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The hydrogen storage potential of pure MgC, was systematically investigated using density functional
theory (DFT) calculations. The phonon dispersion and ab initio molecular dynamics (AIMD) simulations
confirmed the dynamic and structural stability of MgC,, reinforcing its suitability as a promising hydrogen
storage material. The electronic structure analysis revealed that pure MgC, exhibits semiconducting
behavior with a band gap of 0.25 eV, and transforms into a metallic state upon hydrogen adsorption.
Hydrogen molecules were adsorbed onto the MgC, surface via physisorption, with an average
adsorption energy of 0.286 eV, indicating moderate binding strength suitable for reversible hydrogen
storage. Hirshfeld charge analysis demonstrated that MgC, transfers 0.041 e, 0.139 e, and 0.259 e to 1, 4,
and 8 hydrogen molecules, respectively, highlighting charge redistribution upon adsorption. The
calculated hydrogen storage capacity of 2.05% suggests a feasible adsorption mechanism. Additionally,

Received 20th January 2025 AIMD simulations at 400 K confirmed that hydrogen adsorption does not induce significant distortions in

Accepted 10th March 2025
the MgC, framework, further validating its thermal and mechanical stability. These findings underscore

DOI: 10.1039/d5ra00486a the potential of MgC, as an efficient hydrogen storage material for sustainable energy applications,
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1. Introduction

One of the main and most efficient ways to address the enor-
mous rise in energy consumption and environmental protec-
tion is the development of clean, sustainable energy sources like
wind, solar, and hydrogen.*™ However, since hydrogen is not
readily available in nature, it must be stored for use in trans-
portation, as well as other mobile and stationary applications.>®
There are two types of hydrogen storage technologies: physical-
based and material-based. The first category consists of
currently in-use technologies that require specialized, big-
volume containers to store hydrogen as compressed gas, cold/
cryocompressed gas, and liquid.” The second method involves
chemical reactions within materials at the atomic or molecular
level. 1t is still quite difficult to find a substance that can safely,
effectively, and affordably store hydrogen for real-world appli-
cations.*® Recently, advancements in hydrogen storage tech-
nology have made it possible to store a substantial amount of
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offering a promising pathway for the development of next-generation clean energy technologies.

hydrogen fuel safely, which has tremendously benefited the
development of cars that run on hydrogen. Over the years, many
efforts have been made to produce pure hydrogen (H,) without
harming the environment. According to the standards of the
U.S. Department of Energy (DOE), a material used for hydrogen
storage must have a storage gravimetric density of more than
5.5 wt%."°

In recent years, there has been enormous interest in nano-
structured materials to store hydrogen by an adsorption
mechanism."* These factors have led to the proposal of many
materials, including MgH,, Mg(BH,),, and LiBH,, for the solid-
state storage of hydrogen. Despite having a high gravimetric
density of hydrogen, these materials exhibit significant disso-
ciation temperatures and thermodynamic stability.**'* The
hydrogen storage capacity and recovery efficiency of carbon-
based nanomaterials, such as graphene, are significantly
influenced by lithium- and sodium-decorated inorganic
graphenylene.

Although surface adsorption of H, is inefficient for hydrogen
release, it is appropriate for improving the quantity of storage.
Additionally, to keep the reservoir pressure high once H, has
been retrieved, an absorbent gas, such as N,, CH,, or CO,, is
required. This leads to competitive adsorption between H, and
the cushion gas, significantly affecting H, recovery and purifi-
cation in the recovered fluids." Consequently, none of them is
a good option. On the other hand, magnesium hydride (MgH,)
has attracted significant attention due to its high volumetric
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capacity (110 g L™') and gravimetric density (7.6 wt%), non-
toxicity, good reversibility, and vast natural reserves. Further-
more, when supplying mixed gases free of harmful compo-
nents, materials like MgH, show enormous potential for
hydrogen filtration and selective storage.'*'” Qin et al. con-
ducted first-principles calculations to investigate the structural,
mechanical, electronic, dynamic, thermodynamic, optical, and
hydrogen storage properties of XMoH; (X = Na, K, Rb, Cs). Their
findings confirm the thermodynamic, mechanical, and
dynamic stability of these perovskites based on formation
energy, elastic constants, and phonon spectra.*®

Recent investigations have explored the potential of newly
proposed 2D MXene materials, including Sc,C, Cr,C, Ti,C, Ti,N,
and V,C for hydrogen storage applications. Liu et al. investi-
gated the use of V,C (vanadium carbide) and Ti;C, (titanium
carbide) MXenes in combination to improve the capacity of
MgH, to absorb and desorb hydrogen. By incorporating 2V,C/
Ti;C,, the activation energy for the hydrogen release process of
magnesium hydride (MgH,) was successfully reduced by 36%,
resulting in a reversible capacity of 6.3%."

The SiB, monolayer, recognized for its lightweight nature,
high carrier mobility, and exceptional stability, holds signifi-
cant potential as an electrode material. Its structure is similar to
that of MgB,, which has been extensively studied.*®** The MgB,
has been investigated for applications such as hydrogen storage
and alkali metal ion batteries. The hydrogenation of bulk MgB,
requires high pressure (90-100 MPa) and temperature (390-400
°C) and is time-intensive. Li et al. studied nanoscale MgB,
hydrogenation via mechanical milling, though the reaction
pathway and intermediate states remain unclear.> Theoretical
studies suggest that Li decoration can enhance hydrogen
storage capacity to 7.26 wt%,** while Na and Li addition
improves H, storage efficiency in C,O by 13.08 wt%.** In our
previous study, we employed DFT to investigate optimized
structures, thermodynamic properties, and H, storage capac-
ities of MgB,. The results highlight a subtle charge transfer
from Li/Na/K to the MgB, monolayer, enhancing its electro-
positive nature and improving electrostatic interactions with H,
molecules. The maximum H, adsorption occurs with nine H,
molecules for Li and eight H, molecules for Na and K. The
corresponding adsorption energies range from —0.24 to
—0.21 eV for Li, —0.22 to —0.20 eV for Na, and —0.25 to —0.20 eV
for K.*® Previously, we have investigated various 2D materials
and transition metal chalcogenides (TMDs) for alkali and
alkaline earth metal-ion batteries, focusing on their structural,
adsorption, electronic properties, open-circuit voltage (OCV),
theoretical capacity, and thermodynamic stability.”*-**

From the above discussion, it is clear that a thorough anal-
ysis of pristine MgC,'s capacity to store hydrogen, taking van
der Waals correction parameters into account, has not yet been
carried out. This gap inspired us to conduct a DFT calculation
from the ground up to examine the hydrogen-adsorbed MgC,
system's electrical characteristics, binding/adsorption energies,
and desorption temperatures.
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2. Computational detail

The Amsterdam density functional (ADF-BAND) software was
used in the DFT framework, and Slater Type Orbitals (STO) was
primarily used to create molecular orbitals for every structure.*
Based on the framework offered by the Perdew-Burke-Ernzer-
hof (PBE) functional, the generalized gradient approximation
(GGA) was used throughout the study to compute the exchange-
correlation energies required for structure optimization. Given
that van der Waals forces are the main interaction forces
between H, and the substrate material, we addressed the
shortcomings of DFT by integrating the Grime semi-empirical
correction technique (DFT-D3) throughout the calculations in
handling dispersive interactions. Additionally, our method
used double-zeta polarized (DZP) basis sets and excellent
numerical quality, together with settings that permitted non-
frozen cores.* For fully relaxed geometries, we impose strict
requirements, with an energy optimization threshold of
10~° eV. We maintained 107> A as the step convergence crite-
rion and 0.02 eV A~ as the gradient convergence criterion.
Hirshfeld charge analysis was used to probe the arrangement of
electrical ions between the absorption setups and optimum
substances.

The adsorption energy of hydrogen molecules on pure MgC,
is calculated by following the formula.

Enec, + nEn, — Eqvige,—nm)

Eg = 1
d " (1)

where Eyc, denotes the total energy of MgC,, Engc, + nEq,
denotes the energy of hydrogen adsorbed MgC,, and n denotes
the amount of hydrogen molecule, Ey, is the energy of a single
H, molecule.**

To determine hydrogen adsorption on the MgC, nanosheet,
we calculated the binding energy (Egg) of the H, molecule using
the following relation®

Egg = Emgc, + nEy, — Eyn,-Mgc, (2)

where, Eygc,, nEn, 1, and E,y _mec, are the total energies of
pristine MgC, nanosheet, an isolated H, molecule, n is the
number of H, molecules and MgC, nanosheet with adsorbed H,
molecules, respectively.

To determine the gravimetric storage capacity, the following
formula was used:

nx My,

wtVo= ————
n X ]‘4].[2 —+ }‘4]\/[g(j2

x 100% (3)
where My, is the molecular mass of the H, molecule, My,
molecular mass of the host MgC,, n is the number of adsorbed
H, molecules.

The desorption temperature (T4) of hydrogen-adsorbed
systems is crucial for practical applications. We used the Van't
Hoff equation to analyze the desorption temperature.®**¢

Eads (AS
X

-1
TD: kb ?—IHP) (4)
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where k, is Boltzmann constant (1.380 x 10°>* J K '), AS
represents the difference for hydrogen entropy switching from
gaseous to the liquid state (75.44 J mol ™" K '), R is the universal
gas constant (8.314 J mol ' K™ "), and equilibrium pressure is 1
atm.

The desorption energy (Eq.s) is calculated as follows:

(5)

es — gC,+(n—1)H, — 2Cy+n
Eges = En, + EMgCy+(ni—1)H, — EMec,+nH,

where Eges and Epigc,+(n—1)n, are gradual desorption energy and
net energy of MgC, with (n — 1) H, adsorption, respectively.

3. Results and discussion
3.1 Structural and electronic properties of MgC, monolayer

The relaxed crystal structure of the MgC, monolayer within the
P6émm space group is shown in Fig. 1(a). We have previously
computationally designed MgB, and analyzed its structural,
electronic, and adsorption properties. This material was inves-
tigated for hydrogen storage applications after being decorated
with alkali metals.”” Similarly, the MgC, structure was designed
computationally by replacing the B atoms in MgB, with C
atoms. MgB, consists of two atomic layers and exhibits
a geometry similar to that of BeB,, HfB,, TiB,, FeB,, and MgB,
monolayers.***°

The upper atomic layer, composed of C atoms, follows
a honeycomb arrangement similar to graphene, and the lower

View Article Online
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Table 1 Lattice parameters, bond length, and height of MgC,

monolayer
Lattice parameters (A) Bond length(A) Height (A)
MgC,(this work) 3.181 2.14 1.46
MgB, 3.017 2.42 1.68
BeB, 3.032 1.84 0.44
HfB, 3.165 2.32 1.41
TiB, 3.083 1.73 1.19

atomic layer consists of Mg atoms positioned at the center of
the C-C honeycomb. The optimized lattice parameters of MgC,
are ¢ = b = 3.181 A, which are slightly larger than those of the
BeB, monolayer (a = b = 3.032 A) and MgB, (a = b = 3.017 A).
Additionally, the monolayer thickness of MgC, is 1.460 A,
significantly greater than that of BeB, (0.443 A) and less than
MgB, (1.683 A). A comparison of the lattice parameters is
provided in Table 1.

Fig. 1(b and c) illustrates the band structure and density of
states (DOS) of MgC,. The DOS results indicate that the material
exhibits semiconducting behavior with a bandgap of 0.30 eV.
The band structure indicates the direct bandgap of 0.3 eV at I"
point which is consistent with the DOS. The total DOS is mainly
governed by the p-orbitals of carbon atoms, with only a minor
contribution from the s-orbitals of magnesium atoms. Fig. 1(b)
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'S
N

DOS (States/eV)

2

-1 0 1
Energy (eV)

[ MeC total
——Mg-s
—Cp

Energy (eV)

2 3 4

-61 900

@

(e

624

g

Energy (eV)
2

Temperature (K)
w
8

——MgC,

T T T
200 400 0 100

Time (fs)

T
200
Time (fs)

T
300

Fig.1 Optimized structure of (a) MgC,, (b) density of states (DOS), and (c) band structure (d) energy—time (e) temperature—time (f) phonon of
MgC,. Green-colored atoms represent boron, while maroon-colored atoms represent magnesium.
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Table 2 Binding energy of MgC, at studied sites

Adsorption sites TOP (T) Bridge (B) Hollow (H)

Binding energy (eV) 0.23 0.25 0.25

reveals that the s-orbital of Mg and the p-orbital of C overlap in
the valence band.

MD calculations were conducted at 300 K for the pure MgC,
monolayer. As observed in Fig. 1d and e, the energy graph peaks
at —62 eV, while the temperature graph reaches a maximum
value of 460 K. The continuous fluctuations in both graphs
indicate the structural stability of MgC, at 300 K. The phonon
calculations for the pure MgC, monolayer reveal no imaginary
frequencies throughout the Brillouin zone, indicating its
dynamic stability as shown in Fig. 1f. The absence of imaginary
peaks in the phonon dispersion spectrum confirms that the
structure remains stable under small perturbations and does
not undergo spontaneous distortions or soft modes. This result
validates the robustness of the material and supports its
potential for practical applications.

3.2 Adsorption of hydrogen molecule on pristine MgC,

This section examines the interaction of H, molecules with
MgC,, where a single H, molecule was placed at various distinct
locations, as shown in Fig. 1(a). The hydrogen adsorption sites
include (i) the hollow site of the hexagonal boron ring (H), (ii)
the top of a boron atom (T), and (iii) the bridge site between two
boron atoms (B). The structures were sequentially optimized by
varying the adsorption sites. The binding energy was calculated
using the formula in eqn (2), and the corresponding values for
different sites are presented in Table 2.%*

The binding energy estimates for these adsorption sites are
presented in Table 2, and all values fall within the DOE criteria
range (0.2-0.8 eV per H,), making them suitable for hydrogen
adsorption. The binding energy values for the H and B sites
were found to be similar or higher. However, hydrogen initially
placed at the B site migrated to the H site, indicating that the H
site is more stable than the B site. Consequently, additional
hydrogen molecules were sequentially adsorbed onto the H site,
and their binding energies were calculated, as shown in Table
3.254041 The 5,73 A is the ideal upward distance for a deposited
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H, molecule. In reference, the mean bond length of a free H,
molecule is approximately 0.74 A. An H, molecule adsorbed on
the structure and caused a little increase in bond length to 0.75
A.* The retention of H, molecular properties is indicated by the
change in bond length that is seen throughout the procedure of
adsorption and optimization. To determine the optimal
adsorption site, adsorption energies were analyzed. Following
structural optimization, the hexagonal hollow site emerged as
the most favorable location for H, adsorption, with an average
binding energy of 0.24 eV.'%*

3.3 Adsorption and electronic properties of H, molecule
adsorbed on MgC,

Based on the binding energy, it is concluded that the most
favorable atom decoration occurs at the H site. Fig. 2 illustrates
the optimized structures of hydrogenated MgC,. Hydrogen
molecules were sequentially adsorbed onto the H site, up to
a total of 8H,, and their binding energy, adsorption energy,
weight percentage, desorption energy, and desorption temper-
ature were calculated, as detailed in Table 3.

Subsequently, each structure was optimized, and a vertical
distance of 3.02 A was determined to be optimal for the
adsorbed H, molecule. It is discovered that the free H, mole-
cule's bond length is 0.74 A. The H-H bond length elongates to
0.78 A when one H, molecule is added to the system. The H-H
bond length in the 2H,-8H, molecule adsorption system is
determined to be 0.78-0.80 A. The H-H bond length deter-
mined throughout the adsorption and optimization procedures
demonstrates that the molecule's structure remains intact.*?

As shown in Fig. 3, the total and partial DOS were calculated
for the Mg-s, C-p, H-s, and s orbitals of all metal elements to
evaluate the system's electrochemical properties. Fig. 3(a)
reveals that absorption of a single molecule of hydrogen
transforms the behavior of MgC, from semiconducting to
metallic, resulting in a zero bandgap. The p orbital of the C
atom significantly contributes to the total DOS, while the s
orbital of hydrogen exhibits overlapping peaks at —4.5 eV in the
valence band, and hybridized peaks between 6-8 eV in the
conduction band. Similarly, Fig. 3(b) demonstrates that after
the adsorption of four hydrogen molecules, MgC, retains its
metallic nature with a zero bandgap. The p orbital of the C atom
remains the dominant contributor to total DOS, while the s
orbital of hydrogen displays hybridized peaks within the ranges

Table 3 Binding, adsorption energy, weight percentage, and desorption temperature values

Binding energy Adsorption energy Weight percent Desorption energy Desorption temperature
(eV) (eV per Hy) (%) (ev) (K)

MgC,-1H, 0.25 0.290 0.26 0.29 370.52

MgC,-2H, 0.40 0.242 0.52 0.20 309.19

MgC,-3H, 0.62 0.234 0.77 0.21 298.97

MgC,-4H, 0.82 0.226 1.03 0.20 288.75

MgC,-5H, 1.03 0.223 1.29 0.21 284.92

MgC,-6H, 1.24 0.220 1.54 0.20 281.08

MgC,-7H, 1.44 0.218 1.80 0.20 278.53

MgC,-8H, 1.62 0.640 2.05 0.17 817.71
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Fig. 2 Optimized structures of (a) 1H,- (b) 4H,- (c) 8H,-adsorbed MgC,.

of —4 to —6 eV in the valence band and 6 to 8 eV in the
conduction band.

In Fig. 3(c), the total DOS of MgC, after the adsorption of
eight hydrogen molecules shows a reduction in the bandgap.
The p orbital of the C atom remains the primary contributor to
the total DOS, while the s orbital of hydrogen exhibits over-
lapping peaks at 7.1 eV in the conduction band and hybridized
peaks within the ranges of —4 to —6 eV in the valence band and
6 to 8 eV in the conduction band. In summary, the adsorption
between MgC, and hydrogen is primarily driven by the polar-
izing effect of the localized voltage generated by charged parti-
cles and their spatial recombination.

After the adsorption of hydrogen molecules onto the MgC,
monolayer, charge analysis calculations were conducted. The
results reveal that 1, 4, and 8 hydrogen molecules withdraw
charges of 0.041 e, 0.139 e, and 0.259 e from the surface,
respectively. For MgC,, the typical hydrogen desorption
temperature ranged from 370 K to 496 K for 1H,. As illustrated
in Fig. 4, these values were derived from adsorption energies
calculated within a pressure range of 1-10 atm.

Furthermore, three critical temperatures related to hydrogen
desorption were determined: the maximum temperature at
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temperature after hydrogen adsorption on MgC.

which desorption takes place (max-TD), the minimum temper-
ature necessary to start hydrogen release (min-TD), and the
average desorption temperature (Av-TD). In our study, the
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(b)

Fig. 5 (a) MgCy-1H,, (b) MgC,—4H,, (c) MgC,-8Hs.

average desorption temperature of MgC, monolayers was
calculated to range from 370 K to 496 K, indicating their suit-
ability for fuel cell applications.**

3.4 Electron localization function (ELF)

The charge carrier density mechanism serves as a gauge of
charge confinement and scattering and is connected to the
kinetic energy density.*>*® Its values range from 0.5 to 1.0,
indicating areas where electrons are present and engaged in
bonding or nonbonding interactions, including lone pairs,
covalent bonds, or atomic shells. On the other hand, values
between 0.0 and 0.5 show that there are small intermolecular
interactions, and electrons are dispersed throughout the atomic
shells.*” The ELF map highlights regions of increased electron
concentration and shows how charge carrier density changes on
surfaces and adsorbents during complex creation.

As seen in Fig. 5(a) a value near 0.5 is indicated by green,
indicating the presence of covalent bonds, and a large charge
density is indicated by the increased red coloration in the MgC,
layer after deposition of 1H,.*® Following the uptake of four
hydrogen molecules, Fig. 5(b) shows a striking color shift with
an increase in green and a decrease in red and yellow, sug-
gesting covalent electron sharing between the hydrogen
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molecules and the MgC, layer. The bright red hue represents
a decrease in surface electrons, while the increasing green color
and the presence of a light blue shade in Fig. 5(c) indicate
charge transfer from the MgC, layer to the hydrogen molecules,
with up to eight hydrogen molecules adsorbed.

3.5 Ab initio molecular dynamics (AIMD)

AIMD calculations were performed to assess the configurational
stability of the system after hydrogen adsorption on MgC, at
elevated temperatures such as 400 K. Simulations were con-
ducted with a time step of 0.25 femtoseconds for a total dura-
tion of approximately 4.5 picoseconds at a temperature of 400 K.
Fig. 6 presents the temperature and energy fluctuation graphs at
400 K.

As can be seen from Fig. 6(al), the system attained higher
energy values of —1706.5 eV when one hydrogen molecule was
adsorbed on MgC,. Fig. 6(a2) shows that the temperature peaks
peaked at 5000 K. Based on Fig. 6(b1), it can be concluded that
the system achieved higher energy values of —1855.9 eV when
the eight hydrogen molecules were adsorbed on MgC,.
Fig. 6(b2) shows the temperature peaks around 4500 K. The
steady fluctuations of the peaks indicate the stability of the
MgC, sheet after hydrogen adsorption at 300 K.
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4. Conclusion

In this study, the adsorption behavior of hydrogen on pure
MgC, was systematically analyzed using density functional
theory (DFT) and Ab Initio Molecular Dynamics (AIMD) simu-
lations. The structural stability of MgC, was thoroughly evalu-
ated using phonon dispersion calculations and AIMD
simulations, confirming its robustness as a potential hydrogen
storage material. MgC, demonstrates a gravimetric hydrogen
capacity of 2.05 wt%, capable of adsorbing up to eight hydrogen
molecules. The hydrogen changes the behavior of the pure
MgC, to metallic. The average adsorption energy for MgC, was
calculated to be 0.286 eV. Hirshfeld charge analysis revealed
charge transfers of 0.041, 0.139, and 0.259 e to 1, 4, and 8
hydrogen molecules to the pure MgB, structures respectively.
AIMD simulations confirmed that the pure MgC, structure
remains stable without any distortions upon hydrogen adsorp-
tion at 400 K. The comprehensive analysis of structural, elec-
tronic, and adsorption properties, along with binding energy
calculations, desorption temperature and energy assessments,
charge density analysis, and electron localization function (ELF)
mapping, all indicate that MgC, is a highly promising candidate
for hydrogen storage applications. The strong interaction
between MgC, and hydrogen molecules, coupled with favorable
adsorption and desorption characteristics, suggests its poten-
tial for practical hydrogen storage solutions. These findings
provide a theoretical foundation for further experimental vali-
dation and the development of MgC,-based hydrogen storage
materials.
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