27,28 In contrast, using
UV irradiation in combination with other oxidation treatments,
such as ozonation (O3) and hydrogen peroxide (H2O2), can be
more effective in removing pharmaceutical antibiotics from
laundry wastewater.29 Moreover, using bioremediation, which
involves a combination of algae and bacteria, can be highly
effective in treating nitrogen compounds that are byproducts of
washing detergents. Meanwhile, adsorption techniques are
suitable for the removal of phosphates and synthetic dyes.30,31

Biolter and photo-Fenton represent promising technologies
for treating anionic and non-ionic surfactants, while micro-
ltration excels at removing cationic surfactants.32,33 Further-
more, electrocoagulation applications have demonstrated
enhanced efficacy in addressing synthetic dyes, pharmaceuti-
cals, and organic compounds.34–36 Table 4 summarises the
impact of several wastewater treatment technologies on
common laundry wastewater micropollutants.
2.3. Microplastics (MPs)

Microplastics (MPs) encompass solid polymeric particles or
matrices with sizes ranging from 1 mm to 5 mm, existing in
various shapes and types and can have adverse effects on
ecosystems. Synthetic microbers (MFs) represent the most
commonly detected types of MPs in the environment, generally
originating from textile industries, homes and commercial
laundries. Polyester polyethylene terephthalate (PET) has been
identied as the predominant material among microbers
found in effluent from commercial washing machines.52,53

According to Dreillard et al.,54 the average diameters of micro-
bers (MFs) generated by washing textiles range from 8 to 17
mm, with 40 to 75% of them having lengths between 50 and 200
mm. Current research efforts focus on developing environmen-
tally friendly, renewable and cost-effective separation media
and innovative systems for treating microplastics in laundry
wastewater. For instance, Bhuyan et al.55 succeeded in
Fig. 2 Bibliometric analysis results of laundry wastewater treatment tec

© 2025 The Author(s). Published by the Royal Society of Chemistry
separating around 99% of polyethene microspheres (53–63 mm)
from water utilising superhydrophobic geopolymer foam as
a ltration medium and achieved a removal efficiency of about
84% for microplastics (approximately 2 mm–2 mm) when
treating laundry washing effluents. Additionally, Liu et al.56

removed around 96% of microplastic particles with average size
of 25 mm using a delignied wooden lter coated with cellulose
nanober. Furthermore, Jiang et al.57 attained 100% removal
efficiency of suspended solids with a cut-off size of approxi-
mately 10 nm using nanocellulose hydrogel lm in a ltration
system. Biological treatments are oen regarded as the most
ecologically safe. However, the biodegradability of microplastics
can be affected by several factors such as particle morphology,
the chemical composition of MPs, and process conditions.
Therefore, employing an economical and efficient pretreatment
before biodegradation can ensure a more thorough remediation
of microplastics.58 For instance, Easton et al.27 observed
a formation of shallow holes, pits and cracks across the poly-
ester bre surface when using UV/H2O2 oxidation process. Such
a change in the surface of MPs facilitates the processes of
microbial adhesion and biolm formation during
bioremediation.
3. Laundry wastewater treatment
technologies

Studies that employ simple physical treatments and disinfec-
tion techniques for greywater recycling were reported in the
early 1970s, in which coarse lters and membranes were uti-
lised. In the following decade, biological treatment technolo-
gies such as aerated bioreactors and rotating biological
contactors were investigated. Later, advanced technologies such
as membrane bioreactors (MBRs), photocatalysis and chemical
treatments including conventional and electrocoagulation were
developed.59 According to Kumar et al.,21 laundry greywater
treatment technologies can be classied into three main
branches physicochemical, biological and a combination of
hniques.60
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Fig. 3 Laundry wastewater treatment main processes and stages.
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both techniques. Fig. 2 shows a bibliometric analysis conducted
on the literature review of various laundry greywater treatment
technologies for the period from 1900 to 2020.60 These tech-
nologies were classied into the coagulation, adsorption and
ltration, biological treatment, and oxidation processes groups.
Additionally, results show that the keywords most cited in
treatment techniques, with more than 50 citations, are ltra-
tion, reverse osmosis, coagulation, electrocoagulation, adsorp-
tion, biomass, and UV radiation. Furthermore, these wastewater
treatment techniques are oen applied sequentially to remove
the different micropollutants. Articial intelligence (AI) has
emerged as a powerful tool for the management and optimi-
sation of wastewater treatment systems. Fig. 3 summarises
laundry wastewater treatment main processes and illustrates
the classication of the primary processes utilised in each
treatment stage.

3.1. Chemical coagulation

Coagulation is a chemical process in which a coagulant is added
to contaminated water to help aggregate ne colloidal particles
dispersed in water into larger clumps. Coagulants are oen
used to reduce turbidity, suspended solid, organic matter and
chemical oxygen demand (COD) in the wastewater. These
coagulants can be categorised into two main groups: natural
12132 | RSC Adv., 2025, 15, 12125–12151
and synthetic. Natural coagulants have various organic origins
such as animals, plants, and microorganisms. In contrast, the
most used synthetic coagulant in water treatment are
aluminium and iron salts in addition to organic polymers.
Examples of inorganic coagulants include aluminum sulfate
Al2(SO4)3, ferric sulfate Fe2(SO4)3 and ferric chloride (FeCl3). As
shown in Fig. 4, colloidal particles suspended in water with
similar electrical charges (negatively charged) tend to repel each
other, leading to increased water turbidity; the addition of
coagulants (positively charged) helps neutralise these electrical
charges and encourages suspended particles to stick together to
form larger granules and thus ease the separation process
through sedimentation.61,62

3.2. Electro-coagulation (EC)

Electrocoagulation is an electrochemical wastewater treatment
that consists of three consecutive stages: coagulant formation
through the oxidation of metal electrodes, destabilisation of
pollutant particles charge, and aggregation of these destabilised
particles to form clumps. As shown in Fig. 5, when wastewater
passes through an electrocoagulation cell, the anode produces
dissolved metal ions Me

+ such as iron Al3+ and Fe2+, see eqn (1).
These metal ions neutralise the negative surface charge of the
wastewater's suspended particles and help them form larger
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Schematic diagram of the chemical coagulation mechanism.

Fig. 5 Treatment mechanism of electrocoagulation process.
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ocs. Additionally, the cathode electrode decomposes the water
in a reduction reaction into hydroxyl ion and hydrogen gas, see
eqn (2). Furthermore, the metal hydroxide can be formed as
a result of the reaction between the produced metal ions Me

+

and the hydroxide ions OH−, see eqn (3).21,63

Eqn (1)–(3) describe the reactions in the electrocoagulation
cell:63

M(s) / Maq
n+ + ne− (1)

2H2O + 2e− / 2OH− + H2 (2)

Me
n+ + nOH− / M(OH)n(s) (3)

whereM(s) is solid metal, Maq
n+ is dissolvedmetal ion, M(OH)n(s)

is metal hydroxide.
These metal hydroxide M(OH)n can help in removing heavy

metal and suspended solids through complexation and co-
precipitation.21,63 For instance, Amorphous Al(OH)3(s) (sweep
ocs), upon formation, possess large surface areas that facili-
tate the rapid adsorption and entrapment of pollutants. The
adsorption of heavymetal ions bymetal hydroxide ocs involves
a series of complex processes, including complexation, sweep
coagulation, co-precipitation, and electrical neutralization. Of
© 2025 The Author(s). Published by the Royal Society of Chemistry
these mechanisms, the complexation reaction is the most
signicant, as outlined in eqn (4):64

n h Al − OH + Me
n+ = (hAl − O)n / Me + nH+ (4)

where h is the surface of the particle, n h Al − OH is surface
hydroxyl groups on aluminium-based material, Me

n+ is a heavy
metal ion with charge n+, / is coordinate bonds, nH+is
hydrogen ions.

There are many factors affecting electrocoagulation effi-
ciency including the pH of the medium, electrical current
density, the type of electrode material, the distance between the
electrodes and the suspended solids concentration in the
wastewater which can decrease the effective surface area of the
electrodes.65
3.3. Membrane ltration

Membrane ltration is widely used in wastewater treatment
because it is an economical, environmentally safe system and
oen has high separation efficiency.66,67 The selection of an
appropriate membrane for a ltration process depends on the
volume of the various compounds in the wastewater. Membrane
ltration processes are divided into several types based on their
average pore sizes including conventional ltration, micro-
ltration (MF), ultraltration (UF), nanoltration (NF) and
reverse osmosis (RO).68 Thus, each ltration system can effec-
tively block or reduce one of the fouling species, as shown in
Fig. 6. For instance, UF and MF membranes are suitable for
removing biological matter such as cells and bacteria, while RO
and NF processes are better options for salts and ion removal.69,70

The concentration of surfactants in the laundry greywater is
a key factor in choosing a suitable membrane for the ltration
process.71,72 When the critical micelle concentration (CMC) is
reached in an aqueous solution, surfactants aggregate to form
spherical micelles within that solution.73 However, the value of
CMC in the solution changes with the change in the
concentration/volume and type of pollutants such as polymeric
particles and other suspended solids, see Fig. 7.74 The sizes of
these spherical micelles can range from 2 to 20 nm. Thus,
microltration (MF) and ultraltration (UF) can be utilised to
separate aggregated surfactants when CMC is attained in the
solution. Meanwhile, nanoltration is used in situations where
CMC is not reached, and organic compounds are present.
RSC Adv., 2025, 15, 12125–12151 | 12133
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Fig. 6 Types of membrane processes and dimensions of various common pollutants.69
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The limitation of traditional membrane separation
processes lies in the accumulation of impurities such as
proteins and microorganisms, leading to the obstruction of
both the membrane's surface and its pores, consequently
resulting in membrane fouling.75

3.4. Adsorption

The adsorption phenomenon occurs when a solution
comprising absorbable solutes contacts a solid material with
high porosity, where liquid–solid intermolecular forces cause
some of the solutes to diffuse into the surface of the solid
material (absorbent surface).76 Furthermore, the adsorption
mechanisms of water pollutants on an adsorbent surface
involve electrostatic attraction, van der Waals forces, p–p

interactions, hydrogen bonding, hydrophobic interaction, and
acid–base reactions; see Fig. 8.77 For instance, the adsorption of
anionic solutions such as dyes can be attained by ionic
exchange and electrostatic attraction or through surface
complexation mechanism, which describes the binding of
solution ions to functional groups in the absorbent surface in
addition to the electrostatic attraction between their surfaces.78

Adsorbents can be divided into natural and synthetic
adsorbents. Natural adsorbents such as charcoal, clay, and
zeolites are relatively cheap and have abundant supplies.
Whereas, synthetic adsorbents are generated from agricultural
Fig. 7 Critical micelle formation concentration in polymeric particles di

12134 | RSC Adv., 2025, 15, 12125–12151
products, sewage sludge, and industrial waste in addition to the
polymeric adsorbents.76,79 According to Rodrigues,80 the suit-
ability of an adsorbent to any treatment process depends on its
surface area, pore volume, adsorption capacity, low cost, avail-
ability, ease of regeneration and modication, physical and
chemical characteristic stability, and its potential to provide fast
mobility. Thus, the popularity of iron oxide nanoparticles
(IONPs) as adsorbents has increased due to their high surface
area and the ability to adjust the particles' surface to target
specic pollutants in addition to the ease of using magnetic-
based separation techniques to retrieve them.81–85 Further-
more, graphene-based nanomaterials such as graphene oxide
(GO) are highly effective for decontaminating dyes and antibi-
otics. In contrast, nanoparticles of silver, iron and copper are
preferred for the removal of pathogens.86,87

3.5. Biological treatments

Anaerobic and aerobic treatment processes are extensively
employed for the elimination of organic pollutants in waste-
water, as assessed by parameters such as biochemical oxygen
demand (BOD) and chemical oxygen demand (COD).88 This
method entails the controlled utilisation of microorganisms,
specically bacteria, to metabolise organic substances in
wastewater as their nutrient source. Aerobic microorganisms
use oxygen to biodegrade organic waste, converting it into
spersion.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Adsorption phenomenon process and mechanism.77
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biomass and carbon dioxide (CO2).89 While anaerobic micro-
organisms break down complex organic matter into CO2, H2O
and CH4 through a series of reactions that include hydrolysis,
acidogenesis, acetogenesis and methanogenesis. This proved to
be an effective approach for the removal of specic organic
materials from wastewater.90,91 Due to the involvement of living
organisms, careful consideration must be given to factors
inuencing the growth and health of the microbial culture. This
includes ensuring an adequate supply of organic materials as
food, the availability of essential nutrients such as phosphorus
and nitrogen, maintaining a suitable temperature range, and
providing a non-toxic and relatively stable environment devoid
of temperature shocks and similar disturbances.89,92

Biological reactors can utilise both anaerobic and aerobic
treatment systems. Anaerobic bioreactors encompass
membrane bioreactor (MBR), uidized bed reactors, up-ow
anaerobic sludge blanket (UASB), granular sludge bed and up-
ow lter bioreactor. These bioreactors offer advantages such
as low biomass deposition, recirculation capability, reduced
energy consumption, minimal sludge production, and the
ability to separately control hydraulic retention time (HRT) and
sludge retention time (SRT). Aerobic reactors can be categorised
according to the microbial growth state, specically as attached
or suspended growth systems. Attached growth systems
encompass submerged systems such as up-ow or downow
packed beds, non-submerged systems that include trickling
lters, and suspended packing for the attached growth process,
which includes biolm reactors. Suspended growth systems
involve activated sludge systems that can be managed using
various congurations such as continuously stirred tank
(CSTR), plug-ow, sequencing batch (SBR) and jet loop
reactors.89,92–94 In a study to test the efficiency of moving bed
© 2025 The Author(s). Published by the Royal Society of Chemistry
bioreactor (MBBR), Bering et al.95 used two stages of MBBR
under aerobic conditions. The study demonstrated a substan-
tial reduction, with BOD decreasing by 95–98%, COD by 89–
94%, and the combined levels of nonionic and anionic surfac-
tants by 85–96%. Munawar et al.96 reported a reduction in MBAS
by 27–76%, TSS by 80–90%, phosphate by 21–72%, COD by 62–
90% and BOD by 56–82% through the utilisation of a downow
hanging sponge (DHS) aerobic bioreactor as a laundry waste-
water treatment unit. The study of Najmi et al.97 focused on
treating personal care products (PCP) greywater using
a submerged membrane bioreactor (SMBR) system. This SMBR
system succeeded in removing up to 98.20%, 99.96% and
99.97% of the organic antimicrobial agent triclosan
(C12H7Cl3O2), the preservatives methylparaben and propylpar-
aben, respectively. By employing an oxygen-based membrane
biolm reactor for greywater treatment, Zhou et al.98 achieved
notable results, including a 98% reduction in LAS, a 99%
decrease in inorganic nitrogen levels and a 95% reduction in
total COD.

3.6. Advanced oxidation

Advanced oxidative processes (AOPs) have been established as
a highly promising approach for eliminating pollutants that are
typically resistant to removal through conventional treatment
methods. AOPs rely on the production of extremely reactive
radical oxidative species (ROS), including the hydroxyl radical
(OHc) and other related entities such as the hydrogen radical
(Hc), hydrated electron (eaq

−), singlet oxygen (1O2), hydroperoxyl
radicals ðHO�

2Þ, superoxide radicals (O2c
−). Advanced oxidative

processes include ozone-based AOP, the Fenton process, elec-
trochemical oxidation, photolysis, photocatalysis, sonolysis,
and a combination of these methods with conventional
RSC Adv., 2025, 15, 12125–12151 | 12135
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Fig. 9 Scheme of the photocatalytic degradation mechanism.
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techniques.99–101 These processes exhibit signicant efficacy in
eliminating non-biodegradable contaminants and can function
as sophisticated approaches for treating wastewater. However,
challenges associated with high level of energy consumption,
chemical inputs, catalyst support corrosion, suboptimal light
utilisation, constrained ozone mass transfer, and operational
expenses frequently limit the widespread application of these
processes in wastewater treatment. Furthermore, the diverse
origins and characteristics of laundry greywater can inuence
the effectiveness and procedural nuances of different AOPs. For
instance, electro-Fenton faces signicant challenges, particu-
larly pertaining to the costs and lifespan of electrodes, as well as
the elevated consumption of electrical energy. Similar issues,
such as the demand for acidic pH conditions and the formation
of sludge inherent in the Fenton and photo-Fenton processes,
are also evident in electro-Fenton. These processes prove
unsuitable for the treatment of laundry wastewater, given its
alkaline nature and the considerable pH adjustments that
would be required.100,102 Moreover, the primary challenges
associated with photolytic and photocatalytic methods stem
from the diminished UV-transmittance resulting from elevated
turbidity levels. While sonochemical oxidation techniques are
notably energy-intensive process that is impractical for the
treatment of large volumes of wastewater, making it more
suitable as a supplementary method to assist other AOPs.100,103

3.6.1 Electro-oxidation (EO). Electrooxidation is an elec-
trochemical process oen used in wastewater treatment to
reduce the load level of COD, degrade the organic pollutants,
antibiotics and treat water color. The electrooxidation process
involves two types of reactions: direct and indirect oxidation
reactions.104,105 Direct oxidation reaction happens when water is
adsorbed to the surface of the anode and oxidised causing the
formation of hydroxyl radicals OHc, see eqn (5). Subsequently,
these hydroxyl radicals oxidise the organic pollutants R into
biodegradable compounds RO, see eqn (6). Furthermore,
hydroxyl radicals can completely degrade the organic pollutants
into water and carbon dioxide, as shown in eqn (7).63,106

H2O + M / M(OHc) + H+ + e− (5)

R + M(OHc) / M + RO + H+ + e− (6)

R + M(OHc) / M + mCO2 + nH2O + H+ + e− (7)

where M represents the active site of the anode surface, and R
represents the organic pollutant.

The indirect oxidation process arises due to the electrolysis
of water in both the anode and cathode electrodes. Where
organic pollutants are degraded by reactive compounds result-
ing from the electrooxidation of other inorganic chemical
compounds in the wastewater. These reactive compounds can
include hydrogen peroxide H2O2, hypochlorous acid HClO,
peroxydisulfuric acid H2S2O8 and ozone O3, as shown in eqn
(8)–(10).63,106

O2 + 2H+ + 2e− / H2O2 (8)

2SO4
2− + 2H+ / H2S2O8 + 2e− (9)
12136 | RSC Adv., 2025, 15, 12125–12151
Cl− + 2H2O / HClO + H3O
+ + 2e− (10)

3.6.2 Photocatalysis. Photocatalysts are materials that
enhance the speed of chemical reactions when exposed to
irradiation, typically by a light source. When irradiated, the
photocatalyst interacts with oxygen, water, and hydroxyl groups,
leading to the production of OS such as hydroxyl radicals (OHc)
and superoxide radical anions (O2c

−), all of which are potent
oxidising agents. As one of the AOPs, the utilisation of photo-
catalysis has experienced signicant growth due to its reputa-
tion as an environmentally friendly, sustainable, and energy-
efficient technology suitable for addressing non-
biodegradable, complex, and highly concentrated pollutants
in wastewater.107 The photocatalyst captures energy from UV,
visible, or solar irradiation sources within the water to generate
powerful oxidising agents capable of breaking down enduring
organic pollutants in the water, resulting in the production of
carbon dioxide (CO2) and water (H2O).108 As shown in Fig. 9,
when subjected to irradiation, the energy of incident photons
(hv) activates the photocatalyst, causing the transfer of electrons
from the valence band (VB) to the conduction band (CB). In the
conduction band, electrons are released and combined with
oxygen to form superoxide radical anions (O2c

−). Simulta-
neously, the surface of the photocatalyst in the valence band
becomes positively charged and accepts electrons from water,
leading to the generation of hydroxyl radicals (OHc).109,110

Photocatalysis can be categorised into two classes: homo-
geneous and heterogeneous. This classication is determined
by the physical state in which the reactants are present.
Homogeneous photocatalysis involves the photocatalyst and
reactants being in the same phase. In homogeneous photo-
catalysis, free radicals are generated by exposing light to the
uniform molecules of oxidising agents such as ozone (O3) and
hydrogen peroxide (H2O2). Some examples of homogeneous
photocatalysis include ozonation, UV/H2O2, and UV/H2O2/O3.
In contrast, in heterogeneous photocatalysis, the photocatalysts
are entirely distinct from the reactants, typically dispersed
within them. Heterogeneous photocatalysts are classied based
on their structural composition and material arrangement,
which inuence their efficiency and functionality. The simplest
© 2025 The Author(s). Published by the Royal Society of Chemistry
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type, powder photocatalysts, consists of a single material that
can be undoped or doped for enhanced properties.84 Bimetallic
photocatalysts incorporate two metals to improve charge sepa-
ration and catalytic activity.111 Decorated photocatalysts feature
core nanoparticles covered with smaller particles, increasing
surface interactions.112 Core–shell structures involve a core
nanoparticle enclosed by another material, enhancing stability
and charge dynamics.113 Composite photocatalysts embed core
nanoparticles onto a larger surface, improving dispersion and
charge transfer for enhanced performance.114 These photo-
catalysts frequently consist of semiconductor metal oxides,
selected for their inherent capability to absorb light such as
titanium dioxide (TiO2) and zinc oxide (ZnO). This absorption
process facilitates electron transfer, culminating in the gener-
ation of ROS.110 The ongoing endeavours in exploring photo-
catalysis for wastewater treatment continue to evolve,
incorporating strategies to enhance the spectral response
within the visible region of photocatalytic oxides to facilitate the
use of solar radiation as an activation source.115,116 Doping TiO2

with metallic ions is a popular strategy for improving its pho-
tocatalytic efficiency. As an illustration, the utilisation of T-DK
(1.0), a photocatalyst consisting of TiO2 doped with metallic
waste of a door key, enabled the mineralisation of diclofenac,
a medicine also known as Voltaren, in water solely through the
use of solar radiation.117

3.6.3 Ozonation. Ozone (O3) is 13 times more soluble in
water than oxygen (O2) and can oxidise a wide range of organic
and inorganic compounds.118 Ozone-based decontamination
technologies use ozone in various forms, including gaseous,
aqueous, and mist, to disinfect surface, appliances and medical
equipment.118,119 Under near-neutral or acidic pH, ozone inter-
acts with organic pollutants by targeting carbon (–C]C–) or
nitrogen (–N]N–) double bonds. Thus, ozonation is one of the
most utilised techniques for disinfection and removal of taste,
odours, and colour in drinking water treatment plants. Oxida-
tion by ozone occurs via direct reaction with dissolved ozone
(O3) or indirect oxidation via (OHc) radicals. The extension of
both reactions throughout the compound's degradation
depends on several factors, such as the contaminant's nature,
the ozone dose, or the medium's pH. For instance, direct
ozonation reactions are oen predominant in acidic mediums
(pH < 4), see eqn (11) (ref. 100)

3O3 + OH− + H+ / 2OH + 4O2 (11)

Indirect ozonation reactions are more likely to prevail at pH
> 9, where the ozone decomposition generates hydroxyl radicals
that have a greater oxidation power than ozone, resulting in
a highly effective treatment process (see eqn (12)–(17)).

O3 + OH− / O2 + HO2
− (12)

O3 + HO2
− / HO2 + O3

− (13)

HO2 / H+ + O2
− (14)

O2
− + O3 / O2 + O3

−15 (15)
© 2025 The Author(s). Published by the Royal Society of Chemistry
O3
− + H+ / HO3 (16)

HO3 / OHc + O2 (17)

Therefore, ozonation can be an excellent option for laundry
greywater treatment due to the alkaline nature of this type of
wastewater. The use of ozone for bleaching and garments
decontamination offers additional benets, including a reduc-
tion in detergent usage. This decrease in detergent consump-
tion mitigates the negative environmental impact of the
resulting wastewater.120 However, a primary challenge in using
ozone to reduce organic micropollutants is the creation of
potentially harmful by-products. These by-products may exhibit
greater toxicity than the original compounds.121 Additionally,
alkaline conditions can promote fast side reactions that
generate hydroperoxyl radicals (cHO2) which in turn limits the
oxidation ability, see eqn (18).

HO + O3 / cHO2 + O2 (18)

Various methods can be used to produce ozone from oxygen,
such as photochemical (UV), electrical (corona) discharge,
chemical, radiochemical, and electrolytic methods. However,
ozone rapidly decomposes into oxygen, so it cannot be stored
and must be continuously produced by an ozone generator
which oen consumes large amounts of energy and forms
a major obstacle to scaling such processes. Thus, adequate
ozonation reactor design can improve the mass transfer of O3

from gas phase to the liquid phase to be able to attack the
organic molecules chemical bonds and eventually help in
enhancing efficiency and reducing energy consumption.
Furthermore, the efficiency of ozonation process in wastewater
treatment can be improved by adding other oxidation agents
such as UV irradiation and hydrogen peroxide.122,123

3.6.4 Combination of O3/UV/H2O2. Ultraviolet radiation
can degrade pollutants compounds through the photolysis
process or by making them more susceptible to hydroxyl radi-
cals attacks. Moreover, combining ozonation with ultraviolet
irradiation (O3/UV) can help in generating large concentrations
of hydroxyl radicals and eventually speed up the decomposition
of the organic molecules. Ozone absorbs the UV irradiation and
generate hydroxyl radicals in a two-stage process. Firstly, O3

goes through photo induced homolysis as shown in eqn (18).
Then the oxygen atom O (1D) react with water forming hydroxyl
radicals, see eqn (19) and (20).

O3 + UV / O2 + O(1D) (19)

O(1D) + H2O / 2HO (20)

Nevertheless, the generated hydroxyl radicals can interact
with the O2 molecule forming hydrogen peroxide, see eqn (21).

O3 + H2O / 2[cOH] + O2 / H2O2 + O2 (21)

The hydrogen peroxide in the presence of ozone can go
through a series of reactions as follows:
RSC Adv., 2025, 15, 12125–12151 | 12137
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H2O2 / HO2
− + H+ (22)

HO2
− + O3 / cHO2 + O3

− (23)

cHO2 / cO2
− + H+ (24)

cO2
− + O3 / O2 + O3

− (25)

cO3
− + H+ / HO3 (26)

cHO3 / cOH + O2 (27)

3.7. Nanobubbles

Nanobubbles (NBs) are widely used in improving water quality
and wastewater treatment due to their unique ability in decom-
posing and removing pollutants. The term nanobubbles is used
to describe microscopic gas bodies “bubble” sized at nanoscale
(<1 mm). However, in several studies, NBs are classied on a size
scale of less than 200 nm. These bubbles can be produced using
different techniques such as the electrical excitation method
(electrical cavitation), solvent mixing (exploits gas solubility
differences between solvents), shear technique (using rough,
porous surface) and nozzle-based nanobubble generators. Each
method has its own advantages and disadvantages, for instance,
shearmethods are highly scalable while other techniques such as
nozzle-based techniques can be limited in the amount or the size
of the produced bubbles. Furthermore, nanobubbles are
neutrally buoyant that can exist in bulk solutions or attached to
surfaces.124 As shown in Fig. 10, while macro bubbles rise directly
and rapidly to the surface of the liquid and burst out, NBs are
stable and have no net directional movement but a Brownian
motion. NBs can stay for a long time in the bulk liquid which
increase their ability to interact with various types of pollutants
compounds. NBs have high oxidative ability; when they burst,
they generate hydroxyl radicals and cause high mass transfer of
gas into the liquid, which can reduce the surface tension and pH
of the aqueous solution.125
Fig. 10 Range of bubbles sizes and corresponding major properties.125

12138 | RSC Adv., 2025, 15, 12125–12151
The stability of nanobubbles can be attributed to several
acting forces such as the internal gas pressure, bubble surface
charge and liquid surface tension. Where the pressure differ-
ence produced by surface tension depends also on surface
charge density as shown in eqn (28).

DP ¼ 2Y

r
¼ s2

2D3o
(28)

where Y is the surface tension, s is the charge density, D is the
dielectric constant, 3o is the permittivity of vacuum, and r is the
bubble radius.126

Nanobubbles (NBs) interact with pollutants such as surfac-
tants in two ways: contaminants adhesion and oxidation. In
contaminants adhesion, NBs can act as carriers for contami-
nants where their surface charges attract polarised molecules.
Additionally, hydrophobic molecules can be absorbed into the
surface of the bubble. Meanwhile, nanobubble oxidation occurs
when the NBs collapse and radical oxidative species (ROS) are
released by using UV light, sonication, or rapid pressure
change.126 NBs can act as an anti-biofouling and scale inhibitor
where their surface charges attract contaminants such as bio-
lms or algae and scour them from surfaces. Furthermore,
these surface charges can interact with the protein surfaces of
microbes, which helps prevent disease-causing bacteria from
forming on surfaces.127 The high stability of ozone nanobubbles
facilitates sustained mass transfer and has the potential to
reduce the energy consumption of conventional micro/macro
bubble ozonation processes. In traditional methods, a signi-
cant portion of ozone is lost in gaseous form due to buoyancy
forces and the rapid collapse of larger bubbles.128
3.8. Hybridised laundry wastewater treatments and
recommendations

Dimoglo et al.129 utilised electrocoagulation (EC) and electro-
otation (EF) techniques to purify laundry wastewater in order
to be reused in the washing processes. As a result, 90% of
colour, turbidity, and surfactants were removed at an
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ra00489f


Review RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
8/

20
26

 3
:3

5:
38

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
operational current density of 5.26 mA cm−2, pH of 5.5, a pro-
cessing time of 5 minutes, and energy consumption of 1.25
kW hm−3. Adding an adsorption process with active charcoal as
post-treatment to the EC/EF reactor increased removal effi-
ciency to 97% for turbidity and 95% for colour and synthetic
surfactants, reducing energy consumption by 50%.65 In another
study, EC/EF technique removed 100%, 98%, 94%, and 91% of
colour, microplastic, surfactant, and COD from laundry waste-
water at an operating cost of 1.32$ per m3 when used aer
ltration as a pre-treatment process utilising sampling net with
a mesh density of 26 mm.130 Moreover, Nascimento et al.131

performed laundry wastewater treatment experiments using
a hybridised water treatment system, which includes chemical
coagulation/occulation and sedimentation (C/F/S) followed by
a microltration (MF) process. This experimental system
reduced colour by 98.4%, turbidity by 99.1%, surfactants by
around 71.7%, COD by 68.6%, total dissolved solids (TDS) by
55.6%, and total organic carbon (TOC) by 56.3%. In a similar
study by Huang et al.132 performed a laundry. wastewater
treatment using (C/F/S) techniques, with the addition of acti-
vated carbon as an adsorption material before the MF process.
The study results showed that adding an adsorption process
increased the removal efficiency of turbidity, colour, surfactant,
and COD to 99.4%, 99.9%, 92.9%, and 80%, respectively. Based
on these studies, it becomes evident that the utilisation of
adsorption (AD) technique as a secondary treatment process
can enhance the overall effectiveness of physicochemical
laundry greywater treatment systems such as coagulation and
occulation, particularly when integrated with additional
ltration systems as well as reduce the energy consumption for
electrocoagulation (EC) systems. According to Mostafazadeh
et al.,63 electrooxidation (EO) has demonstrated higher effi-
ciency in removing COD and similar effectiveness in reducing
Fig. 11 An overview of diverse machine learning techniques.135

© 2025 The Author(s). Published by the Royal Society of Chemistry
turbidity compared to electrocoagulation (EC), where the
primary distinction between EC and EO lies in the type of
cathode. AOPs can be integrated with membrane ltration
techniques to create a photocatalytic membrane reactor (PMR).
This reactor concentrates pollutants near the catalyst surface,
allowing for their subsequent photocatalytic degradation. The
combination of these two technologies can be seamlessly inte-
grated because they share similar operational conditions,
simplifying the control of the system.133 PMR employsmembrane
ltration to segregate pollutants in the water, enabling the
elimination of rejected pollutants through photocatalysis. This
approach offers the additional advantage of mitigating
membrane fouling by establishing a self-cleaning membrane.
The majority of PMRs utilise a blend of photocatalysis and
pressure-driven membrane techniques, including ultraltration
(UF), nanoltration (NF), and microltration (MF).134
4. Artificial intelligence (AI) in
wastewater treatment

Wastewater treatment is an intricate process, with uncertainties
causing variations in effluent quality, costs, and environmental
risks. Due to its ability to solve complex nonlinear problems,
Articial intelligence (AI) has evolved into a potent tool in
managing and exploring wastewater treatment systems.
Machine learning (ML) is a specialised area within the eld of AI
that focuses on creating and examining statistical algorithms
capable of learning from data, generalising to unseen data, and
executing tasks without explicit instructions. As shown in
Fig. 11, ML is categorised into four main types supervised
learning, unsupervised learning, reinforcement learning and
ensemble methods In the realm of AI techniques employed in
wastewater treatment applications, algorithms predominantly
RSC Adv., 2025, 15, 12125–12151 | 12139
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Fig. 12 The best artificial neural networks ANN topology used to predict removal efficiency of safranin O (SO) dye and optimise AOPs adapted
from Fetimi et al.141 with permission.
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encompass articial neural networks (ANN), regression algo-
rithms (linear, logistic), support vector machines (SVM), fuzzy
logic (FL), genetic programming (GP), random forest (RF),
gradient boosting (GB), and search algorithms such as genetic
algorithms (GA) and particle swarm optimisation (PSO).135,136

However, ANN stands out as the most prevalent and extensively
applied model for AI in the domain of wastewater
treatment.137–140 For instance, Fetimi et al.141 constructed an
ANNmodel to predict pollutant removal efficiency and optimise
an advanced oxidative process (AOP) that involves using heat-
activated persulfate to remove the Safranin O (SO) dye. As
depicted in Fig. 12, The nal ANN topology comprises three
layers: a ve-node input layer, ten nodes in the hidden layer,
and an output layer. This model incorporates ve input
parameters: process time, initial concentration of SO dye, initial
concentration of persulfate (PS), liquid temperature, and initial
solution pH. Currently, AI is mainly used to help evaluate the
efficiency of pollutant removal, optimise parameters of the
treatment systems, and control membrane fouling.139
4.1. AI in coagulation/electrocoagulation

Coagulation is a fundamental process for contaminant removal
in water treatment plants (WTPs). A key challenge in this
process is determining the optimal coagulant dosage, which is
traditionally assessed using the jar test method. However, this
test is time-intensive, expensive, prone to human error, and
highly sensitive to uctuations in raw water quality. AI inte-
gration can signicantly reduce costs and minimise the time
required for experimental jar testing by accurately predicting
the optimal coagulant dosage and forecasting water quality
under real-world operating conditions.142,143 In a study aimed at
optimising coagulant dosage in a water treatment plant, J. Kim
et al.144 developed a deep learning model that includes a one-
dimensional convolutional neural network (Conv1D) and
a gated recurrent unit (GRU) to predict the coagulant dosage
12140 | RSC Adv., 2025, 15, 12125–12151
and sedimentation basin turbidity. The model utilises eight
input parameters, including raw water ow rate, temperature,
pH, electrical conductivity, alkalinity, turbidity, total organic
carbon (TOC), and pre-chlorination levels, to estimate the
required coagulant dosage. Two optimisation approaches were
employed: the rst involved predicting the coagulant dosage
while maintaining sedimentation basin turbidity below 1.0
NTU, whereas the second assessed the effects of systematically
reducing the predicted dosage by 5%, 10%, 15%, and 20% on
sedimentation basin turbidity. The study's ndings highlight
the model's effectiveness in optimising coagulant dosage,
achieving a signicant reduction of approximately 22%.

AI algorithms, including response surface methodology
(RSM), articial neural networks (ANN), and genetic algorithms
(GA), are widely utilised to model the electrocoagulation
process. These techniques aid in predicting the removal effi-
ciency of pollutants such as turbidity and chemical oxygen
demand (COD) while also identifying the optimal operating
conditions.145–147 Obi et al.148 modelled and optimised an elec-
trocoagulation (EC) system using Articial Intelligence (AI)
algorithms, including Articial Neural Networks (ANN), Adap-
tive Neuro-Fuzzy Inference Systems (ANFIS), Particle Swarm
Optimization (PSO), and Genetic Algorithms (GA). Five input
variables were considered: pH, current intensity, electrolysis
time, settling time, and temperature. Both ANN and ANFIS
models showed excellent t with experimental data (R2 =

0.9993), with error indices indicating the ANFIS model per-
formed better. Process optimization with GA and PSO predicted
a turbidity removal efficiency of 99.39% under optimal condi-
tions (pH 3.1, current intensity 2 A, electrolysis time 20 min,
settling time 50 min, temperature 50 °C).
4.2. AI in membrane ltration

Membrane fouling stands as a primary impediment in the
widespread implementation of membrane ltration
© 2025 The Author(s). Published by the Royal Society of Chemistry
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technologies. The precise prediction or simulation of
membrane fouling behaviours using AI techniques holds
paramount importance for comprehending fouling mecha-
nisms and formulating efficient strategies to mitigate fouling.149

Park et al.150 created a deep neural network (DNN) employing in
situ fouling image data to model the growth of organic fouling
and the subsequent ux reduction in both nanoltration (NF)
and reverse osmosis (RO) membrane ltration systems. This
DNN model demonstrated high performance, achieving an R2

value of 0.99 and a root mean square error (RMSE) of 2.82 mm
for the simulation of fouling growth. Additionally, it attained an
R2 of 0.99 and an RMSE of 0.30 L m−2 h−1 for the simulation of
ux decline. Jawad et al.151 performed a study to predict the
permeate ux in forward osmosis (FO) using a multi-layered
neural network. This study achieved an accuracy of 97.3% uti-
lising a trained ANN encompassing three hidden layers with 25
neurons in the rst two layers and 40 neurons in the third layer.
Moreover, the study revealed that a higher number of neurons
and a reduced number of hidden layers proved advantageous in
enhancing the accuracy of ANN. Organic solvent nanoltration
(NF) membranes pose a formidable challenge due to the wide
variety of potential solvents and the intricate interplay among
the solvent, solute and membrane. Hu et al.152 utilised ML
techniques, including ANN, SVM and RF, to predict the sepa-
ration performance of an organic solvent nanoltration process
using around 19 input parameters and 38 430 data points.
These models exhibited a high prediction accuracy, reaching as
high as 98% for permeance and 91% for rejection. The
outcomes of this research lay the foundation for standardised
data practices, not only for performance prediction but also for
enhancing membrane design and development.
4.3. AI in the adsorption process

Utilising articial neural networks enables the mitigation of
certain limitations inherent in traditional adsorption models.
Particularly in terms of offering enhanced predictive accuracy
under varied operating conditions, such as multicomponent
adsorption systems, where simultaneous antagonistic, syner-
gistic, and noninteraction adsorption behaviours may mani-
fest.153,154 For instance, Tanzi et al.155 designed an ANN
utilising pH value, initial concentration, adsorption time, and
the dosage of polyaniline/SiO2 nanocomposite as input
parameters. This ANN was specically developed to simulate
the adsorption process of amido black 10B dye and predict the
removal efficiency of the dye from aqueous solutions. Remark-
ably, the 8-neuron conguration exhibited the lowest mean
error and the highest coefficient of determination value (R2)
among the tested network architectures. In another study,
Afolabi et al.156 formulated an ANN using MATLAB soware to
simulate the pseudo-second order Kinetics governing the par-
acetamol adsorption process using orange peel activated
carbon. In this study, the optimum conguration of the ANN
includes 18 hidden neurons, hyperbolic tangent sigmoid
transfer function (tansig) at inputs layer, linear transfer func-
tion (purelin) at the output and Levenberg–Marquardt as the
backpropagation algorithm. Moreover, Vakili et al.157 utilised
© 2025 The Author(s). Published by the Royal Society of Chemistry
both response surface methodology (RSM) and articial neural
network (ANN) techniques to optimise the removal effectiveness
of four distinct types of organic micropollutants. This adsorp-
tion process was carried out using a xed-bed column packed
with cross-linked chitosan/zeolite. Furthermore, Zhu et al.158

determined that the ML algorithm random forest (RF) emerged
as the most effective predictive algorithm when assessing the
impact of carbon-based materials on the adsorption of tetra-
cycline and sulfamethoxazole.

4.4. AI in biological wastewater treatments

Machine learning (ML) has been employed to discern the
essential microorganisms within specic biological units in
wastewater treatment. In this context, microbial communities
serve as inputs for predicting pollutant removal. For example,
Wijaya & Oh159 developed distinct ML models using different
algorithms such as SVM and RF to predict the operational
characteristics of three biological wastewater treatment units,
namely a Membrane Bioreactor (MBR), a Sequencing Batch
Reactor (SBR), and a conventional activated sludge system.
These ML models exhibited an average accuracy exceeding
91.6% and identied Ferruginibacter as the keystone microor-
ganism in the MBR system. Moreover, Dutta et al.160 employed
RF algorithms to achieve successful predictions of various
phases of suldogenesis with an accuracy of 93.17%. Addi-
tionally, the RF algorithm demonstrated excellent performance
in predicting sessile and effluent microbial communities in
a bioreactor, achieving a perfect accuracy of 100%. In a separate
study investigating the modelling of water quality in the effluent
from an MBR, Zhong et al.161 used ML algorithms including
linear regression (LR), regularised linear regression (RR), kernel
ridge regression (KRR), polynomial regression (PR), k-nearest
neighbour (KNN), support vector machine (SVM), gradient
boosting (GB), and random forest (RF). The study focused on
predicting concentrations of CODout, TNout, NH4

+–Nout, NO3
−–

Nout, and NO2
−–Nout. The results demonstrated the capability of

these algorithms to effectively simulate MBR performance in
treating high-salinity wastewater. Integrated learning algo-
rithms, RF and GB exhibited the best t for effluent quality data.

4.5. AI in advanced oxidation processes and hybrid
treatments

The primary challenge in advanced oxidation processes (AOPs)
and hybrid treatment systems is optimising the operational
parameters to enhance pollutant removal efficiency while
minimizing energy consumption and operational costs.100

Consequently, the majority of AI studies have focused on pre-
dicting removal efficiency and identifying the optimal opera-
tional conditions. For instance, Picos-Beńıtez et al.162 employed
an articial neural network-genetic algorithm (ANN-GA) model
to predict the treatment efficiency of wastewater containing
bromophenol blue dye through an electro-oxidation (EO)
process. The ANN model was trained on data from 51 electro-
lytic trials, utilising electrolysis time, ow rate, current density,
pH, and dye concentration as input variables. The GA deter-
mined optimal operating conditions at 10 min electrolysis time,
RSC Adv., 2025, 15, 12125–12151 | 12141
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11.9 l min−1
ow rate, 31.25 mA cm−2 current density, pH 2.8,

and 41.25 mg l−1 dye concentration, yielding a discolouration
efficiency of 88.8 ± 0.3%. Oviedo et al.163 performed research to
evaluate the photocatalytic activity of nano-zeolite (nANA) in
Rhodamine B (RhB) degradation using ML algorithms,
including Random Forest (RF), Articial Neural Network (ANN),
and Xtreme Gradient Boosting. The ANN model (3 : 6 : 1 struc-
ture) demonstrated the best predictive performance (R2 = 0.98
for training, 0.9 for testing and RMSE < 5.0), predicting 50.37 ±

1.01% RhB removal at pH 5.7, initial concentration of RhB =

200 mg l−1 and ANA = 2.75 g l−1 aer 180 min under visible
light. Yang et al.164 used multi-output regression random forest
(MORF) articial intelligence (AI) models utilising uorescence
spectra to predict the removal efficiency of trace organic
contaminants (TrOCs) during UV/H2O2 treatment of municipal
secondary effluent. The MORF model demonstrated high
predictive accuracy (R2 = 0.83–0.95), enabling its potential
application as a rapid-response feedback mechanism for opti-
mising the UV/H2O2 treatment process. Nghia et al.165 developed
a three-layer articial neural network (ANN) utilizing logsig–
purelin transfer functions to model the removal process of the
antibiotic sulfamethoxazole (SMX) from an aqueous solution
using an ozone-electrocoagulation hybrid treatment system.
The key operational parameters were optimised using response
surface methodology (RSM) to maximise the removal efficiency
of SMX. The results demonstrated that the optimal conditions
are a current density of 33.2 A m−2, a reaction time of 37.8
minutes, a pH of 8.4, and an ozone dose of 0.7 g h−1, resulting
in a removal efficiency of 99.65%. It is worth mentioning that
there are no research has been found to date on the imple-
mentation of AI in utilizing nanobubbles (NBs) for wastewater
treatment.

5. Limitations and future trend
5.1. AI models limitations and challenges in the real world

AI models can signicantly improve the accuracy of wastewater
treatment processes by predicting and controlling various
parameters. However, it depends on various factors such as the
quality of data, the complexity of the treatment process, and
how well the AI models are integrated into existing
systems.166,167 For instance, Xu et al.168 developed AI models to
predict effluent phosphorus levels in a wastewater treatment
plant with incomplete inuent phosphorus and chemical
dosage data. The support vector machine (SVM) model showed
moderate accuracy, with an R2 of 0.637. The long short-term
memory (LSTM) model, which predicted phosphorus load one
day ahead, had a lower R2 value of 0.496, indicating limited
predictive performance due to the lack of complete data. In
contrast, AI models have been shown to achieve up to 100%
accuracy in predicting sessile and effluent microbial commu-
nities in a bioreactor when trained on high-quality data.160

There are several limitations and challenges in deploying these
AI models in real-world wastewater treatment facilities. The rst
challenge is the availability of high-quality data. Wastewater
treatment data exhibits signicant variability inuenced by
factors such as inuent composition, weather, operational
12142 | RSC Adv., 2025, 15, 12125–12151
changes, and poor data collection systems. AI models, typically
trained on more stable datasets, struggle to account for this
uncertainty and uctuation. Moreover, AI models oen rely on
large datasets, some of which may contain sensitive informa-
tion. Ensuring data security and privacy, particularly when it
pertains to specic geographic locations or proprietary treat-
ment processes, presents a signicant challenge and requires
robust protection measures.167 The scalability of AI solutions
can be limited since an AI model trained on historical data from
one treatment plant might not generalize well to another facility
with different operational parameters or environmental condi-
tions. Additionally, Wastewater treatment processes involve
numerous physical, chemical, and biological interactions.
Modelling these complex interactions accurately is challenging,
as AI models may struggle to account for all the variables that
inuence treatment outcomes. The integration of AI models
with legacy systems in wastewater treatment plants presents
technical and nancial challenges, oen necessitating
substantial system upgrades or replacements. These difficulties
are particularly pronounced when deploying AI models in real-
time operations, as wastewater treatment processes need to be
responsive to changes in water quality. This can involve
signicant upfront costs, including the installation of sensors
and data infrastructure which can be challenging for smaller
treatment plants. Furthermore, wastewater treatment facilities
must meet stringent regulatory standards for discharge quality.
Automated AI models must be able to comply with these regu-
lations, which oen require strict monitoring and reporting.
However, maintaining and updating implemented AI solutions
can be a resource-intensive task, as AI models require contin-
uous monitoring to ensure optimal performance. And require
personnel with specialized knowledge in both wastewater
treatment processes and machine learning to evaluate model
performance against real-world data, identifying deviations,
and making necessary adjustments to sustain accuracy and
reliability.169
5.2. AI in laundry greywater and future trend

Future research is expected to continue to focus on advances in
detecting and identifying emerging contaminants. For instance,
Zhu et al.170 devised a deep learning convolutional neural
network architecture known as PlasticNet to enhance the
recognition of microplastic (MP) types. This approach
addresses challenges related to the presence of additives,
adsorbed contaminants, changes in thickness, and surface
modication when analysing MP samples using FTIR spectra.
Therefore, AI can be used to predict changes in microplastic
pollution levels in response to variations in laundry operating
conditions. Factors such as different concentrations of deter-
gents and bleaches, water temperature, and the number of
washing and drying cycles can be assessed for their impact on
the release of microbers from garments, including materials
like polyester, nylon, polyamide, and acrylic. Additionally, AI
can be used to assess the quality of the treated laundry waste-
water. For example, Abuzir & Abuzir171 formulated three
machine learning models designed for water quality
© 2025 The Author(s). Published by the Royal Society of Chemistry
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classication, explicitly distinguishing between potable and
non-potable water.

Laundry greywater exhibits variations in pollutant composi-
tions and concentrations, contingent upon the specic sources
generating the wastewater. Consequently, AI can encounter
challenges, including the scarcity of available data and the
identication of key parameters and indicators essential for the
development of accurate AI models in this context. Using IT
technologies such as cloud computing and the Internet of
Things (IoT), in combination with AI, can play a crucial role in
collecting laundry greywater data, remotely controlling grey-
water treatment systems, and performing various other func-
tions to streamline and optimise the wastewater treatment
processes. For instance, Kakkar et al.172 developed a water
quality monitoring system for the residential water tank. This
system integrates IoT and AI, incorporating physical and
chemical sensors to detect parameters such as pH, turbidity,
colour, dissolved oxygen, and conductivity. In case any of the
parameters fall below predened standard values, the system
triggers an alarm notication to alert the user. This proactive
approach enables users to anticipate water pollution in their
home tanks.

Future research is anticipated to employ AI algorithms for
the development of novel photocatalysts aimed at improving
greywater treatment, where a mechanistic understanding of
catalytic organic reactions is essential for designing advanced
catalysts, exploring reactivity, and promoting sustainable
chemical processes. As an example, Burés and Larrosa173

developed a novel articial intelligence (AI) tool capable of
classifying chemical reaction mechanisms using concentration
data. This tool can make predictions with an accuracy of 99.6%,
even when dealing with realistically noisy data. Morover, Burger
et al.174 employed a mobile robot, guided by a batched Bayesian
search AI algorithm, to autonomously explore improved pho-
tocatalysts for hydrogen production from water. This autono-
mous optimisation process identied photocatalyst mixtures
with sixfold higher activity compared to initial formulations by
selectively incorporating benecial components while elimi-
nating detrimental ones.

Furthermore, efforts will continue to advance environmen-
tally sustainable, renewable, and cost-efficient separation
media and innovative treatment systems specically designed
to target specic micropollutants. These endeavours may
include scaling up nanotechnology applications, such as
employing metal oxide nanoparticles as adsorbents, integrating
nanobubbles (NBs) into membrane ltration processes to
mitigate fouling, and optimising ozonation processes to
enhance overall efficiency.

6. Conclusions

This review provides a comprehensive analysis of laundry
greywater treatment processes to mitigate the escalating risks
associated with the variation in quality levels of laundry
wastewater discharged into the environment by exploring the
opportunities of using AI techniques in this context. Due to its
low concentration of pollutants, laundry greywater exhibits
© 2025 The Author(s). Published by the Royal Society of Chemistry
signicant potential for recycling and can be repurposed as
service water for applications such as irrigation, toilet ushing,
and additional washing activities. The choice of technology or
method for recycling laundry wastewater is contingent upon the
characteristics and types of the associated pollutants. Electro-
coagulation has shown improved effectiveness in treating
synthetic dyes and organic compounds. When combined with
other oxidation treatments like ozonation (O3) and hydrogen
peroxide (H2O2), UV irradiation can enhance the removal effi-
cacy of pharmaceutical antibiotics from laundry wastewater.
Using a membrane bioreactor (MBR) can be effective in
removing microplastics (MP). However, the biodegradability of
microplastics is inuenced by several factors, including particle
morphology and the chemical composition of microplastics.
Employing efficient pretreatment with a focus on developing
green, renewable, cost-efficient separation media such as
superhydrophobic geopolymer foams and nanocellulose
hydrogel lms is essential to enhance microplastic removal
efficiency. Adsorption (AD) as a secondary treatment process
can signicantly improve the overall effectiveness of physico-
chemical treatment systems for laundry greywater. This
enhancement becomes particularly evident when integrated
with additional ltration systems and helps reduce the energy
consumption associated with electrocoagulation (EC) systems.
Iron oxide nanoparticles (IONPs) have gained popularity as
adsorbents due to their large surface area, ability to modify their
surface properties to target specic pollutants, and ease of
retrieval using magnetic-based separation techniques.
Advanced oxidative processes (AOPs) demonstrate considerable
effectiveness in eliminating non-biodegradable contaminants.
However, challenges such as high energy consumption, chem-
ical inputs, catalyst support corrosion, suboptimal light uti-
lisation, limited ozone mass transfer, and operational costs
oen restrict their widespread adoption in wastewater treat-
ment. AOPs can be combined with membrane ltration tech-
niques to form a photocatalytic membrane reactor (PMR). PMR
utilises membrane ltration to separate contaminants in water,
facilitating the degradation of rejected pollutants through
photocatalysis. This integration provides the added benet of
reducing membrane fouling by establishing a self-cleaning
membrane. Nanobubbles (NBs) can function as anti-
biofouling and scale inhibitors by utilising their surface
charges to attract contaminants such as biolms or algae,
effectively removing them.

AI is primarily employed to evaluate the efficacy of pollutant
removal, optimise treatment system parameters, and control
membrane fouling. Articial Neural Network (ANN) models
have been explicitly employed to predict the removal efficiency
of Advanced Oxidation Processes (AOPs) targeting specic
pollutants like synthetic dyes, thereby optimising the overall
process. Similarly, ANNs mitigate certain limitations inherent
in traditional adsorption models. These ANN models excel at
capturing nonlinear relationships, which are prevalent in
multicomponent adsorption scenarios where interactions can
be antagonistic, synergistic, or non-interactive. Machine
Learning (ML) models are widely applied to identify primary
microorganisms within biological treatment units. These
RSC Adv., 2025, 15, 12125–12151 | 12143
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microbial communities are then leveraged as inputs to forecast
the efficacy of pollutant removal. Moreover, crucial ML algo-
rithms like GB, RF, and DNN have been successfully applied to
simulate MBR performance and model/predict membrane
fouling behaviour under different conditions. Future AI
research is anticipated to prioritise advancements in detecting
and identifying emerging contaminants like microplastics
(MPs), evaluating the treated laundry greywater quality for reuse
purposes, and utilising IT technologies such as cloud
computing and the Internet of Things (IoT) for data collection
to train AI models.
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58 K. Bule Možar, et al., Potential of Advanced Oxidation as
Pretreatment for Microplastics Biodegradation,
Separations, 2023, 10(2), 132, DOI: 10.3390/
separations10020132.

59 M. Pidou, F. A. Memon, T. Stephenson, B. Jefferson and
P. Jeffrey, Greywater recycling: treatment options and
applications, Proceedings of the Institution of Civil
Engineers - Engineering Sustainability, 2007, 160(3), 119–
131, DOI: 10.1680/ensu.2007.160.3.119.

60 D. E. Santiago, M. J. H. Rodŕıguez and D. Ph, Laundry
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