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s discovery using human-in-the-
loop generative machine learning†
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Machine learning (ML) approaches to materials discovery are limited by data curation, availability, and bias.

These issues can be addressed through the generation of new data points representing novel material

compositions and/or structures. We demonstrate the implementation of this process to produce and

subsequently determine the stability of novel materials using a generative ML model. Furthermore, we

successfully synthesize two predicted materials, LiZn2Pt and NiPt2Ga, and use these predictions to

extrapolate to other unreported ternary compounds in the Heusler family. Our work demonstrates and

expands the use of generative ML models to successfully discover and synthesize novel materials. This

has broad implications for material exploration by design, as previous ML approaches to materials

discovery were biased by the limits of known phase spaces and experimentalist bias, and has the

potential to enable inverse-design of materials with targeted properties.
Recent advances in machine learning (ML) techniques for
domain-specic learning tasks have led to an explosive adop-
tion of data-driven scientic exploration in physics and
chemistry.1–3 This is particularly true in materials development
where the combinatorics of composition, stoichiometry, and
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structure yield too many possible materials for the community
to synthesize and characterize. As such, researchers have been
applying ML techniques to this problem in attempts to predict
novel materials with targeted properties, such as improved
batteries, solar cells, semiconductors, and superconductors.4–8

One outstanding issue with the success of ML techniques in
material science applications is the lack of high-quality data
that is curated, easily ingestible, complete, and high delity.9 To
address this, the coordination of materials databases have
allowed the implementation of ML workows into material
science research.10–16 Although these databases contain
hundreds of thousands of known and theoretical materials with
cor-responding structures and properties, the corpus of data is
heavily biased toward explored phase spaces and realistically
these databases contain only a small fraction of possible
materials and their known properties.

To increase the success of ML-driven approaches, methods to
improve materials data have been implemented to address two
main issues: data completeness and data bias. One approach to
address both issues simultaneously is to iteratively loop ML
predictions with experimental validation thereby allowing theML
model predictions to continually evolve with the incorporation of
new negative and positive data to the ML training sets.8,17,18 This
“closed loop” treatment has recently been successful in the
prediction and validation of new super-conductors and could be
extrapolated to other property prediction problems.8 Although
this approach does not require initial property labels for all
materials of interest, the unlabeled, and therefore potentially
interesting, material candidates must still come from the initial
datasets. This restricts data de-biasing.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Therefore, a complementary strategy to expand the number
of available materials, beyond what is available in current
repositories, is the use of ML models or ab initio methods to
generate novel materials and structures.19–27 These generative
approaches can be paired with more traditional property-
prediction ML models to target materials for specic design
problems. To date, developing out-of-distribution material
candidates with generative models and predicting properties
with ML have been done independently.28–34 In this paper, we
present the rst successful use of a generative ML model to
produce novel materials and structures, determine their ther-
modynamic stability, and subsequently experimentally synthe-
size and characterize these new materials in a single human-in-
the-loop workow. This study builds off of our prior work,35 in
which we analyzed the capabilities of the generative model we
used in this paper and assessed. Here, we extend those results
by computationally and experimentally characterizing specic
generated materials of interest.

In particular, we use a state-of-the-art generative model, the
PGCGM for the generation and prediction of novel materials.23

The PGCGM is a Wasserstein GAN that can stochastically
sample possible structures of ternary material systems given
their constituent elements and space group.36 In this study, we
use the as-released PGCGM which was trained on data taken
from Materials Project (MP), Open Quantum Materials Data-
base (OQMD), and inorganic crystal structure database (ICSD).
We randomly sample constituent element sets and space
groups and then use the PGCGM to generate 27 116 material
structures Fig. 1. As discussed in the PGCGM paper,23 following
generation, these structures were post-processed to merge
together spatially-adjacent atoms of the same type to one crys-
tallographic site.
Fig. 1 The PGCGM is a GAN that maps a sample of randomGaussian nois
as characterized by its atom coordinates B and lattice parameters p. Var
group to be generated. We generate 27 116 structures with the PGCGM
structure.

© 2025 The Author(s). Published by the Royal Society of Chemistry
Methods for theoretically assessing the range of possible
structures a generative model can predict are limited. Such
models can predict novel structures, but their predictions may
lack diversity compared to their training data. Measuring the
novelty and diversity of generated materials, especially in
comparison to training data, remains a needed step in their use
(see, e.g., ref. 23 and 26). Averting pathologies such as mode
collapse remains an active area of research.33,34,37 However,
because the throughput of these methods is far higher than
rst-principles calculations or experimental synthesis and
characterization, use of generative models for predicting
structures allows for a faster sampling of unknown phase
spaces.

Although the PGCGM is capable of generating large numbers
of potential structures, there is no guarantee that the structures
will be thermodynamically stable and thus synthesizable.
Therefore, we also train a stability-prediction ML model to
rapidly screen identied structures for stability (Fig. 1). Specif-
ically, we construct a set of structures from MP with
computationally-predicted decomposition enthalpy, previously
identied by Bartel et al.38 We use this data to train an ALIGNN
model39 to predict decomposition enthalpy relative to the
convex hull based on phases in the ML. The decomposition
energy is the same as the energy above convex hull, except for
phases that lie directly on the convex hull. In those cases, the
decomposition energy is the distance from the hypothetical
convex hull formed by other phases. A structure is predicted to
be stable if its predicted decomposition enthalpy is negative.

We use decomposition enthalpy as a metric for stability
because decomposition enthalpy takes positive values for
unstable compounds and negative values for stable
compounds. In contrast, the commonly used energy above hull
e z, three elements E, and a space group s to a ternary unit cell structure
ying z enables different structures with the same elements and space
and then use a GNN to predict the decomposition enthalpy of each

RSC Adv., 2025, 15, 19126–19131 | 19127
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takes a value of zero for all stable phases and does not indicate
the degree of stability relative to competing phases. Thus,
decomposition enthalpy provides more information about
stability relative to other phases in the multicomponent system;
it range of values also makes it more suitable for the loss
functions used by regression-based ML methods. Outside of
decomposition enthalpy and energy above hull, material
stability can be characterized in other ways.40,41

In general, this process can be adapted to include any
secondary prediction model for thermodynamic stability and/or
a desired property prediction such as superconductivity, elastic
properties, and/or magnetism; this is the reason for including
the general notation of property-prediction model in the work-
ow shown in Fig. 1.

Aer screening generated structures for stability, 2652 have
a predicted decomposition enthalpy less than 0.1 eV per atom,
281 are less than 0.01 eV per atom, and 195 are less than 0 eV
per atom. Domain expertise is further used to down-select
materials based on factors such as oxidation states of constit-
uent elements, coordination of atoms in the generated struc-
ture, and feasibility of synthesis. This step is currently required
due to the large number of prediction candidates from the
PGCGM process; future work and advances in synthesizability
prediction would be required to incorporate this subject matter
expertise in an automated way into the prediction process.
Table 1 shows select PGCGM-generated materials and their
ALIGNN-predicted decomposition enthalpies (Ed). The full list
of structures and predicted properties is in the ESI.† Sampled
PGCGM structures may be unique and strictly theoretical, or
they may reect the theoretical structures already listed in the
training data. LiZn2Pt with space group Fm�3m is found in the
subset of MP that PGCGM was trained on (mp-867251), and in
the subset of OQMD PGCGM was trained on (OQMD IDs
1042055, 1042723, and 1047136) in the P63/mmc space group.
Even when the PGCGM predicts two compositions with the
same stoichiometry and space group, the structures can still
vary based on the precise positioning of atoms, which affects
properties. The random sample z that the PGCGM takes as
input enables generation of different structures with the same
elements and space group.

In this work, LiZn2Pt was selected as the most promising
candidate from the initial round of material generation, energy
classication, and down-selection due to its composition and
Table 1 The six PGCGM-generated structures and with the most
negative (i.e., stable) decomposition enthalpies (Ed in eV per atom) and
NiPt2Ga, as predicted by ALIGNN

Formula Space group Predicted Ed (eV per atom)

BaH8Pt I4/mmm −0.1732166
LiZn2Pt Fm�3m −0.1462675
HfH24W Fm�3m −0.129171
Ba3AsH6 R�3c −0.1043272
KPdF6 Fm�3m −0.0996605
RbAlS Immm −0.0987449
NiPt2Ga Fm�3m −0.0070151

19128 | RSC Adv., 2025, 15, 19126–19131
predicted structure. The selection of LiZn2Pt was due to its
second-lowest Ed and Ef amongst all candidates and that the
predicted structure is a Heusler, a structure type that is ubiq-
uitous in solid-state chemistry.42–44

We considered several other material candidates as well.
NaZn2Pd and NaZn2Pt appear in the list of PGCGM candidates
(with predicted Ed values of −0 014375 eV per atom and −0
045241 eV per atom, respectively). Despite these negative pre-
dicted decomposition enthalpies, we were unable to success-
fully synthesize either. Thus, we also attempted to synthesize
LiZn2Pd; this composition was targeted because there are no
experimental reports of Li–Zn–Pd ternary phases, although it
was not a material appearing in the PGCGM prediction list.

The X-ray powder diffraction patterns and subsequent Riet-
veld using the PGCGM-generated Cu2MnAl-type Heusler (Fm�3m)
structure are presented in ESI.† Importantly, the Heusler family
has a range of related structures determined by the amount of
order or disorder in the Heusler sublattices.43–45 Disorder in
Heusler structures can be difficult to determine without
synchrotron X-ray or neutron diffraction, but a qualitative
approach to the X-ray diffraction offers some insight and is
comprehensively shown in ESI† to justify the successful
synthesis of LiZn2Pt (and LiZn2Pd) in the same structure as
generated by the PGCGM. Overall, the successful synthesis of
LiZn2Pt was a proof-of-concept of the ability of the human-in-
the-loop workow to help discern which regions of phase
space house stable phases that have not been previously
experimentally realized.

Following the successful synthesis of LiZn2Pt and LiZn2Pd,
several Heusler-type PGCGM predictions with negative Ef and Ed
were targeted. To that end, a new ternary phase with stoichi-
ometry NiPt2Ga was successful. Fig. 2 shows the X-ray powder
diffraction pattern and Rietveld renement for NiPt2Ga in the
P4/mmm tetragonal Heusler space group. Interestingly, this is
Fig. 2 Powder X-ray diffraction of phase pure NiPt2Ga Rietveld
refinement using the P4/mmm tetragonal Heusler structure.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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not the exact same structural prediction from the PGCGM
which predicted a Cu2MnAl-type cubic Heusler similar to
LiZn2Pt. These structures are obviously very closely related
(ESI†), differing only by a tetragonal distortion. To conrm their
proximity in energy, a comparison of DFT-computed energy for
both structures was completed. The total energy for the
PGCGM-predicted Fm�3m structure and P4/mmm differ by
z0.15 eV per atom with P4/mmm having lower overall energy
(ESI†). Neither the Fm�3m or P4/mmm structures for NiPt2Ga
were present in the training data for the PGCGM – the P4/mmm
structure of NiPt2Ga is present in OQMD (OQMD ID 1364774)
but was not used to train the iteration of the PGCGM model
used in this work. Thus, the successful synthesis of NiPt2Ga
takes the success of the PGCGM workow beyond informing us
to regions of phase space with unreported phases and struc-
tures that are likely to be stable, but enable us to synthesize
unknown materials that exist beyond the database curation of
the domain expertise.

These three materials are electronically quite unusual. They
all have a valence electron count (VEC) of 33 for NiPt2Ga and 35
electrons for LiZn2Pt/Pd – very high among known Heuslers
(ESI†). Typically, this high VEC means that the electronic
character of these Heuslers can be signicantly different than
the majority of Heuslers and enable access to unique regions of
the band structure at the Fermi level. For example, the high VEC
in LiZn2Pt and LiZn2Pd causes the Fermi level to sit directly at
a band crossing between the L and G point which may be
a source of unique transport properties. This band crossing is
observed in Fig. 3 for NiPt2Ga but due to its lower VEC, it is
z1.5 eV above the Fermi level and possible exotic properties
arising from this Fermiology is not easily accessible.

Here, we have worked with materials that, although elec-
tronically unusual, belong to the well-studied Heusler class. The
Fig. 3 DFT computed band structure of NiPt2Ga in the tetragonal
Heusler structure with lattice parameters determined from experi-
mental data along high symmetry directions. DOS computed for total
Ga, Ni, and Pt contributions.

© 2025 The Author(s). Published by the Royal Society of Chemistry
discovery of usable materials from truly novel classes is a chal-
lenge that still remains unsolved.26,46 Standard metrics like
stable, unique, novel (SUN) assess only if a given structure is not
in existing databases and do not check if the structure's mate-
rials class is novel.26 As the eld progresses, we recommend the
use of distance-based measurements (whether using featuriza-
tions like Magpie47 or ML model latent spaces) for determining
how unlike generated materials are from known ones. This may
provide additional mechanisms for going beyond current
dataset limitations and mitigating dataset bias.

In general, the electronic properties of Heusler compounds
are largely determined by their VEC and not their actual
chemical composition, magnetism aside. For example, super-
conductivity in Heuslers is expected in the range of VEC of 26–
29, with a peak in critical temperature (Tc) at VEC = 27.48,49

Measured magnetic susceptibility of NiPt2Gameasured down to
1.8 K shows antiferromagnetic behavior which persists up to
room temperature (ESI†) with isothermal magnetization at 300
K showing antiferromagnetic-like behavior. High temperature
susceptibility is required to resolve the ordering temperature as
NiPt2Ga may be a candidate for study of metallic antiferro-
magnetism at room temperature. Magnetic susceptibility of
LiZn2Pt and LiZn2Pd (ESI†) measured down to 0.4 K (for LiZn2Pt
and LiZn2Pd) shows paramagnetic behavior and no anomalous
magnetic transitions are revealed. Additionally, we performed
a preliminary search of antiferromagnetic congurations with
DFT (ESI†), none of which showed a signicant decrease in
energy from the ferromagnetic conguration. Overall, super-
conductivity is not observed in any of these compounds and in
general, this is expected due to the high VEC outside the 26–29
range seemingly excluding superconductivity.

In conclusion, we have demonstrated the rst successful use
of a generative ML model to produce crystal structures, deter-
mine their stability through a secondary ML process, and
experimentally verify these new structures. LiZn2Pt was gener-
ated using the PGCGM model in the Cu2MnAl-type Heusler
structure and predicted to be stable. Subsequently, phase pure
LiZn2Pt was successfully synthesized. Due to its proximity and
lack of reported ternaries LiZn2Pd was also successfully
synthesized. Following the successful synthesis of the afore-
mentioned compounds, Heusler and Heusler-like PGCGM pre-
dicted structures were targeted leading to the successful
synthesis of NiPt2Ga in the tetragonal Heusler structure. This
work has broad implications for material exploration by design
as previous ML approaches to materials discovery were biased
by the limits of known phase spaces and experimentalist bias.
The ability to generate and synthesize novel materials that are
structurally and compositionally unique enables inverse-design
of materials with targeted properties.

Data availability

We used the pretrained PGCGM available at https://github.com/
MilesZhao/PGCGM/tree/main, including its scripts for
validating generated structures. The code for training and
evaluating our ALIGNN model is hosted at https://github.com/
newalexander/generative-materials-discovery. Other relevant
RSC Adv., 2025, 15, 19126–19131 | 19129
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data, including the MP structure IDs of the training data and
trained ALIGNN model, as well as the structures of the
generated materials and their ALIGNN-predicted
decomposition enthalpies, are hosted on FigShare.50
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