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ass or plastic: computer vision and
machine learning study of cavitation bubbles in
sparkling wines

Timur Aliev, a Ilya Korolev, a Mikhail Yasnov,a Michael Nosonovsky *b

and Ekaterina V. Skorb a

This study presents a machine learning (ML)/Artificial Intelligence (AI) approach to classify types of sparkling

wines (champagnes) and their respective containers using image data of bubble patterns. Sparkling wines

are oversaturated with dissolved CO2, which results in extensive bubbling when the wine bottle is

uncorked. The nucleation and properties of bubbles depend on the chemical composition of the wine,

the properties of the glass, and the concentration of CO2. For carbonated liquids supersaturated with

CO2, the interaction of natural and cavitation bubbles is a non-trivial matter. We study ultrasonic

cavitation bubbles in two types of sparkling wines and two types of glasses with the computer vision (CV)

analysis of video images and clustering using an artificial neural network (NN) approach. By integrating

a segmentation NN to filter out irrelevant frames and applying the Contrastive Language-Image Pre-

Training (CLIP) NN for feature embedding, followed by TabNet for classification, we demonstrate a novel

application of ML/AI for distinguishing champagne characteristics. The results show that the bubbles are

significantly different to be classified by the ML techniques for different types of wine and glasses.

Consequently, our study demonstrates that CV/AI/ML analysis of ultrasound cavitation bubbles can be

used to analyze carbonated liquids.
Introduction

Champagne or sparkling wine is a popular alcoholic beverage
originating from France's Champagne region. The global spar-
kling wine market was valued at $33.9 billion in 2019 and is
anticipated to reach $51.7 billion by 2027.1 Consequently,
champagne quality and attractiveness to customers is a very
important issue.

Bubbles in Champagne and sparkling wine have been
studied by many researchers.2–10 Sparkling wine is supersatu-
rated with carbon dioxide (CO2), whose partial pressure in the
bottleneck is about P = 5–7 atm at 20 °C. The total amount of
dissolved CO2 in a standard 0.75 L bottle is close to 9 g, which
corresponds to about 5 L volume of gaseous CO2 under stan-
dard conditions. Due to the presence of alcohol, wine's surface
tension is about g z 50 mN m−1 (pure water has g z 72 mN
m−1) and its viscosity is about 50% larger than that of pure
water.4,5 The critical radius of bubble nucleation is given by the
Laplace equation as

Rcr ¼ 2g

P
z

2� 0:05

5� 105
¼ 0:2 mm (1)
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The quality control of liquids by the analyses of visual images
of ultrasonically induced cavitation bubbles is a relatively new
method of non-destructive quality control, which has been
applied to various liquids including water–ethanol solutions
and petroleum products.11–16

During the ultrasound cavitation, bubbles of dissolved gas
and vapors of the solvent itself form due to localized pressure
changes caused by ultrasound. The size of bubbles oscillates
due to the ultrasonic acoustic excitation, which causes
compressive and tensile stress. At the compressive phase,
bubbles shrink, while at the tensile phase, they expand for the
amount that exceeds shrinking thus resulting in the growth of
the average bubble radius.

While behavior close to the instability is difficult to predict
by traditional deterministic methods, oscillating and collapsing
bubbles can provide large amounts of datasets (e.g., visual
images), which makes them an almost ideal object for Articial
Intelligence (AI) and Machine Learning (ML) analyses and
searches for correlations in data. Articial Neural Network
(ANN) was trained to determine the composition (alcohol
concentration) of these solutions based on the bubble images.11

Besides the ultrasonic cavitation, ML/AI and other novel
computational methods are widely used to analyze the taste
quality of food products such as the bitter taste in wines17 and
the umami taste in various products.18
RSC Adv., 2025, 15, 5151–5158 | 5151
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Table 1 Typical composition of Champagne wine (based on ref. 2)

Compound Concentration

Ethanol (C2H5OH) z12.5%
Sugars (e.g. C6H12O6) 10–50 g L−1

CO2 10–12 g L−1

Glycerol (C3H8O3) z5 g L−1

Tartaric acid (C4H6O6) 2.5–4 g L−1

Lactic acid (C3H6O3) z4 g L−1

Volatile organic
compounds

z0.7 g L−1

K+ 0.2–4.5 g L−1

Ca2+ 0.06–0.12 mg L−1

SO4
2− 0.2 mg L−1

Polysaccharides z0.2 mg L−1

Polyphenols z0.1 g L−1

Mg2+ 0.05–0.09 g L−1
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In water–ethanol solutions, the shape and evolution of
microbubbles is sensitive to the viscosity and surface tension,
which are dependent on the ethanol concentration. Using
a large amount of data (bubble images obtained from video
recording) it is possible to determine solution concentrations by
Machine Learning (ML) algorithms.11

Applying a similar approach to carbonated beverages such as
sparkling wine is more challenging for two reasons. First,
alcohol concentration does not vary signicantly in different
sorts of wine. The difference in the chemical composition of
different types of wine is oen a fraction of a percent, and,
therefore, it does not always affect properties signicant for
bubbles, such as surface tension and viscosity. Second, spar-
kling wine is oversaturated with carbon dioxide, generating
a large amount of CO2 bubbles even without ultrasonic cavita-
tion. These natural bubbles' behavior may differ from that of
cavitation bubbles. The interaction of the bubbles formed in the
supersaturated carbonated beverage with the bubbles induced
by ultrasound cavitation is a non-trivial matter. It is therefore
desirable to study the feasibility of the ultrasonic cavitation
method for sparkling wine classication. It is known also that
the behavior of bubbles in sparkling wine depends on the
surface properties of the glass. It may also depend on the time
since uncorking. These factors introduce additional variables
that should be considered.

In this study, we will apply the Computer Vision (CV)
methods to the visual recordings of cavitation bubbles in two
sorts of sparkling wine kept for certain time intervals aer the
uncorking of the bottle in a glass and plastic cups. Aer that,
MLmethods will be applied by training a Contrastive Language-
Image Pre-Training (CLIP) Articial Neural Network (ANN) to
cluster and classify data points corresponding to different
samples. The data for sparkling wines will be compared with the
data for water-alcohol solutions with similar alcohol
concentrations.
Bubbles in sparkling wines

In this section, we review the physics of sparkling wine bubbles
and will formulate hypotheses for which the ML analysis is
sought.
Sparkling wine composition and properties signicant for
bubbles

From a chemist's point of view, sparkling wine is a multicom-
ponent hydroalcoholic solution consisting of 93–97% water and
alcohol (usually about 12.5%). The remaining 3–7% constitute
sugar (1–5%), tartaric, malic, and lactic acids (0.6–0.8%)
resulting in pH z 3.0–3.2, and some glycerol (0.5%). Besides
that, wine contains small (<g L−1) concentrations of organic
compounds, mineral ions, proteins, glycoproteins, poly-
saccharides, polyphenols, and volatile aromatic substances
(Table 1). The presence of alcohol reduces the surface tension of
wine down to about g z 50 mN m−1 from that of pure water at
room temperature, gz 72 mN m−1. The wine viscosity is about
50% larger than that of pure water,4,5 Table 1. The color of wine
5152 | RSC Adv., 2025, 15, 5151–5158
is usually dependent on the anthocyanin pigments, which give
wine the red color. The typical concentrations are on the order
of 140–880 mg L−1.19 We do not have any direct evidence or data
on anthocyanin's effect on the physico-chemical properties of
wine.

Concentration of CO2 in sparkling wines

The traditional method of sparkling wine production (méthode
champenoise) involves two stages of fermentation. During the
primary fermentation stage, grapes (traditionally, Chardonnay,
Pinot Meunier, and Pinot Noir), are mixed and pressed, aer
which yeast (Saccharomyces cerevisiae fungus) is added to facil-
itate alcoholic fermentation. The latter is the chemical reaction
of conversion of sugars into ethanol and carbon dioxide

C6H12O6 / 2CH3CH2OH + 2CO2 (2)

The second stage of fermentation, referred to as prise de
mousse, occurs in cool cellars at temperatures between 12 °C
and 14 °C. Wine is kept in tightly closed bottles along with
added sugar and yeast. At this stage, wine becomes saturated
with CO2. The concentration of dissolved CO2 is proportional to
its partial pressure in the vapor phase, which, in turn, is
proportional to the amount of added sugar. Sparkling wine is
supersaturated with CO2, whose partial pressure in the bottle-
neck is about 5–7 atm at 20 °C. The total amount of dissolved
CO2 in a standard 0.75 L bottle is close to 9 g, which corre-
sponds to about 5 L volume of gaseous CO2 under standard
conditions for temperature and pressure.

During the secondary fermentation, the concentration of
CO2 in wine is in equilibrium with the partial vapor pressure
PCO2

in is given by Henry's law

c = kHPCO2
(3)

where kH is the Henry's law constant.2 The temperature
dependency of the constant is oen expressed by the Van't Hoff
equation as

kHðTÞ ¼ k298Kexp

�
� DHdiss

R

�
1

T
� 1

298

��
(4)
© 2025 The Author(s). Published by the Royal Society of Chemistry
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where DHdiss z 24 800 J mol−1 is the dissolution enthalpy of
CO2, R = 8.31 J (K mol)−1 is the ideal gas constant. The value of
kH changes between kH = 2.98 kg m−3 atm−1 at T = 0 °C and kH
= 1.21 kg m−3 atm−1 at T = 25 °C.2,3

The temperature-dependency of the gas pressure in the
bottle can be calculated by combining Henry's law with the ideal
gas state law, and it was estimated by Liger-Belair et al.3 as

PCO2
ðTÞz mRT

4400VG þ kHðTÞRTVL

(5)

whereM is the mass of CO2 in the bottle in grams, VL and VG are
the volumes of liquid and gas in the bottle in liters.2 At typical
values of VL = 0.75 L, VG = 0.025 L,m= 9 g (based on 24 g L−1 of
sugar), and T = 10 °C, eqn (5) yields the pressure value close to
PCO2

= 5 atm.
Effect of uncorking the bottle

A large amount of CO2 dissolved in wine results in extensive
bubbling and sparkling aer a bottle of Champagne is
uncorked. Upon uncorking, the gas pressure in the bottle drops
down to ambient values. The pressure difference of DP = PCO2

−
Pambient = 4 atm (4 × 105 Pa), a bottleneck cross-section of A = 4
× 10−4 m2, and the cork mass mc = 10 g and length of L = 0.01

m yield the kinetic energy
1
2
mcV2 ¼ DPAL ¼ 1:6 J. Conse-

quently, the velocity of cork popping out of a bottle can reach V
z 17.8 m s−1 or 64.4 km h−1.6,8–10

The rapid pressure drop facilitates an adiabatic expansion
governed by

P(1−G)TG = const (6)

where G = 1.3 is the ratio of specic heats, leading to the
temperature drop by 50.3/1.3 = 1.448 times or by almost 90° at
290 K. The fog is oen observed for several seconds near the
neck of an open bottle due to the adiabatic cooling below the
dew point.

The physicochemical parameters relevant to bubbles in pure
water, pure ethanol, water–ethanol 12.5% solution, and spar-
kling wine are presented in Table 2.
Bubbles in the wine cup

The static equilibrium radius of a bubble is Re ¼ 2g
DP

, as given

by the Laplace equation. Nucleation of the bubble and its
collapse are metastable processes so that the liquid and bubble
Table 2 Physicochemical parameters of water, champagne, and ethano

Water E

Density, kg m−3 1000 7
Viscosity, mPa s 1.002
Surface tension, mN m−1 72
CO2 pressure, atm 0

Critical radius of droplets, Rcr ¼ 2g

P
, mm

1.44

© 2025 The Author(s). Published by the Royal Society of Chemistry
states are separated by a small energetic barrier. Under the
harmonically oscillating ultrasound, the pressure DP = DP0+ A
cosUt reaches negative values when at a minimum so that the
bubble passes through the tensile and compressive stages.2

Bubbles tend to stick to the surface. Articial effervescence is
related to bubbles nucleated from glasses with imperfections
done intentionally by the glassmaker to promote or eventually
replace a decit of natural nucleation sites. Thus, in plastic
cups, gas desorption happens through heterogeneously nucle-
ated CO2 bubbles.7

In this section, we have seen that physical and physico-
chemical models of bubble formation can provide insights into
such characteristics as density, viscosity, and carbon dioxide
concentration. However, it is not possible to directly distinguish
between different types of wine, such as rosé and white, or the
type of glass. We hypothesize that CV and ML/AI methods allow
for distinguishing these characteristics. Since the rate of natural
bubbling decreases within minutes aer uncorking, we will also
the effect of time for which wine was exposed to air within
a given type of glass (cup).
Experimental and computational
method
Samples and equipment

Two types of sparkling wine, Rosé and White (produced by
Vysokiy Bereg, Kuban’ Region, Russia) were used for samples.
Two types of wine glasses (cups) – onemade out of glass and one
made out of plastic – were used (Fig. 1(A)).
Experimental procedure

The bottles were uncorked and wine was placed into glass and
plastic wine glasses (cups) for bubble formation, where they
were kept for 10, 15, and 20 minutes (Fig. 1(B) and (C)). The
choice of these time intervals was based on the observation that
aer 15–20 minutes of staying in an open wineglass, bubbling
intensity decreases. The control measurement was also con-
ducted immediately aer opening the bottles (at 0 minutes).
The samples were then poured into the Petri dishes and ultra-
sound cavitation bubbles were generated, which were recorded
for video (Fig. 1(D)).

The working hypothesis was that bubble formation is
different in glass and plastic cups due to the presence of centers
of nucleation, such as scratches, at the plastic cup surface, as
opposed to the relatively smooth glass.7 The intensity of bubble
l at 20 °C

thanol Water–ethanol 12.5% mixture Champagne2

89 975 998
1.14 1.48 1.48

22 50 48
0 0 5–7
0.44 1.0 0.2

RSC Adv., 2025, 15, 5151–5158 | 5153
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Fig. 1 (A) Schematic of the experimental procedure. (B) Two types of wine (C) were kept in glass and plastic cups and then (D) treated with
ultrasound (US).
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formation decreases aer some time following uncorking the
bottle. For that end, different time intervals, up to 20 minutes,
were used.

To generate cavitation bubbles, the ultrasonic generator UZG
55-22 (BSUIR, Belarus) with a nominal rated frequency of 22
kHz and a nominal maximum power of 100 W was used.
Ultrasonic oscillations were generated by the titanium sono-
trode. The titanium sonotrode shaped as a truncated cone with
a disk (15 mm diameter, 2 mm thickness) at the edge was
positioned at the angle of 45° to the surface of a glass Petri dish
lled with the wine being studied. The immersion depth was
adjusted to ensure that the entire disk was fully submerged in
the sample liquid.

The images of cavitation bubbles were recorded with the
high-speed camera Phantom Miro C110, connected to the
microscope Mikmed-6 (LOMO, Russia) with a 10× objective.
The capturing frequency was 700 fps with a resolution of 768 ×

768 px. The image set was automatically composed from the
frame images as a single video le. The video le was edited
with the application Phantom CV 3.3 to identify sections con-
taining bubble formation, evolution, and collapse for each
sample. In the past, the 12.5% water–ethanol solution was
studied with the same methodology.11
Soware & hardware

The primary stages of data processing and model training were
implemented using Python 3.10 and specialized libraries.
Specically, the YOLOv8 model was utilized for image
segmentation, while pytorch_tabnet was employed for data
classication. Embedding generation was performed using
Transformers, and basic data processing was conducted with
OpenCV, NumPy, and auxiliary tools.
5154 | RSC Adv., 2025, 15, 5151–5158
The computations were carried out on an AMD Ryzen
Threadripper 3960X processor. To accelerate the training of
neural networks, an NVIDIA GeForce RTX 3090 GPU was used,
enabling fast computation of complex models and handling
large volumes of data. This conguration facilitated the efficient
execution of the entire data analysis cycle, from preliminary
image processing to training and testing of advanced machine
learning architectures.
Dataset

For the study, a dataset was created and structured, including
visual data on cavitation bubbles in sparkling wine samples.
The source data consisted of a collection of video recordings
organized into directories based on a combination of charac-
teristics: wine type (white or rosé), container type (glass or
plastic), and time elapsed since the bottle was opened. This data
structure allowed for clear systematization and classication of
the information, which was a critical step in preparing the data
for processing.

Data Processing Stages:
(1) Video segmentation
For preliminary video processing, the YOLOv8 segmentation

model was employed, enabling efficient image processing by
isolating frames containing cavitation bubbles. We utilized
pretrained YOLOv8 weights from the study,12 which signi-
cantly accelerated the integration of the model into the pipe-
line. Aer identifying the bubbles, their contours were outlined
as polygons generated by the model. This step was added to the
processing workow following a series of experiments that
demonstrated the contouring of polygons improved the classi-
cation model's accuracy by enhancing the quality of extracted
features.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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(2) Data splitting
Aer segmentation, the data was divided into training (60%),

validation (20%), and test (20%) sets. This data distribution was
chosen to ensure balanced model training and objective
performance evaluation. This step minimizes the risk of over-
tting and ensures that the test data remains completely inde-
pendent of the training phase.

(3) Frames extraction
To reduce the data volume and improve processing effi-

ciency, the videos were split into individual frames at a rate of 1
frame per 10 seconds. This approach preserved key temporal
patterns, ensuring the data's representativeness for subsequent
analysis.

Final dataset volume
- Train: 12 895 images
- Validation: 3744 images
- Test: 3314 images
- Total: 19 953 images
The use of YOLOv8 with pre-trained weights,12 along with the

added step of polygon contouring for detected bubbles,
improved the data quality for classication. This approach
enabled the extraction of more precise visual features, positively
impacting the overall performance of the model. The general
pipeline is presented in Fig. 2.
Computational pipeline

An iterative approach was used to develop the computational
pipeline, drawing on experience from previous studies and
testing various models. The nal pipeline is presented in Fig. 2.

In the initial stages of the study, classical CNNs, such as
VGG16, VGG19, ResNet18, and ResNet50, were employed for
feature extraction. These models demonstrated good results but
were limited in capturing complex relationships due to the lack
of semantic context. This limitation motivated the integration
of more advanced methods, such as CLIP.

Contrastive Language-Image Pretraining (CLIP)20marked the
next stage in the evolution of the pipeline. CLIP enables the
extraction of embeddings that combine both visual and
semantic features of images, making the model more robust to
noise in the data. Paired with the TabNet classier,21 CLIP
demonstrated superior performance. TabNet was chosen for its
Fig. 2 The pipeline for the classification of sparkling wines. (A) The st
containers. (B) The scheme of preprocessing classification model. All ima
embeddings used for training the ML algorithm.

© 2025 The Author(s). Published by the Royal Society of Chemistry
ability to efficiently process embeddings while preserving
model interpretability.

To improve classication quality, a TabNet Pretrainer was
added, which was trained in an unsupervised mode to uncover
hidden structures in the data. This allowed the model to better
adapt to the characteristics of the embeddings, resulting in
increased accuracy on the test dataset.

To further enhance feature quality, CLIP was replaced with
its improved version, SigLIP.22 The primary advantage of SigLIP
lies in its expanded embedding space, enabling the model to
capture more information from the images. Combined with
TabNet and the TabNet Pretrainer, this approach proved to be
the best among all tested methods.

At the nal stage, all images containing cavitation bubbles
were processed through the segmentation model, followed by
embedding extraction using SigLIP (Fig. 2). The embeddings
served as input for the TabNet Pretrainer, which structured the
data, and the TabNet Classier, which performed the nal
classication. This approach achieved maximum accuracy and
classication stability.

Results and discussion

Typical shapes of cavitation bubbles are shown in Fig. 3(A). The
bubbles obtained by the ultrasound cavitation (20 kHz) were
compared with those without cavitation used as controlled
experiments. The bubbles for the four experimental series, with
waiting periods from 0 minutes to 20 minutes are shown in
Fig. 3(B).

It is observed that based on the visual analysis it is very
difficult to nd the difference between different series in the
cavitation experiments.

The classication accuracy evaluation is presented in
Fig. 4(A) and (B) as normalized confusion matrices. These
matrices depict the results of two primary classication tasks:
the type of champagne (rosé or white) and the type of glass
(glass or plastic).

Fig. 4(A) shows the confusion matrix for the classication of
rosé (pink) and white champagne. The overall classication
accuracy for this task was 84%. While the model exhibits
a strong ability to distinguish between the two types of cham-
pagne, an error rate of 14–15% persists due to visual similarities
ructure of the dataset contains two types of wine and two types of
ges containing bubbles pass through the SigLIP network converting to

RSC Adv., 2025, 15, 5151–5158 | 5155
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Fig. 3 (A) Typical bubbles in the control series (no ultrasound) and in the cavitation series. (B) Bubbles in various experimental series.
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in the bubble patterns characteristic of different wine types.
This highlights the limitations of classication tasks based
solely on visual data.

Fig. 4(B) presents the confusion matrix for the classication
of container types: glass (glass) or plastic (plastic). The overall
accuracy for this task was 82%. While the model demonstrated
a good ability to differentiate between containers, the error rate
of 15–20% suggests that the surface properties of the
containers, which inuence bubble behavior, may require more
detailed analysis or additional data processing to improve the
results.

The obtained confusion matrices demonstrate the high
efficiency of the proposed pipeline for both classication tasks.
Fig. 4 Confusion matrices for (A) the two types of sparkling wine and (B

5156 | RSC Adv., 2025, 15, 5151–5158
However, the accuracy rates of 84% for champagne classica-
tion and 82% for container type classication indicate potential
areas for improvement. For instance, incorporating temporal
dynamics from the videos or enhancing the data preprocessing
stage (e.g., contrast enhancement or additional normalization
techniques) could help reduce the error rate.

The use of SigLIP22 as a feature extractor played a key role in
achieving these results. Its enhanced embedding space
provided richer and more informative features compared to
previously employed methods. Additionally, the integration of
TabNet21 as the classier enabled effective processing of
complex embedding and tabular data. These innovations
signicantly improved classication accuracy compared to
) two types of containers.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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earlier versions of the pipeline, affirming the validity of the
chosen approach.

It is interesting to compare bubble dynamics in sparkling
wines with that of other carbonated beverages, such as beer and
sodas. According to Bossaerts et al., the properties of bubbles in
beer depend strongly on the concentration of alcohol (non-
alcoholic beers have fewer bubbles) and is affected strongly by
the CO2 concentration and the surface tension, which, in turn,
is dependent on alcohol, protein, and iso-alpha-acid content in
beer.23 An explicit comparison of bubbling dynamics in cham-
pagne wines and beers24 shows that the critical radius of
bubbles in beers is about twice as that in champagne due to
higher concentration of dissolved CO2 in champagne. As far as
other carbonated liquids, the bubble generation is promoted by
hydrophilic structures on container's surface and suppressed by
hydrophobic structures.25 These insights suggest that different
carbonated beverages are characterized by different bubbling
behavior, which is consistent with our observation on rosé and
white sparkling wine.

Conclusion

The results indicate the feasibility of using computer vision
algorithms for the analysis of cavitation bubbles in carbonated
beverages. It was possible to classify the samples based on the
type of beverage and type of glass. However, it is much more
difficult to determine other characteristics, such as the expo-
sure time for open air. We conclude that ultrasonic bubble
cavitation can be used for the study of the physicochemical
properties of various transparent liquids including carbonated
sparkling beverages.

Data availability

The code and data used in this study are available in the GitHub
repository at https://github.com/ShockOfWave/
bubbles_champagne. This repository contains the source code
used for the analysis, as well as the datasets utilized for
training and testing the model. Researchers interested in
replicating or extending this study can access the repository to
review the code implementation and perform further analyses.
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