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This groundbreaking study derives and tests several new dihedral torsion model potentials for constructing
classical forcefields for atomistic simulations of materials. (1) The new angle-damped dihedral torsion
(ADDT) model potential is preferred when neither contained equilibrium bond angle is linear (ie.,
(038c and 05¢p) # 180°), at least one of the contained equilibrium bond angles is = 130° (i.e., (#a3c or
5&p) = 130°), and the dihedral torsion potential contains some odd-function contributions (i.e., Ul¢] #
Ul—¢]). (2) The new angle-damped cosine only (ADCO) model potential is preferred when neither
contained equilibrium bond angle is linear (i.e., (fa3c and 65¢p) #180°), at least one of the contained
equilibrium bond angles is = 130° (i.e., (#33c or 05¢p) = 130°), and the dihedral torsion potential contains
no odd-function contributions (i.e., Ulg] = Ul-9¢]). (3) The new constant amplitude dihedral torsion
(CADT) model potential is preferred when neither contained equilibrium bond angle is linear (ie.,
(033c and 05p) # 180°), both contained equilibrium bond angles are <130° (i.e., (A58 and 65¢p) < 130°),
and the dihedral torsion potential contains some odd-function contributions (i.e., Ul¢] # Ul[—4¢]). (4) The
constant amplitude cosine only (CACO) model potential is preferred when neither contained equilibrium
bond angle is linear (i.e., (033c and 65dp) #180°), both contained equilibrium bond angles are <130° (i.e.,
(033c and 05¢p) <130°), and the dihedral torsion potential contains no odd-function contributions (i.e.,
Ulgl = Ul—¢]). (5) The new angle-damped linear dihedral (ADLD) model potential is preferred when at
least one contained equilibrium bond angle is linear (i.e., (agc or 65¢p) = 180°). Most importantly, this
article derives combined angle-dihedral coordinate branch equivalency conditions and angle-damping
factors that ensure the angle-damped torsion model potentials (e.g., ADDT, ADCO, and ADLD) are
mathematically consistent and continuously differentiable even as at least one contained bond angle

approaches linearity (i.e., as (@apc or fsgcp) — 180°). This article introduces the torsion offset potential
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For various molecules, extensive quantitative comparisons to high-level quantum chemistry calculations
DOI-10.1039/d4ra08960j (e.g., CCSD) and experimental vibrational frequencies showed these new dihedral torsion model

rsc.li/rsc-advances potentials perform superbly.

—T < $aBCD =TT 1)

1. Introduction

The directed dihedral is defined for all situations except when
atoms ABC or atoms BCD reside on a line, which corresponds to
Oapc = T, Ogcp = T, Oapc = 0, Ogcp = 0, or at least two of the
atoms have the same nuclear position. The latter condition of

The directed dihedral ¢apcp measures the directed angle
between the plane containing atoms ABC and the plane con-
taining atoms BCD." The allowed range is:
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T Electronic supplementary information (ESI) available: A PDF file containing
analytic formulas for gradients of the kangals and directed dihedral; analytic
formulas for derivatives of the angle-damping factors; analytic formulas for
the first derivatives and forces of the CADT, CACO, ADDT, ADCO, and ADLD
model potentials; selectivity rule for single-linear dihedrals; supplementary
tables and supplementary figure; summary of validation tests of analytic
derivative and force formulas; and derivation of torsion scan R-squared
formulae. A zip archive containing optimized geometries of molecules;
spreadsheets containing torsion mode analysis for all molecules studied in
this work; computed data for potential energy surface plots for HNCO,
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acetonitrile, boranecarbonitrile, isocyanoborane molecules; computed data
for energy parity and contour plots for acetylene and HCNO molecules;
training and validation datasets and forcefield parameterization codes and
results for 2-amino-propanal, acetylene, HNCO, and HOOH molecules;
computed data for bond-angle scan energy curves for 10 molecules; Matlab
codes implementing the analytic derivatives and force formulas for the ADDT,
ADCO, CADT, CACO, and ADLD model potentials including ten runs each
comparing analytically-computed forces to forces computed numerically using
the central finite-difference approximation; and other data workup
spreadsheets. See DOI: https://doi.org/10.1039/d4ra08960j
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two or more atoms having the same nuclear position is physi-
cally prevented by the Pauli exclusion principle.>

In a material, a proper dihedral A-B-C-D corresponds to the
situation in which bonds A-B, B-C, and C-D all exist.> An improper
dihedral corresponds to the situation in which three atoms are
directly bonded to a common atom; for example, three hydrogen
atoms directly bonded to a carbon atom in a methyl group.* The
remainder of this article refers to proper dihedrals. For simplicity,
we subsequently refer to a ‘proper dihedral’ as a ‘dihedral’ and an
‘improper dihedral’ as an ‘improper-dihedral’.

Let Rus be the vector from the position of atom A to the
position of atom B:

Rup = Ry — Ry (2)
The directed dihedral ¢apcp is computed as follows:**
F: _(EAB X EBC) (3)

i= —(R’BC X R’CD) (4)

dapcp = Sign x acos [min [max { -1, <%)} , 1” (5)

The sign is specified using the following method:
1 Ryc- (Txid) =0

Rpe- (7' i)
abs [ﬁBo (7'x ﬁ)}

sign = (6)

otherwise

To cancel the effect of roundoff error, we used min and max
functions to guarantee the argument of acos is between —1 and
1. When ¢pcp is 0 or 1809, all four atoms are in the same plane.
When ¢apcp = 0, atoms A and D are located on the same side of
the BC bond in the ABCD plane. When ¢apcp = 180°, atoms A
and D are located on opposite sides of the BC bond in the ABCD
plane. When ¢,pcp is —90° or 90°, the ABC and BCD planes are
perpendicular.

Fig. 1 shows an achiral isomer of (CCIFH), and the S enan-
tiomer of the chiral molecule C(OH)CIFH with different values
of the HCCH or FCOH dihedral labeled, respectively. For these
two molecules, Fig. 1 shows the particular isomers studied in
this article.

The torsion potential for dihedral ABCD describes the
change in potential energy that results from rotating bonds AB
and CD around bond BC. Because this potential energy returns
to its initial value when a complete full rotation is performed,
the torsion potential is periodic in the dihedral value ¢apcp. A
whole number of periods must be traversed when the dihedral
changes from ¢apcp = T tO Pagcp — —T.

Please note that U[¢apcp] = constant is not considered to be
any kind of torsion potential. Rather, it is considered to be the
absence of a torsion potential, because it has no dependence on
the dihedral's value.
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Fig. 1 The achiral molecule (CCIFH), (upper panels) and the S enan-
tiomer of the chiral molecule C(OH)CIFH (lower panels) with different
values of the HCCH or FCOH dihedral angle labeled, respectively. For
(CCIFH),, the minimum energy geometry corresponds to a HCCH
dihedral value of 180°. For C(OH)CIFH, the minimum energy geometry
corresponds to a FCOH dihedral value of —64.7°. Atom colors: grey
(C), green (Cl), cyan (F), white (H), red (O). The dihedral value is positive
(cf. negative) if the back substituent is located clockwise (cf. counter-
clockwise) relative to the front substituent. For clarity, the front
substituent is labeled ‘f', and the back substituent is labeled ‘b’ in the
lower panels.

For convenience, we categorize torsion potentials into five
classes such that each torsion potential is a member of exactly
one of these five classes. (A) ‘Dihedral-only’ torsion potentials
depend exclusively on the dihedral value (e.g., ¢papcp) With no
explicit dependence on the bond lengths or bond angles. (B)
‘Angle-damped’ torsion potentials depend exclusively on the
dihedral value (e.g., ¢apcp) and the two contained bond angle
values (i.e., Oxpc and fpcp) with no explicit dependence on the
bond lengths. (C) ‘Distance-damped’ torsion potentials depend
exclusively on the dihedral value (e.g., ¢apcp) and the three
contained bond lengths (i.e., Rag, Rec, and R¢p) with no explicit
dependence on the bond angles. (D) ‘Fully-damped’ torsion
potentials depend exclusively on the dihedral value (e.g., ¢apcp),
the two contained bond angle values (i.e., fapc and fpcp), and
the three contained bond lengths (i.e., Ryp, Rpc, and Rcp). (E)
The final class contains all of the miscellaneous torsion
potentials that do not fit into any of the first four classes.

Class A torsion potentials that depend only on the dihedral's
value are abundant in the prior literature."**° However, it is
straightforward to prove that every Class A torsion potential

U?ihedralfonly

orsion

[#aBcp] = function[papcp] # constant (7)

is mathematically and physically inconsistent if one of the
contained bond angles approaches linearity.**** Proof: suppose
that 7 minus the contained bond angle f,pc becomes an
infinitesimal positive value

(TC — 0ABC) =e>0 (8)

A dihedral scan can be performed by holding the atoms B, C,
and D fixed and moving atom A in a circle whose radius is
dxpsin[e], where d,p is the distance between atoms A and B. The

© 2025 The Author(s). Published by the Royal Society of Chemistry
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circumference of this circle is 2mdspsinfe].  Since

ihedral_onl ihedral_onl .
U?orsmn y[¢ABCD:| # constant and U?orsion y[¢ABCD] SatlSﬁeS
the periodic boundary condition

Uitrson=""gpapcpl = Uinson="""$pancp + 27] )
it follows that we can find some dihedral values ¢ pcp = @, and
¢ascp = @1 such that

dlhedral _only dlhedral _only
tOlSlOﬂ [ ] 10!’5101] [ 1} >>A (10)
(@2 — 1)

for any infinitesimal positive value 4. For analogous reasons, we
can also find some dihedral values ¢ gcp = @3 and ¢apcp = @4
such that

dihedral_only

dlhedral _only [ }
torsion P3

[(P ] — lorsmn < -4
(P4 — 1)

The only way we could not find
pdihedral_only [#aBcp] = constant, which represents the absence of
a torsion potential. The force exerted on atom A during each of
these two parts of the dihedral scan is given by

(11)

such values is if

change_in_potential_energy

Forcea = — - 12
A distance_moved (12)
d hedral_onl dihedral_onl
Forcel 2 Vot ] — U )
(@2 — ¢1)dapsin(e]
dlhedrdl _only dlhedrdl _only
FOTCC3 -4 _ torsmn [ } 10r510n [(pﬂ (14)
(@4 — @3)das sin[e]

Substituting eqn (10) into (13), substituting eqn (11) into (14),
and taking the limit ¢ — 0 gives

lin%Force/lf2 = - (15)

hmForce3 Tt= (16)

As ¢ — 0, the force on atom A fluctuates from infinitely positive
to infinitely negative over an infinitesimally small distance. This
extreme behavior is physically inconsistent. Practically, this
means that every Class A torsion potential is inapplicable if one
of the contained bond angles (i.e., <¥*ABC and/or <«<BCD) is
statistically likely to approach linearity either (i) during the
course of a molecular dynamics simulation or (ii) in thermally
accessible  conformations during a Monte Carlo
simulation.*>****

Examples of previously published works on damped torsion
potentials include the following. Grimme's quantum-mechanically-
derived force field (QMDFF) includes a distance-damped torsion
potential (i.e., Class C torsion potential).'”” There have been a few
prior studies of angle-damped (i.e., Class B) torsion potentials, but
these are not comprehensive or fundamental in nature.*"'>'*1617
Tuzun et al. describe a Class D torsion potential that includes both
angle damping and distance damping.*

Herein, I introduce a comprehensive and fundamental
theory of angle-damped dihedral torsion model potentials that
are mathematically well-defined for all bond angle values. The

© 2025 The Author(s). Published by the Royal Society of Chemistry
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remainder of this article is organized as follows. Section 2
introduces the combined angle-dihedral coordinate branch
equivalency conditions, mathematical constraints on the angle-
damping factors, a specific model function for the angle-
damping factors, and principles used to derive the angle-
damped torsion model potentials. Section 3 introduces the
mirror image parameter Singtance that allows both mirror images
to be classified within the same dihedral type and to be
described by the same torsion force constant values. Section 4
derives the angle-damped dihedral torsion (ADDT) model
potential as a Class B torsion potential that applies when
neither equilibrium bond angle (i.e., 53¢ and 3¢, for dihedral
ABCD) is linear. Key components of the ADDT model potential
include the torsion offset potential (TOP) and a set of ortho-
normal rotatable dihedral torsion modes. This ADDT model
potential has continuous derivatives as either or both of the
contained bond angles (i.e., Oapc and Opcp for dihedral ABCD)
approaches linearity. Section 5 introduces the constant-
amplitude dihedral torsion (CADT) model potential that is
a Class A torsion potential with orthonormal rotatable dihedral
torsion modes. The CADT model potential emerges from the
ADDT model potential when all of the angle-damping factors
are set to a constant value. Section 6 introduces the angle-
damped cosine only (ADCO) model potential as a Class B
torsion potential that applies when neither equilibrium bond
angle (i.e., 03%c and 6g¢p for dihedral ABCD) is linear and the
torsion potential contains no odd-function contributions (i.e., U
[¢] = U[—¢]). Section 6 also introduces the constant amplitude
cosine only (CACO) model potential as a Class A torsion
potential that applies when the torsion potential contains no
odd-function contributions (i.e., U¢] = U—¢]) and all of the
angle-damping factors are set to a constant value. Section 7
describes rotatable dihedral mode smart selection using torsion
scans. Section 8 discusses how the CADT and CACO model
potentials compare to previously published Class A torsion
potentials. Section 9 introduces the angle-damped linear dihe-
dral (ADLD) model potential as a Class B torsion potential that
applies when one or both of the equilibrium bond angles (i.e.,
053¢ and 65 for dihedral ABCD) is linear. Section 10 contains
an extensive set of computed results for many molecules. These
results show my torsion model potentials closely reproduce
quantum-mechanically-computed potential energies surfaces
for various torsion types. Section 10.8 compares vibrational
frequencies computed from flexibility models (which include
bond stretches, angle bends, and dihedral torsions) to prior
experimentally-measured values for several small molecules.
Section 11 concludes.

Note: this article adopts the convention that function argu-
ments are enclosed in square brackets, while parentheses
denote multiplication. For example, y[x + 2] means ‘y as
a function of (x + 2)’ while y(x + 2) means ‘y times (x + 2)’.

Throughout this article the R-squared statistical descriptor
has the definition

SSE
R-squared = R*=1—- ——

(17)
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Specific definitions for the sum of squared errors (SSE) and sum
of squares total (SST) are presented in each context.

2. Mathematical principles governing
the angle-dihedral coupling

2.1 Combined angle-dihedral coordinate branch
equivalency conditions

The concept of combined angle-dihedral coordinate branch
equivalency is illustrated in Fig. 2. As the BCD angle sweeps
across the fgcp = T line (e.g., from hydrogen atom position D1
to D2 in Fig. 2), the value of ¢opcp discontinuously jumps from
¢ to (¢ = 7). Accordingly, this means the coordinate pair
(PecpyParco) = ((t — 4),0) (aka ‘coordinate branch 1’) and the
hypothetical coordinate pair (@ucp,dascp) = (7t + 4),(¢ £ 7))
(aka ‘coordinate branch 2’) describe the same ABCD confor-
mation, where 0 < 4 < . Consequently, the angle-damped
dihedral torsion potential must satisfy the following coordi-
nate branch equivalency relations:

lfmgle damped

torsion [faBc.0BCcDsPABCD] =

angle-damped
torsion T [0ac,(2T— Ocp)y(@aBcDET)]

Ui‘é‘ﬁﬂ%é“‘“"’“[(h — 0aBc).08cD-(PaBCD £ T)] (18)

As the BCD angle sweeps across the fgcp = T line (e.g:, from
hydrogen atom position D1 to D2 in Fig. 2), this branch equiv-
alency relationship allows us to choose values

(Oscp-dancp) € {(0pcp-¢aBcp)-(Oscp.$ascp)} (19)

that change continuously. Analogously, we can find a set of
coordinates

@

<180°

<lg0° ) ]
Oncon = 119.9%, puepy =35.0° | (B = (27~ Ope) = 240.1° b ey = (Ganemn =) =—145.0°)

Choosing this pairing gives

continuous changes
as angle BCD crosses

(@ )

linear
>180°
(O =119.9%, b pepy ==145.0.0°) & | 8, = (27~ 0,y —240.1° D rncp2 = (Pancoz + ) =35.0°
(o B

Fig. 2 lllustration of angle-dihedral coordinate branch equivalency.
Coordinate branches can be selected to yield continuous changes as
the adjusted bond angle fgcp crosses linear (i.e., crosses 180°).
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(Oapc.Pancp) € {(Oanc:Pacp).(Oapc.Parcn)} (20)
that change continuously as the angle ABC angle sweeps across
the O,5c = T line.

By constructing pangle-damped ¢, o g1y infinitely differentiable
function of the continuous coordinates (fxpc,fscp,Pascp), this
ensures that the derivatives

a})+q+r
angle-damped y 5 -
torsion ABC, YBCD» ¢ABCD

— — 21)
P q a7 (
90anc 908cp Papch
are continuous, where p, g, and r are any combination of non-
negative integers. In summary, this provides a notion of
continuous derivatives of all orders for U2ngic.damped

2.2 Mathematical constraints on the angle-damping factors

First, the angle-damping factor must go to zero as the corre-
sponding bond angle approaches linearity. For simplicity, we
seek a proxy variable that decreases monotonically from one
when 0 gc — 0 to zero when 0,pc = . The ‘kangal’

>KABC = COS[HAB(Z/Z] (22)

provides an ideal proxy variable. (Kangal is a specific breed of
guardian dog. The term ‘kangal’ as used here is a play on words
that means ‘keeper (or guardian) of the angle’.)

Consider a spherical coordinate system centered on atom
C in Fig. 2, with radius r = Rgp, polar angle 6 = 6Opcp,
and azimuthal angle ¢ = ¢spcp. For a point within this spher-
ical coordinate system, the corresponding Cartesian coordi-
nates are

x = rsin[f]cos[¢] (23)
y = rsin[f]sin[¢] (24)
z = rcos[d] (25)

This satisfies the coordinate branch equivalency condition that
(,0,¢) has the same (x, y, z) coordinates as (r,(27 — 6),¢ + ).
Using the standard trigonometric formulas

cos[a + B8] = cos[a]cos[8] — sin[«]sin[f] (26)

sin[a + B8] = sin[«]cos[B] + cos[a]sin[f] (27)

angle-damped higher-order torsion multiplicities can be con-
structed as

X2 — y? = r? sin?[f]cos[2¢] (28)
2xy = 1 sin’[f]sin[2¢] (29)

x* = 3x)? = ¥ sin’[f]cos[3¢] (30)
3x%y — y* = ¥ sin®[G]sin[3¢)] (31)

and so forth. For n = 1, 2, 3, 4, ... the left-hand side is a nth-
order polynomial in the x and y coordinates, while the right-
hand side is 7" sin"[¢]cos[n¢] or 7 sin"[f]sin[n¢].

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Combining the trigonometric identities

sin[HBCD] =2 cos[ﬁBCD/2]sin[BBCD/2] (32)
with the definition of the kangal gives
sin[fscp] = 25Kpep /1 — (Kpep) (33)
We can re-write eqn (28)—-(31) in terms of the kangal as
22
r2 a4 = 4(1 — ()I(BCD)Z))I(BCD2COS[2¢] (34]
2x .
r_Zy = 4<1 — ()I(BCD)Z)H(BCDZSIH[Q,(M (35)
X = 3x? N s
}’73 =38 1-— (>KBCD) >KBCD COS[3¢] (36)
3x2y — 3 } .
7yr L3 (\/ 1- (}KBCD)2> Kpep’sin[3¢]  (37)
Next, we note that
cos[ndapcp] = (—1)"cos[n(¢papcop + )] (38)
sin[ndapcp] = (—1)"'sin[n(¢pasco + ™) (39)
(Kpep)” = (cos|fpep/2])" = (—1)"(cos[(2m — fpcp)/2])"  (40)

Therefore, to satisfy the coordinate branch equivalency condi-
tion that the torsion potential has the same numeric value for
(aABC,HBCDyff)ABCD) as for (‘9ABC,(27T - 0BCD))¢ABCD + TU), cos
[2j¢pacp] and sin[2jpapcp] must be multiplied by even-only
powers of XKgcp, where j is a whole number. Similarly, cos[(2]
+1)¢apcp] and sin[(2j + 1)dapcp) must be multiplied by odd-only
powers of 2Kgcp, where j is a whole number.

As the BCD bond angle approaches linearity (i.e., Kpcp — 0),
the angle-damping product on the right-hand side of eqn
(34)~(37) have derivatives (0'/d2Kgcp’) equal to zero fori =1, 2,
3 ... (n — 1), where cos[n¢] or sin[n¢] is the dihedral-dependent
factor. To preserve this behavior, the ideal angle-damped cos
[n¢] term should have the form:

( i an,/()I(ABC)HZ‘/) ( i: an,/(X(BCD)Hz‘/) cos[ng] (41)

Jj=0 Jj=0

where a, o > 0. Note that the form of angle-damping factor for
the ABC angle is analogous to that for the BCD angle. To
preserve invariance in the choice of spherical coordinate system
starting azimuthal angle, the angle-damping factor for sin[n¢] is
the same as the angle-damping factor for cos[n¢].

2.3 A specific model for the elementary angle-damping
functions

The zeroth-order angle-damping factor is a constant:

ABCfl

0 (42)

© 2025 The Author(s). Published by the Royal Society of Chemistry
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For 429, there are four regimes of bond angles:

e Linear bond angle: when 6,5c = 180°, then 2Kapc = 0 and
fa2s=o.

e Wide-angle regime: when 130° = f,pc < 180°, it follows
from eqn (41) that the leading-order term in f425 is propor-
tional to (3Kpc)” and forms the dominant contribution.

e Acute angle regime: this regime corresponds to 0° < fpc <

90° and 1> Kppc > \/% Since we do not have any a priori

information about howfﬁg({ should vary as a function of f,pc in

this regime, a reasonable approximation is to mitigate this
dependence by setting f425 = 1 when 0 < fapc < /2. We also
require that each f427 must be a monotonically increasing
function of XK,pc and satisfy the limit

lim fAB¢ =1
fOapc —0

(43)

e Intermediate-angle regime: this regime corresponds to
90° = fpc < 130° and defines the transition regime from
perpendicular bond angle (i.e., 90°) to wide bond angle (ie.,
130°). Near the beginning of this transition regime when the
bond angle is perpendicular or only slightly obtuse, we expect
the different torsion modes to damp similarly as a constrained
bond angle changes. In this case, the normalized shape of the
not change
substantially with small changes in the constrained ¢ value;
however, the torsion barrier can change with constrained
bond-angle changes. This can be accomplished by defining
fABC pig asymptotic matching such that f42¢ = f4*¢ when
Oapc < 90°.

The following unique and parsimonious model achieves these
goals. We construct polynomial functions P,[XKapc] for n =1, 2,
3, and 4 that are asymptotically matched to each other. Each
P,[2Kapc] will be a monotonically increasing function of 2Kapc
over the range 0 = 2Kapc = 1 and satisfy the boundary conditions

angle-constrained torsion scan curve does

Pn[H(ABC = l] =1 (44)
P,-1[0]=0 (45)
P,=1[e] « &" (46)
where ¢ is positive infinitesimal.
First, we define two-term polynomials P;[XKapc] and

P,[XKapc] that are asymptotically matched to each other in the
Kagc — 1 limits. Define

Py [Kapc] = vKapc + (1 — 'Y)(>KABC)3

In eqn (47), the two coefficients (i.e., ¥ and (1 — v)) sum to one to
ensure eqn (44) is satisfied. To ensure that P;[XK,pc] is an odd
function, there is no constant (power zero) and power two terms
in eqn (47). Define

(47)

P[Kasc] = @(Kase)’ + (1 — @) (Kape)* (48)

In eqn (48), the two coefficients (i.e., w and (1 — w)) sum to one
to ensure eqn (44) is satisfied. To ensures that P,[0] = 0, there is

RSC Adv, 2025, 15, 7257-7306 | 7261
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no constant (power zero) term in eqn (48). To ensure that
P,[XKagpc| is an even function, there is no power one or power
three terms in eqn (48). Substituting

Kape=1-¢ (49)
into eqn (47) and (48) gives
Pl =g =yl =9+ (1 -y -
=1+c2y—3)+PB =3y) + ... (50)
Pyfl — g =w(l =9 + (1 —w)(1 —¢)*
=1+ cQw —4) + 6 — 5w) +... (51)

These two can be asymptotically matched by equating coeffi-
cients for their first- and second-order terms:

2y —3=2w -4 (52)
3-3y=6-5w (53)

Eqn (52) and (53) comprise a linear equation system having the
unique solution

y=(-w)=1 (54)
Substituting eqn (54) into (50) gives
Pl —¢=1-25¢+2257+... (55)

P;[XKapc] and P4[XKapc] can be asymptotically matched to
Py [XKagc] if we choose

P5[Kapc] = a® (>KABC)3 + b (>KABC)5 + 0(3)(>KABC)7 (56)

P,[Kapc] = a® (>KABC)4 + b (>KABC)6 +c® (>KABC)8 (57)

To ensure that P;[2Kapc] is an odd function, eqn (56) includes
only odd powers of XKapc. To ensure that Py[XKapc] is an even
function, eqn (57) includes only even powers of Kagc.
Substituting eqn (49) into (56) and (57) gives

View Article Online
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Pyl — ¢ = (a(3) +p3 + C(3)) _ (3a(3) + 5p4 + 76(3))§
+ (3a® + 1063 + 2163 +... (58)
Pyl —¢] = (a(4) + oW + 6(4)) + (4a(4) + 6™ + 86(4))g
+ (6a™ + 156™ + 28¢"? +... (59)

Asymptotically matching these expansions to eqn (55) gives the
following eqn systems:

a(3) + b(3) + C(S) =1
3aY + 560 +7¢9 =2.5 (60)
3a% + 1067 + 21 =225
61(4) + b(4) + 0(4) =1
4a" 4 6b™ + 8¢ = 2.5 (61)
6a¥ + 15 + 28¢Y =225
These have the unique solutions
(@?p9,cD) = ((312),(=3/4),(1/4) (62)
(@69, D) = ((512),(~9/4),(3/4)) (63)
In summary, these polynomials have the forms:
PIDK] = (K +3(K)") /4 (64)
P2IK] = (30K)° + (K)*) /4 (65)
PsIK] = (60K)° = 30K)* + (X)) /4 (66)
4 6 8
PiIK] = (100K)* —90K)° + 3(K)") /4 (67)

These are plotted in Fig. 3.

1
0.9 4 0.9 4
0.8 - 0.8 4
207 S 07
206 1 fn 0.6 4
a £
205 A 805
£ =
0.4 ? 0.4
w031 —p1 034 —f
® 02 —P2 024 —R
o1d —™ o1l M
' P4 ’ f4
0 . 0 r : . r .
0 30 0 30 60 ) 120 150 180

bond angle (°)

bond angle (°)

Fig. 3 Values of the polynomials Py, P, Ps, and P4 (left panel) and elementary angle-damping functions fi, f5, fz, and f4 (right panel) plotted as
a function of the bond angle. As the bond angle value gets smaller, all four curves approach the same curve; that is, they are asymptotically

matched.
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This asymptotic matching will ensure that f425 = f45¢ in the
acute angle regime if we choose
JPC = QIPy[Kascl] (68)

where the function Q is yet to be determined. To ensure that
Q[Podd_»[2K]] is an odd function of 2K, it manifestly follows that
Q must be an odd function. To achieve the boundary conditions

Py=1[Kapc = 0] = fu=1l,020 = 0 (69)
Py [XKapc = 1] :fnzl\mABC:l =1 (70)
it manifestly follows that
Q[0]=0 (71)
oy =1 (72)

Moreover, the function Q should monotonically increase from
Q[0] = 0 to Q[1] = 1. Comparing eqn (41)-(46) shows that the
leading-order term in the Maclaurin series expansion of Q[x]
should be first-order in x. Arguably, the simplest function that
meets all of these constraints is

_ tanh[KX]
Olx] = “tanh[K] (73)
The value of K can be assigned by enforcing
tanh | KP; |cos[(1c/2)/2] H =1 (74)
———

1

2

via asymptotic matching to reproduce the near-perpendicular-
angle behavior described above. We asymptotically match the
first three non-zero terms in the Maclaurin series expansion

X 2x

T+o=1

tanh[x] = x — BT

(75)
Xroot = 1.244460035526845... is the only real-valued root of eqn
(75). The other four roots are complex-valued. Evaluating

1) =35e3(5) = e

xroot

VA6/8)

Why asymptotically match the first three non-zero terms
(see eqn (75)) instead of one, two, four, or five non-zero terms?
Computational tests showed that asymptotically matching an
even number of non-zero terms (ie., 2 or 4 terms) led to the
real-valued x,,0; < 0 which is not desirable. Therefore, an odd
number of non-zero terms must be included in the asymptotic
matching. Matching only one non-zero term (which would give

Py (76)

we obtain

K= = 2.815891616117388... (77)
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Xroot = 1) approximates the tanh[x] function as linear which
does not account for any curvature effects of the tanh[x]
function. Thus, it is desirable to include at least three non-zero
terms in the asymptotic matching. Arguable, we should only
include the leading-order curvature terms, because we do not
want to overfit by including too many terms in the asymptotic
matching. Note that the extreme case of overfitting resulting
from including an infinitely large odd total number of terms in
the asymptotic matching yields K — oo, which is not a work-
able solution. Including precisely three non-zero terms in the
asymptotic matching has the desirable effect of including
some curvature in the tanh[x] expansion without any
overfitting.
Putting this altogether, we finally have

tanh[KP,[2Kapc]]

~ABC
= 7
I tanh_K (78)
ABC __ tanh[KP, 2K 5]
neq tanh_K (79)
where
tanh_K = tanh[K] = 0.992861208914406... (80)

with the value of K given in eqn (77). The expressions for
= P and f,% are obtained by replacing XKapc and XK. with
XKpep and XKglp, respectively, in the above equations.

2.4 Principles used to derive the angle-damped torsion
model potentials

The ADDT, ADCO, and ADLD model potentials describe dihe-
dral torsion with angle damping. The ADDT model potential
applies when neither included equilibrium bond angle is linear
(ie, 833c # ™ and 6L, # 7). The ADCO model potential
applles when the dihedral torsion potential is an even function
of the dihedral value

ADCO

UABCOI$] = UABSH

Uagscpl—¢] (81)

and neither included equilibrium bond angle is linear (ie.,
053¢ # 7 and 63¢p # 7). The ADLD model potential applies
when one or both included equilibrium bond angles is linear
(i.e., Babc = T or O5¢p = T); in this case, ¢papcp cannot be defined.

Before deriving the explicit forms of the ADDT, ADCO, and
ADLD model potentials, we must first infer the underlying
principles that should govern their forms. I propose the
following principles:

(a) To be mathematically and physically self-consistent, every
angle-damped dihedral torsion potential should satisfy the
combined angle-dihedral coordinate branch equivalency
conditions. (See Section 2.1 above.)

(b) The dependence on contained bond angles (e.g., Opc and
Opcp for dihedral ABCD) should be formulated using algebraic
combinations of elementary angle-damping functions, where each
elementary angle-damping function decreases monotonically with
increasing bond angle from a value of 1 (for bond angle = 0) to
0 (for bond angle = 7). (See Sections 2.2 and 2.3 above.)
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(c) For rigid values of the contained bond angles (i.e., when
the ABC and BCD bond angles are held constant), the depen-
dence on dihedral value ¢apcp should comprise a linear
combination of torsion modes that is mathematically equiva-
lent to a Fourier series expansion in ¢apcp.

(d) Due to the trigonometric identities in eqn (26) and (27),
a Fourier series in ¢spcp can be constructed equivalently using basis
functions of the form {cos[ngapco — Vo "]+ or {cos[ndapcp),sin
[n¢acp]}- For ADDT but not for ADLD, the Fourier series could also
be equivalently constructed using basis functions of the form {cos
[(¢aBco — dasep)lsin[(@asco — daben)]l- Expanding
function[@apc, Opcp) Dy cos[ndapcp — Vo P

= function[fapc, Oscp] (A4, cOs[ndapcp] + By sin[ndapep))
= function[@agc, Oscp] (e cos[n(Ppapcn — Prpep)]

+8, sin[n(¢apcp — Pasen)])

reveals that the combined angle-damping factor for the sine
mode of multiplicity n» must be proportional to the combined
angle-damping factor for the cosine mode of multiplicity n.
Thus, aside from a constant coefficient, sine and cosine modes
sharing the same multiplicity n must have identical combined
angle-damping factors.

(e) Since @apcp is undefined when either O pc = T or fpcp = T,
the combined angle-damping factor multiplying any non-constant
function of ¢apcp Must go to zero whenever either bond angle is
linear (i.e., whenever fpc = T or Opcp = 7). This effectively zeros
out that term whenever either bond angle is linear.

(f) Since the square of a real-valued number is non-negative,
and since the potential energy of a displaced geometry should
not be lower than the ground-state geometry's potential energy,
it follows that a useful potential energy model can be con-
structed using the ansatz

(82)

Uldisplaced_geom] — Ulopt_geom]

= z:<(f0rm_l,-)2 - form_2,-) =0 (83)
i

or similar ansatzes that use squared quantities to ensure the

relative potential energy is non-negative. An individual term in

the summation is non-negative when

form_2; = (form_1,) (84)
which is not a strict requirement, because only the combined
sum (over i values) in eqn (83) must be non-negative. To ensure
the right-hand side of eqn (83) is zero at the optimized geom-
etry, each individual term is defined to be zero at the optimized
geometry:

form_1Jopt_geom] = 0

(85)

form_2jopt_geom] =0 (86)
I call this extremely useful and powerful approach ‘completing
the squares’.

(g) Within the ‘completing the squares’ approach, it is often
preferable to construct the individual form_1, and form_2; terms
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using the ‘most modest and least biased’ approach. This means
that among different options for constructing the model poten-
tial, we preferably choose the option that increases the potential
energy by the smaller amount and with less correlation bias. (A
specific example of this is discussed in Section 4.1 below.)

(h) For the ADDT and ADCO model potentials, it is conve-
nient to express each combined angle-damping factor as a ratio
that equals one when both contained bond angles equal their
equilibrium values. Practically, this means each combined
angle-damping factor in the ADDT and ADCO model potentials
is expressed as some algebraic combination of the ratios
(FECUFS) and (FPOP/fFSq). These ratios should not be used in
the ADLD model potential, because f 12} oq = 0 and/or ff<) oq =
0 when at least one of the contained equilibrium bond angles is
linear.

Without loss of generality, an angle-damped dihedral torsion
potential can be expanded as a multivariate Fourier series of the
form

UClass,B

ABCD [aABC7 0BCD> ¢ABCD} = AO WO[HABC7 0BCD]

Nmax

+ Z Wal0asc, Opep] (A, cos[ngapcep)

n=1

+B, sin[ngspcp)) (87)

The form shown in eqn (87) spans the entire function space of
continuously differentiable Class B torsion model potentials.
Note that following point (d) above, the angle-damping function
Wo[0asc,98cp) appearing before the cos[ngapcp] term must be
the same as the one appearing before the sin[ngapcp] term. The
combined angle-dihedral coordinate branch equivalency
condition applied to W,[0spc,0scp]cos[ndascp] and the analo-
gous sine term requires that

W2 — Oapc).08cp]l = Wilfapc,(2T — Opcp)]

= (=1)'"W,[0aBc.08cD] (88)

3. The mirror image descriptor Sinstance

A reflection operation transforms a chemical geometry into its
mirror image. For a molecule whose atom-in-material nuclear
positions are expressed in Cartesian coordinates

(B} ={(%a 70 7))}

reflection can be achieved by changing the sign of the X-
coordinate of each and every atom to give

{R»:ﬂcctcd} _ {(—X/[M YA’ZHA)}

Eqn (90) corresponds to reflection about the X = 0 plane.
Reflection can be performed about any plane in 3D Cartesian
coordinate space.

Values of the dihedral ABCD before and after reflection are
related by

(89)

(90)

. before_reflection | __ . after_reflection
sm[ ABCD ] = —sm{ ABCD ] (91)
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If the dihedral value is zero, then it is mapped onto itself upon
refection. If the dihedral value is 7 (i.e., 180°), then it is mapped
onto itself upon reflection. Every other dihedral value is mapped
upon reflection onto the dihedral value of the same absolute
value but opposite sign. This follows directly from the definition
of the directed dihedral given in the Introduction above. In the
absence of externally applied fields, mirror image geometries
have the same energy.

For this reason, it is convenient to define dihedral types such
that all dihedral instances belonging to the same dihedral type:
(1) are composed of the same atom types, bond types, and angle
types, and (2) have the same absolute value of equilibrium
dihedral value (within a tolerance).”®® Dihedral instances
belonging to the same dihedral type may have different dihedral
value signs. (i.e., they may be local mirror images of each
other).”®" Each dihedral type has its own set of torsion force
constant values that apply to all dihedral instances in that
dihedral type. According to this scheme, dihedral model
potentials should be defined in such a way that mirror image
dihedral instances belonging to the same dihedral type are
accurately described by the same set of torsion force constant
values.

This can be accomplished by defining the mirror image
descriptor

—-1= Sinstance =+1

(92)

in such a way that

Sinslancc [{EA }:| = 7Sinstancc {{R‘fﬂecwd }:|

The general strategy is as follows. The torsion potential is
decomposed into individual torsion modes such that each
torsion mode potential has unchanged absolute value when the
geometry is reflected. If the torsion mode would change sign
upon reflection, it is multiplied by Sistance SO that the product is
invariant when the geometry is reflected. Each of these torsion
modes has its own force constant value that is invariant upon
reflection.

For example, suppose that ¢.q = —30° in the first instance
and ¢.q = +30° in the second instance of two dihedrals of the
same type. Then, a dihedral displacement to ¢ = 10° in the first
instance is chemically equivalent to a dihedral displacement to
¢ = —10° in the second instance, and these should produce the
same dihedral torsion potential values. Because cosine is an
even function, for cosine modes we have

(93)

cos[m(¢p — deg)] = cos[m(—¢ — (—¢eq))] (94)

which give equal contributions to the torsion potential. In this
example, cos[m(10°—(—30°))] = cos[m(—10°-30°)] = cos[m40°].
Because sine is an odd function, we have to multiply it by the
corresponding value of Sinstance to recover equal contributions
to the torsion potential upon reflection:

sin[m(¢p — ¢eq)] = —sin[m(—¢ — (=deq))] (95)

© 2025 The Author(s). Published by the Royal Society of Chemistry
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In this case, Sinstance = —1 in the first instance and Sjngtance = +1
in the second instance to give sine function terms —sin[m(10° —
(—30°))] = sin[m(—10° — 30°)] = —sin[m40°].

The case for which sin[¢.q] — 0 deserves some further clari-
fication. In this case, both mirror images have the same equi-
librium dihedral value, so the two distinct mirror images cannot
be distinguished by the sign of the equilibrium dihedral's value.
We are thus faced with several viable alternative choices. One
possible solution is to turn off the sine modes by having Sinstance
— 0 when sin[¢eq] — 0; this has the effect of making the torsion
potential symmetrical about ¢ = ¢.q. In option # 1, this is done in
a discrete way using the signum function:

0 if sinfg,,] =0
+1 if sin[¢] >0
—1 if sin[g.,] <0

Sinstunce = Signum [Sin [¢eq]:| = (96)

In option # 2, this is done in a smoothed continuous way using

Sinstance = ta~nh[10D Sin[d)eq]] (97)
where the smoothing exponent D controls the decimal place
for which the smoothing occurs. For example, setting D = 2
means the second decimal place (i.e., 0.01 radians) is where
the smoothing occurs, while setting D = 1 means the first
decimal place (i.e., 0.1 radians) is where the smoothing occurs.
Option # 2 has the key advantage that the value of Sjnstance 1S
continuously differentiable with respect to continuous
changes in ¢.q. In option # 3, we retain the value of Sinstance =
+1 or —1 to distinguish the two mirror image structures even
when sin[¢eq] — 0. This option is the most comprehensive, but
it requires developing an alternate method to distinguish the
two mirror images. For example, one could use pattern-
matching algorithms to distinguish between the two mirror
images.

For simplicity, this article used option #1 (see eqn (96)) to
compute the value of Siystance Used in the ADDT and CADT
model potentials. However, these two model potentials are
compatible with any of the three options described in the
previous paragraph. For the ADLD model potential, option #3
must be used as explained in Section 9 below, because ¢ is not
defined for linear dihedrals. The ADCO and CACO model
potentials do not use any Sinstance-

4. Angle-damped dihedral torsion
(ADDT) model potential

4.1 Derivation including torsion offset potential

If neither contained equilibrium bond angle is linear, eqn (87)
can be equivalently re-written (with the help of trigonometric
identities in eqn (26) and (27)) as

Unbeb [0asc; Ocp, dapcn) = aoHolOasc, Osep]

Mmax

+ Z H,[0apc, Orep] < —dj cos[n(papcp — Pasep)]
n=1

+ by Snsancesinl(@ancn — $3hen)]) (98)
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For convenience, we regroup the terms that equal zero when
(&
PaBcp = Pabep:

Mmax
UADDT E %

aBCD [0ABC, OBCDs PABCD) = 1[0aBC; OBcD)

Tmax

—H,[0agc, Ocp)) + Z H,[0apc; #pcp) (a;(l — cos[n(dpapcp
n=1

~95%he)]) + B Sisancesinl (S anc — Bhen)]) (99)
Comparing eqn (98) to (99) shows that
aoHo|0agc, Opcp] = Zal(-]n [6aBc, Orcp]) (100)

n=1

I call J,[0apc,98cp] — Hu[0anc,98cp) the ‘torsion offset poten-
tial (TOP) for mode »’, because it adds a theta-dependent offset
potential (aka ‘potential shift’) that is independent of the
dihedral's value.

The combined angle-dihedral coordinate branch equiva-
lency condition requires that

H,[(2T — 6aBc).08cp] = H,[0aBC,(2T — OpcD)]

= (=1)"H,[0aBc.0BcD] (101)
J[27 — 0scp),fsep] = JulfaBC,(2T — OCD)]
= Jul0asc.98cD] (102)

To ensure the potential energy is non-negative for displaced
geometries,

Jul0asc.08cp] = 0 (103)

Jul0Rbc.08tp] = 1 (104)

will be constructed using a ‘completing the squares approach’.
Following principle (%) of Section 2.4:

H,[03%c.08tp] = 1 (105)

Explicit formulas for J, and H, are derived as follows:

(1) To satisfy the combined angle-dihedral coordinate
branch equivalency condition, we could construct a torsion
offset potential (TOP) having the following form:

TOP,[0apc.f8cp] = Julfasc.08cp] — Hil0ac.08cD]  (106)
| ABC £ABC 2
n n/2
Jul0arc, Oep] = 2 ( ABcL fujaceq)
n_eqn)2)
ABC \ 2 BCD £BCD
f{n/Z f fn/Zj _eq
+ ABC " /BCD#BCD
[n/2]_eq n_eq |n/2|
fBCD
In/2]
+ (fBCD (107)
(/2] _eq

7266 | RSC Adv, 2025, 15, 7257-7306

View Article Online

Paper
fABCBCD

H,[0agc, Oscp] = Jrgeacn (108)
n_eqJ n_eq

Here, |x| denotes floor[x], which is the largest integer less than
or equal to x. Eqn (106)-(108) follows a ‘completing the squares’
strategy that guarantees that

TOP,[0apc,08cp] = 0 (109)
Proof: Since
ABC ABC 2 ABC \ 2 .
fo a2l eq Jip) 1Be
" £ABC fABC + fAB(, ~ FABC —
n_eq [n/2| [n/2]_eq n_eq
YA AN
n n/2| _e n/2
2 ( "ABC Ach " FABC ) =0 (110)
n_eq |n/2| [n/2]_eq
it immediately follows that
ABC £ABC 2 ABC \ 2 .
f fn/Z |_eq |n/2) >anBC 111
2 TFABC{ABC + 5 | £ABC = 7ABC (111)
n_eq/ [n/2] n/2]_eq n_eq

and similarly for the BCD angle. Substituting eqn (111) and the
analogous eqn for BCD yields eqn (109).
(2) Consider the following generalization of eqn (110)

ABC {ABC 2 | [fABC 2 fABc
In Jieg ) |

ABC ABC 5 \ raBc TABC

n_eq Jj_eq n_eq
ABCLABC  PABC 2
/n_ Jjeq J -
ABC ABC anc | =0 (112)
n_eq Jj—eq

where 0 = j = n. In the limit )KABC approaches a small positive
number (i.e., Kjh — ¢), then 1/f 155 becomes proportional to & 7,
and foq/f QBqu becomes proportional to ¢/ ™. To keep the TOP
from becoming excessively large, it is desirable therefore to
formulate the TOP such that max[ j,(n — j)] is as small as feasible.
This follows principle (g) of Section 2.4 in order to construct the
TOP in a way that produces the smallest energy increase.
Immediately, this yields j = floor[n/2] or ceiling[n/2]. Due to the
asymptotic matching between f7%; and f7,", there is a partial
cancellation of amplitudes within the f}5/f »"%q. Therefore, to
minimize the magnitude of the TOP, for odd n the smaller integer
(ie., floor[n/2]) should be assigned to the 1/f#%; while the
larger integer (i.e., ceiling[n/2]) should be assigned to the
F%0If w5y term. For even n, floor[n/2] and ceiling[n/2] are obvi-
ously equal. Thus we have j = floor[n/2] which yields eqn (107)
and (110) above.

(3) The specific form of eqn (107) was chosen to avoid
correlation bias. Whenever (f7°°/fn"%q) # 1, the ABC bond
angle has been displaced away from its equilibrium value;
consequently, the TOP should be significantly positive regard-
less of whether (f ,°°/f »%a) is < 1, ~1, or >1. Similarly, the TOP
should be significantly positive whenever (f,°°/fp%) # 1,
regardless of whether (f3°¢/f %) is <1, ~1, or >1. The form of
eqn (107) satisfies this requirement.

(4) Most importantly, these choices for J, and H, guarantee
that the minimum TOP,, value occurs for

© 2025 The Author(s). Published by the Royal Society of Chemistry
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TOP,[03kc.05tp] = 0 (113)
and that the minimum value for (1 — cos[n(¢apcp — Padep)]) is
0 and occurs when ¢apcp = Pigep- If a single torsion mode is
active (i.e., smart selected), then it is generally convenient to
impose the following constraint to ensure the energy increases
for all displacements away from the equilibrium ABC and BCD
bond angles and for all displacements away from the equilib-
rium ABCD dihedral value:
ay=0 (114)

What is the physical significance of the TOP? As an example,
consider the HNCO molecule. For reasons explained in
a companion article, as the NCO bond angle approaches linear
(i.e., m, 180°) the force exerted by the angle-bending potential
must become zero.*® However, Fig. 9 shows the force exerted
within the molecule along the angle-scan energy curve is mark-
edly not zero as the NCO bond angle approaches linear (i.e., T,
180°). This is not a paradox but rather a manifestation of the new
energy term described by the TOP. Section 10.4 below shows the
TOP gives rise to a new and unique physical phenomenon called
‘slip torsion’ that would not exist without it.

The following limits, which retain the leading term in the
Taylor series expansion, should be used to avoid division by
zero in all equations containing the ratios fa°“/f{ms| and/or
FREPIFBECD (e.g., eqn (107) and others) as one or both bond
angles approach linearity:

n

llm _ P, n [H(ABC}
Kapce »(y"tf}}’zf Kapc *OPLn/zJ [Kazc]

ABC

n n—|n/2
= W (Kanc)" " (115)

BCD P, Ko
n n BCD o n—|n/2
- —— = {5 (Kgcp 116
KBCD"QflE/CZ? X{BCDHOPL’I/ZJ DKBCD] L /ZJ( ) ( )
Wl =3, ul =6, ut=10/3 (117)

I recommend using the leading order expansion shown in eqn
(115) iff XKapc < 0.001. I recommend using the leading order
expansion shown in eqn (116) iff 2Kpcp < 0.001. For example, if
Kapc <0.001 then f4°°/f55%¢ to leading order equals
(10/3)(Kapc)*.

4.2 Derivation of the first seven independent torsion modes
for rotatable dihedrals

To ensure the quantum-mechanically-computed ground-state
geometry is an equilibrium geometry of the fitted classical
forcefield, the following constraint should be imposed:

ADDT [ neq cd
J UABCD [0ABC7 0BCD7 ¢ABCD]

=0
dPaco

g
PABCD =P Apcp

(118)

Substituting eqn (99), (104), and (105) into (118) yields the
following constraint

Mimax

> bl =0

n=1

(119)
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The constraint shown in eqn (119) has the effect of
reducing the number of independent sine modes from 7,,,,x to
(Pmax — 1), and this reduces the total number of independent
rotatable dihedral modes (cosine plus sine) from 2#,,.x to
(2nmax — 1). One possible strategy to handle this reduced
number of degrees of freedom is to use a linear regression
algorithm that can incorporate any form of linear constraints
(such as eqn (119)) when optimizing the force constant
values. However, the glmnet implementation of the LASSO
method handles bounds on the model parameters rather
than general linear constraints.>~** Since we use the LASSO
method to address the multicollinearity and feature selection
problems when optimizing the force constants,' the sine
torsion modes should be written in a way that makes them
independent of each other without the need for a separate
linear constraint.

This can be accomplished as follows. We choose 7n,.x = 4,
because it gives an excellent compromise between accuracy and
computational costs. In this case, there are n,,,, = 4 indepen-
dent cosine modes, which we label as modes 1 to 4. There are
(mmax — 1) = 3 independent sine modes, which we label as
modes 5, 6, and 7. For the first n,,,, = 4 modes, we can use the
cosine torsion modes shown in eqn (123), because these already
satisfy the zero torsion force condition at the equilibrium
geometry. The remaining (7. — 1) = 3 independent torsion
modes must be constructed as orthogonal linear combinations
of the sine torsion modes, where each independent torsion
mode has a single independent k-value (aka ‘force constant
value’).

First, we define

Uff" = Sln["(¢ - ¢eq)] (120)

The linear combinations 3U;™ — US™ and 2U5™ — USn yield zero
torsion force at the equilibrium geometry. Moreover, these two
linear combinations are orthogonal to each other; that is, they
have zero overlap integral between them. The overlap integral
between two real-valued functions gj¢ascp] and g{dapcp] is
defined as

<gi[¢ABCD]|gj[¢ABCDD = J, gil¢ancplgi(Papcpldpapc  (121)

The seventh mode takes a bit more ingenuity to construct.
Within the subspace of functions spanned by linear combi-
nations of U$™ and US™, the linear combination U™ + 3U5™ is
orthogonal to 3U;™ — US™. Within the subspace of functions
spanned by linear combinations of U™ and U™, the linear
combination U™ + 203" is orthogonal to 22U — USIM. These
can be combined to form the linear combination U™ +
3US™ — Us® — U5 that yields zero force at the equilibrium
geometry and is orthogonal to the other six independent
torsion modes.

Finally, it is useful to scale each of the independent torsion
modes so that its root-mean-squared deviation from its average

value is \/1/2. This puts all of the different independent torsion
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—cos[m(p — ¢eg)]] for m=1 to 4
(3sin[p — gu,] — sin[3(9 — 6.,))) _
il for m = 5
P(o = { (2sin[2(¢ — geg)] — sin[4(¢ — e)]) or 6 (122)
5
(sl ] 520~ 4u)] 00 ~be)) 280080~ 00)) g

modes on the same normalization scale. Considering only the
dihedral dependence, this gives the first seven independent
torsion modes of the rotatable dihedral torsion potential:

G)'[g) = { (1 —cos[m(¢p — ¢eg)]) for m=1to 4

123
PPT[p] for m=5 to 7 (123)

where ¢ is the current dihedral angle, and ¢.q is the reference
dihedral angle from the equilibrium state of the structure.
PLY[¢] is defined to have an average value of zero:
GRTgl — G

Py[g] = (124)

(125)

1

G'E)IT‘avg — % J G,[')T[(i)]d(f)

-

Fig. 4 plots each of these seven modes for expanding the

Ui K asc, XKeep, ¢apcp] = ky (/1 [0asc, Oscp]

- H, [HABC7 HBCD]COS[((f’ - ¢eq)D
(126)

UAPOL K ase, Kpep, $ascn) = ki (/2[0a8c, Ocp)

- H2[0A3C7 gBCD]COS[2(¢ - ¢eq)D
(127)

USDY K asc, Kocp, $ascp) = kj, (/3[0asc, Orep]

— H3[fasc; OBcnlcos[3(d — ¢eq)])
(128)

Unone s[&Kasc, ZKecp, $apcn] = K (Ja[0asc, Opcp]

— Hy[fasc, HBCD]COS[4(¢ - ‘f’eq)})

dihedral torsion potential function. (129)
Including the torsion offset potential and the angle-damping
factors, this yields the following seven ADDT modes:
ADDT k3 : :
Usrode s 2K asc, Kgcp, dapep] = ﬁsmsmnce (3sin[¢p — deg| Hi[0aBc, Opcp] — SIn[3 (¢ — deg)| H30anc, OBcD)) (130)
ADDT kg : :
Umodej [H(ABC7 >KBCD7 ¢ABCD} = 7§Sinstance (ZSIH [2 (¢ - ¢eq)} H2[0ABC7 0BCD] — s [4 (¢ - ¢eq):| H4 [0,43(‘7 03(7[)}) (131)
kg Sin[¢ — deq| Hi [0anc, Oncp] — sin[2(¢ — ¢y )| Hal0arc, Oacp)
UADDT K K — ¢ Sin% ance g eq 1[YABC> YBCD CYeq 2[YABC; VBCD 132
mode 3 Panc, Knco dancol = St | 1 35in (36— )| Hoffanc, o] ~ 25in[d(6 — gug) | HalOnnc, faco) (152)
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the first seven independent modes of ADDT and CADT potentials
3
91 —mode_1 —mode_2 —mode_3 —mode_4

mode_5 —mode_6 —mode_7

GI:ﬂ’m [‘b]

-2 T T T T T T

dihedral angle displacement (¢ - ¢.,) in radians

Fig. 4 Plot showing the dihedral torsion potential G5'l¢] for each
mode versus the dihedral displacement. Modes 1 to 4 are cosine
modes, and modes 5 to 7 are sine modes.

After dihedral mode smart selection (see Section 7), this
yields

ADDT ADDT eq eq eq
UABCD [>KABC3 >KBCD7 ¢ABCD} - UABCD [>I<ABC7 )KBCD’ ¢ABCD}

NABCD
active_modes

Uéﬁ?}, [Kasc, Kecp, papep] (133)
=

where Natoe modes iS the number of active modes for dihedral

ABCD.

5. Constant amplitude dihedral
torsion (CADT) model potential

As shown in Section 10.2 below, angles with f3%c < 130° are
typically much stiffer than angles with 053¢ > 160°. As a result of
this increased stiffness and also that they are farther from 180°
to begin with, it is relatively unlikely that angles having 65%¢ <
130° will reach 180° during a typical classical molecular
dynamics simulation. Also, the relatively large increase in
energy from 633 < 130° to f3%c = 180° makes reaching 180° not
‘thermally accessible’ during classical Monte Carlo simulations.
Depending on the situation, there may or may not be a ground
state crossover as the ABC angle changes from fxpc < 130° to
fasc > 160°. For example, carbon atoms having sp> hybridiza-
tion typically have bond angles of ~120° while carbon atoms
having sp’ hybridization typically have bond angles of ~180°.
Consequently, angles having #3}¢ < 130° are in some sense ‘far
removed’ from the dynamics near f,pc = 180°.

Why set this angle threshold value at 130°? Since sp’
hybridization (which typically yields ~120° bond angles) is
fundamentally different than sp' hybridization (which typically
yields ~180° bond angles), we infer the angle threshold value
should be >120° and <180°. Since bond angles >135° are closer to
180° (parallel bonds) than to 90° (perpendicular bonds), it follows
that the angle threshold should probably be set to a value = 135°.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Now, sp” hybridized angles will exhibit some statistical fluctua-
tions giving some sp” hybridized equilibrium bond angle values
slightly larger than 120° and also some others slightly smaller
than 120°. Because the angle threshold value should not divide
this group, it follows that the angle threshold value should be
greater than or equal to approximately 128°. Now, between the
feasible range of approximately 128° to 135°, the precise value of
the angle threshold value is a judgement call. An angle threshold
value of 130° was chosen as a round number that maximizes the
size of the region treated by the ADDT potential.

Accordingly, if both 053¢ < 130° and 6g¢, < 130°, then it is
reasonable to make the simplifications

-ABC -ABC -ABC -ABC

n B = n_lzq = fl B = f 1_Eq (134)
C -BC C -BC

n =g = PP =S (135)

for n = 1, 2, 3, 4. Eqn (134) results both from the asymptotic
matching (as described in Section 2.3 above) and from the
relatively stiff ABC bond angle which causes f7°¢ = f, . Eqn
(135) results from analogous properties for the BCD bond angle.
This yields the approximation
Julfasc.Oscp] = Hylfapc.fscp] = 1 (136)
These simplifications produce the following constant
amplitude dihedral torsion (CADT) potential energy modes:

k(1 —cos[m(¢ — ¢q)]) for m=1to 4

UCADT
K} Singtance Py (@) for m =5 to 7

mode_m [¢ABCD}

(137)

The CADT potential has a force discontinuity if either O pc =
180° or fpcp = 180°, but those angle values are energetically
unlikely to be reached during typical molecular dynamics or
Monte Carlo simulations when both 3% < 130° and 651, <
130°.

As explained in the companion article, dihedral types sharing
the same middle bond instances can be ‘pruned’ so that one
representative dihedral type is retained per middle bond type in
the forcefield."® This dihedral pruning preserves symmetry
equivalency.™ As explained in the companion article, this should
preferably be done so that the retained representative dihedral
type simultaneously has a relatively modest number of instances
and relatively large values of (180° — 633c) and (180° —
08dp)."® For most materials, the practical consequence is that the
vast majority of dihedrals retained after pruning will use the
CADT potentials instead of the ADDT potentials.

As explained in Section 7, dihedral mode smart selection for
the CADT potential follows exactly the same procedure and
equations as for the ADDT potential. This yields

ABCD
active_modes
UCADT

ABCD [¢ABCD] - UCADT[ ¥

s [Panen] = Uﬁ?dlfmj[%sco} (138)

=1

where Njgse modes is the number of active modes for dihedral
ABCD.
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After parameterization, the CADT potential can be equiva-
lently rewritten as the dihedral potential Fourier series:

4
UEI/;([Z)[—)F[QSABCD] - U/Sl/;g];[ aBcp) = P — Zkz, Cos [”(¢ - ¢eq)]

n=1

4
+Sinslance Z b; sin [” (¢ - ¢eq):|
n=1

(139)
where
4
=) Kk (140)
m=1
3 1
bl = —k> + —k’ 141
= Vioe Vs (1e1)
b= 2 o ! k! 142
o= %’%— Witk (142)
—1 3
b= —k> + —k 143
PVI0T? VIS (143)
b= 'y 2 K 144
o= ﬁ’ﬂr Vit (144)

Depending on the particular situation, some terms in eqn (139)
may be zero (i.e., omitted) as the consequence of dihedral mode
smart selection. In this work, the above series runs up to
nmax = 4 and spans the full subspace associated with those
dihedral potential modes subject to the constraint that
USsep[#stcep] = 0 is a stationary point (i.e., has first derivative
equal to zero). It is possible (albeit not usually necessary) to
include higher than n = 4 terms in the CADT potential and

Fourier series expansion.

6. The ADCO and CACO torsion
model potentials

Due to symmetry, some dihedrals have a torsion potential that
is an even function of the dihedral value as shown in eqn (81).
For this dihedral type, it is advantageous to use a model torsion
potential that has this same symmetry. Considering only the
dihedral dependence, the cosine-only torsion model potentials
have the following independent torsion modes:

Py 0] = cos[ng] (145)

G O[¢] = cos[ng] — cos[ngpla ™" (146)

Including the torsion offset potential and the angle-damping
factors yields the angle-damped cosine only (ADCO) model
potential:

mode_n

yAbLo [)KAB(H Kspep, ¢ABCD] = kADCOCSO (HnCOS[mﬁ]

—J,cos [m;g““i"g} > (147)
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where kapco is an adjustable force constant and 59 is the smart
selection coefficient for mode n. For each ADCO dihedral type,
there is one adjustable force constant kapco irrespective of how
many ADCO modes were smart selected; the ratios between the
individual ADCO modes are controlled by {c5°}. Here, ¢ptai™"8 is
the equilibrium dihedral value in the QM-optimized low-energy
ground-state geometry of the training dataset. After dihedral
mode smart selection (see Section 7), this yields

ADCO ADCO eq eq training
UABCD [H(ABC7 )KBCDa ¢ABCD] - UABCD |:>I<ABC7 )KBCD’ ¢eq‘ABCD

ABCD
active_modes

>

J=1

UADEO [Kasc: Kaep, Pascp)

mode_n;

(148)
where Niesve modes 1S the number of active modes for dihedral
ABCD.

Just as described in Section 5 above, if both 5% < 130° and
0%dp < 130°, then it is preferable to use the constant amplitude
approximation shown in eqn (134)-(136). This simplification
yields the constant amplitude cosine only (CACO) model
potential:

Usoseldapcenl = keacocs O(cos[ng] — cos[ngla ™)) (149)

where kcaco is an adjustable force constant and ¢S€ is the smart
selection coefficient for mode n. For each CACO dihedral type,
there is one adjustable force constant kcaco irrespective of how
many CACO modes were smart selected; the ratios between the
individual CACO modes are controlled by {c5°}. After dihedral
mode smart selection (see Section 7), this yields

NABCD
active_modes
CACO CACO training | __ CACO

UABCD [¢ABCD] - UABCD {qbeq :| - Umode_n/ [¢ABCD]

J=1

(150)

where Njgse modes is the number of active modes for dihedral
ABCD.

If sinf¢eq] # 0, due to series truncation (i.e., only including the
most important torsion modes) the ADDT and CADT model
potentials typically do not yield strictly even torsion potentials even
when the molecule itself has such an underlying molecular
symmetry. For example, the CADT model potential does not yield
a strictly even torsion potential for the hydrogen peroxide (HOOH)
molecule, even though the HOOH molecule itself has such an
underlying molecular symmetry. Because the CADT model poten-
tial has mismatched symmetry for this molecule, it yields
a different position of the equilibrium dihedral value on the posi-
tive and negative dihedral sides. (This is explicitly shown in Section
10.8 and Table 16 below.) The ADCO and CACO model potentials
address this problem by imposing even function symmetry on the
torsion model potential. However, the equilibrium dihedral value
of the ADCO and CACO model potentials (aka ¢eq) may not exactly
match that of the QM-optimized training geometry:

FF _ training

eq =~ (Peq (151)

due to truncation of the ADCO or CACO model potential. As
more modes are included in the ADCO and CACO model

© 2025 The Author(s). Published by the Royal Society of Chemistry
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potentials, ¢eq should asymptotically approach ¢t ™™™ when
the true dihedral torsion potential is an even function and the
training dataset is a complete torsion scan. As more torsion
modes are included in the ADDT and CADT model potentials,
these should asymptotically approach the same torsion poten-
tials as the ADCO and CACO model potentials, respectively,
when the true dihedral torsion potential is an even function.
Why do the ADCO and CACO model potentials include the
products kapcocs® and keacocs?, respectively, instead of having
an independently adjustable force constant value for each
torsion mode? The specific reason for this is to more accurately
reproduce ¢es = ¢ta"™8. By fitting the {c,} explicitly to
a complete torsion scan for a chosen dihedral instance during
smart mode selection, this optimizes the ratios between these

coefficients to more accurately reproduce doq =
peq ™8, because the exact potential energy for such a torsion

scan precisely corresponds to a Fourier series expansion. The
kapco Or kcaco value is subsequently computed during force
constant optimization involving the full training dataset. If the
force constant for each ADCO or CACO torsion mode were to be
optimized independently to the full training dataset, this would
likely result in less accurate values for ¢gg = ¢ta""8, because
the exact potential energy for such a training dataset does not
necessarily correspond to a Fourier series expansion.

7. Selecting torsion model potentials
and torsion modes

7.1 Selecting the best torsion model potential for each
dihedral type

Fig. 5 summarizes the overall process for constructing and
validating dihedral torsion potentials. The process begins with
defining atom types in the material. The second-neighbor-based
atom types of Chen and Manz** are recommended; however,
this is not the only feasible choice of atom types. As explained in
a companion article, the next step defines the list of active
internal coordinate types and instances.'® This list of active
internal coordinates includes the bond stretches, (optionally)
Urey-Bradley stretches, angle bends, dihedral torsions,
(optionally) cross-terms, and (optionally) concurrence terms.*®
Dihedral pruning can be used to reduce excessive internal
coordinate redundancy."®

Each dihedral type should be classified as rotatable,
hindered, nonrotatable, or linear. A companion article gives
a particular method to classify each dihedral type as non-
rotatable, rotatable, hindered, or linear.’®* According to this
particular classification, a non-rotatable dihedral has a middle
bond that is part of a bonded ring. The middle bond for
a hindered dihedral is not part of any bonded ring; however,
a hindered dihedral cannot be rigidly rotated over the entire
range —T < ¢apcp = T without changing the material's bond
connectivity.'®" For example, two or more atoms may sterically
collide with each other thereby preventing the hindered dihe-
dral from accessing that part of configuration space.*®

The next step is to select an appropriate torsion model
potential for each dihedral type. Fig. 6 illustrates the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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define atom types

A 4

define internal coordinate types and instances

A 4

dihedral pruning (optional)

\ 4

classify each dihedral type as rotatable,
hindered, nonrotatable, or linear

A 4

select an appropriate torsion model potential
for each dihedral type

\ 4

smart select important torsion modes

\ 4

optimize force constant values

\ 4

forcefield validation

Fig. 5 Overall sequence of steps for defining dihedral types, classi-
fying them, and selecting appropriate torsion model potentials and
modes to construct and validate a flexible forcefield.

recommended procedure for doing this. Although the ADDT (or
ADCO if USESsr[¢] = Uspas"[—¢]) model potential can be
applied to dihedral types for which (fagc and 65¢p) < 130°, the
greater simplicity of the CADT (or CACO if Upeo™[¢] =
torsion_¢]) model potentials favors their use in this case.
Although classical nonreactive forcefields employing dihedral
torsion model potentials have been used for several decades,
the procedure shown in Fig. 6 is a transformative improvement
over prior approaches.
After the kind of torsion model potential has been selected

for each dihedral type, the next step is to smart select the

| Is 0%, =180° or o5, =180°? |—-| Use ADLD potential]
Yes
lNo
| Is 053, 2130° or 0, >130° 2 |_’I Does Upén [¢]=Uin [-0] 2 I—'[ Use ADCO potential]
Yes Yes

No

No Use ADDT potential
Does Upin [0]=Upis (0] ? |_.|Y Use CACO potential I
es

No

Use CADT potential

Fig. 6 Flowchart illustrating the procedure to select an appropriate
torsion model potential for each dihedral type.
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important torsion modes. Here, the term ‘smart selection’
means the important torsion modes are kept while the unim-
portant torsion modes are omitted from the torsion model
potential. For rotatable dihedral types, Section 7.2 explains
a procedure for rotatable dihedral mode smart selection using
torsion scans. For linear dihedral types, Section 9.2 explains
a procedure for selecting specific modes from the linear dihe-
dral torsion potential. Due to the limited range of motion of
nonrotatable dihedral types, these can typically be described by
the first cosine mode of the ADDT (if (fagc or 6stp) = 130°) or
CADT (if (Asc and 65¢p) < 130°) model potential.*®

Hindered dihedral types require some special consideration.
As explained in a companion article, a dihedral type is classified
as ‘hindered’ iff (a) it is not part of a bonded ring and (b) rigid
rotation about its middle bond causes one part of the structure to
sterically collide with another part of the structure. Closer
examination reveals that such collisions may have two limiting
cases. In case # 1, the collision is ‘unavoidable’; because the
colliding groups are structurally tethered in ways that do not
allow them to easily pass each other. In case # 2, the collision is
‘accidental’ and potentially avoidable. Consider long chain-like
molecules comprising polymers, large biomolecules (e.g,
proteins, RNA, enzymes, fatty acids, polysaccharides, phospho-
lipids, etc.), hydrocarbon chains (e.g., petroleum), etc. In these
cases, one end of the chain may ‘accidently’ collide with another
part of the chain when rigidly rotated (about a dihedral middle
bond) due to the particular manner in which the flexible chain
has been ‘folded’. Let us define a ‘range of dihedral rotation’ as
the connected range of ¢apcp values that are not sterically pre-
vented; this refers to the range of ¢,pcp values that can be
reached via continuous relaxed displacements away from
¢ancp avoiding steric collision. If this range of rotation about the
hindered dihedral's middle bond is severely limited (such as
sometimes occurs in case # 1), then it may be adequate to
describe this particular hindered dihedral type by the first cosine
mode of the ADDT (if (63¢ or 65¢p) = 130°) or CADT (if (053¢ and
08¢p) < 130°) model potential."® On the other if this range of
rotation about the hindered dihedral's middle bond is large
(such as sometimes occurs in case # 2), then it may be desirable
to retain several torsion modes of the ADDT, CADT, ADCO, or
CACO model potential to describe this hindered dihedral.

The next step is to optimize the values of all of the force
constants in the flexibility model. For reasons explained in
companion articles, these should be optimized simultaneously
by fitting to a training dataset, rather than optimized sequen-
tially one-at-a-time.'*® Finally, the parameterized forcefield
should be validated using an appropriate validation dataset that
is separate from and independent of the training dataset.

7.2 Rotatable dihedral mode smart selection using torsion
scan curves

A relaxed torsion scan curve changes the value of the dihedral
¢apcp from —m to 7 in small increments while allowing all other
independent geometric parameters (e.g., bond lengths and
bond angles) to reoptimize. Each geometry in a relaxed torsion
scan is computed from constrained geometry optimization that
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produces the lowest energy possible for that particular con-
strained dihedral value.

A rigid torsion scan curve changes the value of the dihedral
¢ancp from —m to 7 in small increments while keeping all of the
bond lengths and bond angles fixed at their reference values.
Unless otherwise specified, these reference values are the cor-
responding bond length and bond angle values in the material's
optimized (low-energy) ground-state geometry. A rigid torsion
scan is a series of single-point energy calculations performed at
rigid geometries. There are no changes in the values of the
angle-damping factors during rigid torsion scans. In general,
a complete rigid torsion scan curve is possible if the dihedral is
rotatable, but not if the dihedral is non-rotatable or hindered.
We did not use rigid torsion scan energy curves for non-
rotatable or hindered dihedrals, because these dihedrals have
a limited (aka ‘restricted’) range of motion."®

For a rotatable dihedral, the potential energy along a torsion
scan curve can be modeled by projecting onto an orthonormal
basis of independent torsion modes:

[ l (i\/y) (Pi;ﬁ[‘(ﬁ])d‘i’ Gk (152)
JT_; (P,?\,(/’gl’]) <PC\‘/’£¢}) g = sk (153)

Let EQY5[¢] be the QM-computed energy of the material along
the torsion scan curve for rotatable dihedral ABCD. This torsion
scan curve is conducted using T dihedral values equally spaced

over the range (—m,m]. Let ERYs™"® be the average value

B - zEgrs (15)
and w the self-overlap integral
oTC T
M M_av, M M_av
w= (El(i)Ts [¢] — Elg'rs &) < > Z E]?Ts E]%‘s 5)
J—m j=1
(155)

The ‘QM torsion norm’ is the root-mean-squared value of

(ERrs[¢] — ERrs™):
. & QM QM _avg w
torsion_normeoy = Z ERTS — Errs ) 27
j=1
(156)

The QM torsion barrier is defined as the maximum energy
minus the minimum energy along the torsion scan curve:
torsion_barrierqy = max [EQ[¢]] — min [EQ[¢]] (157)

—M<p=T M<P=T

Using a complete set of dihedral-torsion (DT) projectors, the
QM potential for the torsion scan curve can be expanded in
terms of the orthogonal basis set as

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Eg_?’éd\’é_k\/*z DT m ¢] (158)

m= v

Eds[¢] =

Since the cosine-only (CO) projectors are even functions of ¢,
the CO projectors can provide a complete expansion of the QM
potential along the torsion scan curve iff the following
symmetry descriptor

r 2
> (£ [0) - B0

sym_value = = | - ; (159)
> (E[0) - ™)

J=1

equals zero. Iff sym_value equals zero, then in this case the QM
potential can be expanded using the CO projectors as
M
s 9]

QM_avg - CcO PS;O [¢]
= ERTS_ + \/w Z Cm (160)
m=1

J

The model potential for the torsion scan curve can be
expanded in terms of the orthogonal basis set as

Mmax Pm
O ) T S
raini: o) Gm [¢]
BRI - B (o] = YD a6
m=
where
g = ZE&#;‘“ : (163)

For the ADDT and CADT model potentials P, = PRl is used in
eqn (161) and (164), and G,,, = G is used in eqn (162). For the
ADCO and CACO model potentials, P, = PO is used in
eqn (161) and (164), and G, = G5 is used in eqn (162). The
coefficients are given by

o _ [ Puld] <EQM 9] - QM) 0
4: NG
_ (2%~ Puld)] (Eirsle)] - Eire™
(7) ; < 7 (164)

For the torsion modes included in the model potential, the
expansion coefficients {c,} are the same for the QM and model
potentials along the torsion scan curve. The model potential
neglects some of the less important (i.e., negligible) torsion
modes while the QM potential is formally expanded (see eqn
(158)) as a nontruncated sum over all possible torsion modes.

The ‘model torsion norm’ is the root-mean-squared value of

(Eg}lgsdel[¢1] odel avg)

T
torsion_normumege = ( ) g (Expdd[g;] —

J=1

P 2
B’ (169)
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As derived in ESI Section S12,7 the QM and model torsion
norms are related by

Mmax

w

: _ 2
torsion_normygge = - ; (ew”) (166)
torsion_normyege = torsion_normeom+/SumCSq (167)
where SumcCSq is defined as
SumCSq = Z (en?) (168)

m=1

Since {c,,} are the coefficients for projection onto an ortho-
normal basis set, it follows that

0 = SumCSq =1 (169)

As derived in ESI Section S12,1 the full set of mode coeffi-
cients for the normalized QM potential along the torsion scan
curve satisfies

> (@) =1

m=1

(170)

Hence, the SumCSq value can be interpreted as the fraction of
the QM torsion scan curve that is recovered by the model
potential. Iff SumCSq = 1 and Epeec-""¢ = EQE™8, then the
model potential provides an adequate approximation of the QM
potential along the torsion scan curve:

ERTE¢] = ERYS[g] — ERTSIpeq ™™™ (171)

Here, we consider the general case in which Epes®-*"¢ may
potentially be different in value than EQye->"8. This leads to three
scenarios. Scenario #1: this scenario chooses the value of
Emedelavg gyych that

model[d)tramm;,] 0 (172)
which makes the left and right sides of eqn (171) exactly equal to
each other at the point ¢ = ¢eq "'"%. For the ADDT and CADT
model potentials, this scenario corresponds to the choice

model _avg __
ERTS

Mmax
\/W § : DTGDT ,avg

(173)

For the ADCO and CACO model potentials, this scenario
corresponds to the choice

Nmax

Eg_l?gelfavg _ \/_ Z CCO COS|: ¢tr<\mmg} (174)

Scenario #2: this scenario chooses the value of
Emedelavg giych that

Eg_(])%el_avg — E(]g%_av _[l\f[s[(i)erldlnlng] (175)
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which makes the averages of the left and right sides of eqn (171)
exactly equal to each other. Using a complete set of orthonormal
DT projectors to expand the QM potential along the torsion scan
curve yields the untruncated expansion:
M_avg M
| (176)

©
training] _ \/W 2 CDTGDT'an
N
m=1

eq m m

Scenario #3: this scenario (denoted as “other”) encompasses
any situations in which Emgs€-*8 is chosen to satisfy any
criteria different from Scenarios #1 and #2 described above.

Comparing eqn (173), (175), and (176), the difference in

ERRSel-2v for scenarios #1 and #2 using DT projectors is

ERoSe-[Scenario #2] — Epva-*"¢[Scenario #1]

- % > Gy (177)

m=(mmax+1)

Examining eqn (177), Exes€-®"8 exactly coincides for the two

scenarios if the modal coefficients ¢, are zero for all values of
m > Mmax If the modal coefficients ¢’ are nearly zero for all
values of m > Myyay, then Emgdel-ave approximately coincides for
the two scenarios.

The situation is slightly more complicated for the CO
projectors than for the DT projectors. If sym_value (see eqn
(159)) equals zero, then in this case the average QM potential
can be expanded as

QL _ Eg_ll\_/ls[ glaining] _ _% Z “cos [l’t ¢$ining] (178)

=1
Comparing eqn (174), (175), and (178), the difference in
ERSdelave for scenarios #1 and #2 using CO projectors when
sym_value = 0 is

Emodlae[Seenario #2] — Enved-"¢[Scenario #1] =

\/W i CO [ trainin,
—— c,” cos|ne g] (179)
\/E n=(nmax+1) .

When sym_value # 0, eqn (178) and (179) do not apply.
If sym_value is large, then the CO projectors might give
a large difference in Emodelavg yalye between scenarios #1 and
#2.

For a torsion scan curve, the R-squared value is computed via

eqn (17) using the following definitions:

T
av; 2
SST =) (Egisle] — Exrs™)

=1

(180)

)
SSE= 3" (D [9)] — E o] - Eels]) as)

J=1

As derived in ESI Section S12,f this R-squared value can be
equivalently rewritten as
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R-squared = R* = SumCSq

T M_av. M rainin del_av. 2
- ﬁ( lgTSia £ - EI?TS [ ;q g] - Eg}lse - g)
(182)
Examining eqn (182),
R-squared = SumCSq (183)

For Scenario #2, combining eqn (175) and (182) shows that

R-squared = R* = SumCSq (184)
Eqn (184) holds in Scenario #2 irrespective of whether DT or CO
projectors are used and irrespective of the value of sym_value,
but of course the value of SumCSq (and hence of R-squared) is
impacted by which projectors are used.

As derived in ESI Section S12,1 for Scenario #1 eqn (182) is
rewritten as

" 2
R-squared = R* = SumCSq — 2( Z T GBT'E”’g> (185)

=i +1)

Thus when using Scenario #1, R-squared is close to SumCSq
when c," for every omitted torsion mode is close to zero. Iff
sym_value = 0, then an analogous derivation using the CO
projectors for scenario #1 yields

o

>

n=(Ntmax+1)

2
R-squared = R> = SumCSq — 2( CSO cos [n ¢$inmg])

(186)

When computing the R-squared value as described above, all T
geometries along the torsion scan curve had equal observation
weights. In classical molecular dynamics or Monte Carlo simula-
tions employing the NPT, NVT, pPT, or puVT thermodynamic
ensembles, the lower-energy geometries should appear more often
(i.e., have higher observation weights) than higher-energy geome-
tries. When every geometry along the torsion scan curve has equal
observation weights, scenario #2 described above has a higher R-
squared value (see eqn (184)) than scenario #1 (see eqn (185)).
Scenario #1 (see eqn (172)) exactly matches the relative energy of
the QM and model potentials at the training dataset's optimized
ground-state geometry. For this reason, scenario #1 typically
performs better than scenario #2 when employing the NPT, NVT,
uPT, or uvT thermodynamic ensembles, because scenario #1
gives smaller errors than scenario #2 for the lower-energy geom-
etries that receive relatively higher observation weights in such
ensembles. For this reason, my ADDT, CADT, ADCO, and
CACO model potentials are typically constructed according to
scenario #1 rather than according to scenario #2. Except where
otherwise indicated, the ADDT, CADT, ADCO, and CACO model
potentials were constructed according to scenario #1 throughout
this work.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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In this work and a companion article,' we used the following
smart selection thresholds. If sym value = 0.01, this means
,{gﬁ}g“w] = A‘};Sg“[—¢] within the tolerance, so the ADCO or
CACO model potential was used. In this case, an ADCO or CACO
mode was kept if abs[c,,] > 0.001. Keeping the ADCO or CACO
coefficients greater than this ‘very tight’ cutoff helps ¢§g more
closely approach ¢ea™™. If 0.01 < sym_value =< 0.1, the ADDT or
CADT model potential was used, and an ADDT or CADT mode was
kept if abs[c,,] > 0.01. This case corresponds to the situation in
which USgaor[4] is approximately but not strictly equal to
,;’5258“[—(1)], so it is beneficial to use a ‘tight’ cutoff (i.e., abs[c,,] >
0.01) for retaining torsion modes to achieve a balance between
accuracy and conciseness. This ‘tight’ cutoff helps the ADDT or
CADT model potential to more accurately reproduce the position
of the alternate local energy minimum ¢23™ = —@eq. If
0.1 < sym_value, the ADDT or CADT model potential was used,
and an ADDT or CADT mode was kept if abs[c,,] > 0.1. This case
corresponds to the situation in which Uge™¢] is not approxi-
mately equal to Usiao[—¢], so conciseness of the torsion modes
is preferred. Examining eqn (168), this ‘normal’ cutoff (ie.,
abs[c,,] > 0.1) neglects a torsion mode if it affects the SumCSq
value by = 0.01.

The coefficients &y, ¢, and {bj} have the following distinct
meanings. ky, is the force constant for torsion mode m. v/we,, is
the projection coefficient of mode m for a torsion scan of one
dihedral instance, where /w is the torsion scan's normalization
coefficient and c,, is the normalized function's projection onto
torsion mode . In contrast to the coefficients {c,,} which refer to
an individual torsion scan, the force constants {k;} apply to all
motions of the system. Because of multicollinearity between
some flexibility terms, there is no universal relationship between
{vwcn} and {kj}. As shown above, ADDT and CADT torsion
mode 5 is composed of two sine functions, torsion mode 6 is
composed of two sine functions, and torsion mode 7 is composed
of four sine functions. The coefficients {b}} are the coefficients for
individual sine functions, and these {b}} are computed from the
force constants {k,} of ADDT or CADT torsion modes m = 5, 6,
and 7 using the formulas shown in eqn (141)—-(144).

8. How do the CADT and CACO
model potentials compare to
previously published class A torsion
potentials?

The Class A (i.e., ‘dihedral-only’) torsion potential of dihedral

¢ascp can be expanded as a Fourier series expressed in either of
two equivalent forms:

Nmax

dihedral-only _ ABCD
Uspep - [$asen] = Do + Z D, cos[ngapcp — ¥, "]

n=1

(187)

Nmax

Uspen ™ [dapcp) = 4o + Z (Ay cos[ngapep] + By sin[ndapcp))

n=1

(188)
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where Dy, D, (for n =1, 2, 3, ...), and y4°” are adjustable (aka
‘fitted’) parameters that define the potential. Here, n,,, is the
maximum value of n that is considered in the model. This
Fourier series becomes formally complete in the limit 7,,,,x —
. Comparing eqn (26), (187), and (188) confirms that

Ay = Dy (189)
A= = Dncos[t//nABCD] (190)
B, = D,sin[y2BCP] (191)

If neither contained equilibrium bond angle is linear (i.e.,
03¢ # ™ and 6g¢p, # m), then it is possible to define the
equilibrium dihedral value (¢33cp), which is the value of ¢papcp
in the material's optimized ground-state (ie., low-energy)
geometry. In this case, the Fourier series can be re-written as

Mmax

[paBcp] = a0 +

n=1

+ b Sinstancesin[(¢p apcp — ¢TBCD)]>
(192)

Udihcdral-only

ABCD ( —dj, cos[n(Papcp — Papcp)]

which is equivalent to eqn (187) and (188). Comparing eqn (26),
(187), and (192) confirms that

ap = Dy (193)

aj = =Dy cos[y, " — nheol (194)

b} Sinstance = Dy sin[ys 2P — ngikepl (195)
Defining the variable substitutions

Nmax = 4 (196)

kiy =ay forn=12,34 (197)

h=a (198)

and substituting these into eqn (192) yields the Fourier series
expansion shown in eqn (139). Applying the boundary condition

. dihedral-onl dihedral-onl
llmc UAlB]é];a Olly[¢ABCD] = UAlBZI;a Onyw’eAqBCD] (199)
PABCD P \pcD
yields eqn (140). The boundary condition
d Udihedrul—only
ABCD [¢ABCD] =0 (200)
déapcp

g
PABCD=P Apcp

applies, because all of the atom-in-material forces are zero at the
material's optimized ground-state geometry. This boundary
condition is automatically satisfied for the constant h and the
cosine modes in eqn (139). Applying the boundary condition of
eqn (200) to the Fourier series shown in eqn (139) yields eqn (119).
The constraint shown in eqn (119) has the effect of reducing the
number of independent sine modes from 7y t0 (Mmax — 1)-
Consider ny,,x = 4 as an example. In this case, there are 7,,,x = 4
independent cosine modes and (n.x — 1) = 3 independent sine
modes, which totals to 7 seven rotatable dihedral torsion modes.
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From this, we conclude that the CADT potential described in
Section 5 completely spans the degrees of freedom associated
with the Fourier series expansion, which can be equivalently
written in any of the following forms:

(i) Eqn (137) and (138)

(if) Eqn (139)-(144), which is the same as eqn (192) with
constraint (200),

(iii) Eqn (187) with constraint (200)

(iv) Eqn (188) with constraint (200)

The Fourier expansion form shown in eqn (187) is extremely
inconvenient, because it requires non-linear regression to
optimize the y4°“P parameters.> Rewriting the Fourier expan-
sion as shown in eqn (137), (138) or eqn (188) or eqn (192)
avoids this problem.

Which parts of this Fourier series expansion were not captured
by specific Class A torsion potentials used in the prior literature?
Some prior literature”*** used an expansion of the form

UasdD “[pasep] = Ao + 4; cos[dpapep]
+ Az COSz[¢ABCD] + A3 COS3[¢ABCD] +... (201)

which is an even function of ¢gcp. An expansion of powers of
cosine is equivalent to an expansion involving various cosine
multiplicities:

UxsCpléascpl = I'o + I'y cos[dpapcpl

+ 1, COS[2¢ABCD] + F'; COS[3¢ABCD] +... (202)

which is functionally equivalent to the torsion potential form
used in some common implementations of the OPLS-AA,*®
AMBER,*” CHARMM®™ and some other® forcefields. For example,
the OPLS-AA forcefield uses the following ‘cosine only’ torsion
potential:*®

U = 30 (2 1+ oosle) + 22

i

(1 - cos24,])

+Q (1 + cos[3¢,]) + Via (1- COS[‘W%])) (203)

2 2
These ‘cosine only’ torsion model potentials are manifestly
incomplete, because they omit all of the odd-function contri-
butions to the torsion potential.
Burger et al.® used a dihedral potential of the form

1 dihedrals N;

Udihedra]s = E ; ; Vi,n(l + COS[nd)i - \l/z]) (204)
This type of model potential is incomplete and overly restrictive,
because it uses the same y; value for all N; modes of dihedral ¢,.
Hopkins and Roitberg® used a dihedral model potential of the
form:

dihedrals 7max

Udihcdrals = Z Z ki,n (1 + cos [}’l(ﬁl - wi.n}) (205)
i=1 n=1

They also rewrote this in the form of eqn (188) except that they

omitted the constant (4,) term. Comparing eqn (187) to (205)

shows that eqn (205) provides a nearly complete Fourier series

expansion of the torsion potential, except that eqn (205) is
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missing one degree of freedom in the constant part of the
potential. This does not affect the forces.® Radom et al?
investigated a torsion potential that was a truncation of the
Fourier series shown in eqn (188).

Some prior literature appears at first glance to use dihedral
model potentials containing cos[n$; — V¥;,] terms. However,
some of these forcefields impose the too-severe restriction that
¥, »€{0,180°}, which means that cos[n¢; — ; ,] — cos[n¢;|.” In
this case, the expansion is actually equivalent to the form shown
in eqn (202), which is not a Fourier series expansion because it
omits the odd-function contributions.

Some forcefields recommend using v;, € {0,180°} even if
they do not strictly impose it. “In CHARMM it is possible to use
any value for the phase;** however, it is strongly suggested that
values of 0 and 180° be used as the parameters are then
appropriate for different stereoisomers associated with a given
dihedral.”** However, this too-severe restriction often prevents
the torsion model from accurately reproducing the torsion scan
curve. My ADDT and CADT model potentials completely avoid
this problem, because they allow different stereoisomers to be
described by the same ADDT and CADT force constant values
without omitting the odd-function contributions.

The CACO torsion model potential is functionally equivalent to
eqn (202) with the following caveats. A least-squares fit of eqn (202)
to a torsion scan curve optimizes the constant potential intercept
I'y to match the average dihedral potential over the dihedral scan
curve. The CACO torsion model potential adjusts the constant

offset such that the model potential is zero when ¢ = qsg;“"i“g:
KBCDlgeg "] = 0 (206)

Functionally, the CACO torsion model potential can be derived
from eqn (202) as

RBcplg] = URienlg] — URenlgts ™™ (207)
with the additional caveat that the force constant for each CACO
mode is expressed as kcacoCn. These particular choices ensure
that CACO reproduces relative energies more accurately for the
lower energy geometries (which appear more frequently during

classical molecular dynamics and Monte Carlo simulations)
and that ¢£§ ~ d);rc’illnmg.

9. Angle-damped linear dihedral
(ADLD) model potential

9.1 Model potential for dihedrals containing at least one
linear equilibrium bond angle

A dihedral containing one or two linear (or close to linear)
equilibrium bond angles is called a ‘linear dihedral’. In this
context, ‘close to linear’ means ™ — 053¢ < e or T — O5¢p < ¢,
where ¢ is a tolerance (e.g., ¢ = 0.03 radians was used in this
work and the companion article’®*). Please note that the clas-
sification of whether or not a dihedral is a ‘linear dihedral’ is
based on the values of 653 and 658 not the values of §,5c and
Opscp. For a linear dihedral, ¢5icp is undefined and f,‘fZLeq =
0 for whichever equilibrium bond angle is linear.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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The new ADLD model potential is derived starting from my
general Class B torsion potential shown in eqn (87). The
combined angle-dihedral coordinate branch equivalency
condition applied to H,[0apc,f8cp)(AnCOS[MPapcn] + Bnsin
[n¢apcp]) requires that eqn (88) be satisfied. This can be
accomplished by choosing the angle-damping functions
multiplying cosine and sine terms in the ADLD potential to be

O N e N A P VAT VAR e (A e (208)
Note that these formulas involve no division by the equilibrium
values. Here, [x] denotes ceiling[x], which is the smallest integer
greater than or equal to x. As explained in a previous section, | x|
denotes floor[x], which is the largest integer less than or equal
to x.

For the ADLD model potential, an angle-dependent offset
potential is required to ensure that the energy increases as the
structure is displaced from its ground-state geometry. For an
even mode, one could envision something like

sz[HABC, 6BCD] ( (a2j)2 + (ij)2 + aZj COS[2j¢ABCD}

+b2jSinsumceSin [2j¢ABCD]> =0
(209)

to ensure that the energy contribution is always non-negative. In
eqn (209), the term that does not depend on ¢apcp is the angle-
dependent offset potential.

Because they are odd functions of ¢apcp, the sin[n@spcp] terms
involve the sign Sinstance € {0,—1,+1}. Different dihedral instances
of the same dihedral type can have different values of Sinstance-
Because ¢q is undefined for linear dihedrals, the value of Sinstance
cannot be assigned using the sign of ¢4 for linear dihedrals. For
linear dihedrals, the value of Sjhgtance Mmust be determined by
detecting local mirror-image environments (ie., local chiral
enantiomer environments) for different dihedral instances of the
same dihedral type. Note that Sistance = 0 implies a mirror-image
(Z.e., reflection) symmetry of the torsion potential.

Eqn (209) is not convenient, because it requires nonlinear
regression to optimize the a,; and b,; values. To facilitate linear
regression, it is convenient to instead expand each even mode as

UADLD

PSPV i1 — cos[2jpacn))
+ kipa(1 + cos[2jpapcp))

+ kLDSSillstanceSin[2j¢ABCD]) (210)

The coefficients k1, &, and ¥ p; in eqn (210) can be opti-
mized using linear regression, and the constraints

Kipi = (211)

kb = (212)

should be imposed during this linear regression. Eqn (209)
can always be represented as a special case of eqn (210) by
setting

© 2025 The Author(s). Published by the Royal Society of Chemistry
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kiLps = by (213)
; 1
ki = 5 ( +4/ (an) + ()" — azj) =0 (214)
S
kipy = 5 ( + (azj)z + (sz)z + aZj) =0 (215)

For odd modes, Qu_1[0apc,f5cp] multiplied by only
a constant does not satisfy the combined angle-dihedral coor-
dinate branch equivalency condition. To ensure that the energy
increases as the structure is displaced from its ground-state
geometry, instead of Q,_4[0apc,fscp] We can use an angle-
dependent offset potential of the form

(( ABC BCD) (fABc"BCD) )

which does satisfy the combined angle-dihedral coordinate
branch equivalency condition. The offset in eqn (216) arises
from the following ‘completing the squares’:

(fABCfBCD J;é?cf/BCD>2
+0s-1[0anc, Open](1 £ cos[(2/ — 1)@ apcp])

_1 (<f_ABCf_B(1‘,D)2 n <fA]l3Cf]'_BCD)2>
2\ - i

offset

SRS PLR P oos((2) = 1éarco]

(216)

(217)
Because
0 = [cos[(2j — D¢apcpl]l =1 (218)
it directly follows that
((fABC BCD> (fABC ‘.BCD>2>
ST PLEP leos|(27 = Dpapen]|
= (%((];Asgﬁpi?D)z + (];/illsglzjsco>z> fABCfABCf_BCD jsgo)

1 i ABC 2
_ E(f]‘_ABijEj?D _fj/i]fojBCD) =0 (219)

Somewhat analogous to the even modes, each odd mode is
expanded using three force constants amenable to linear
regression:

-
2 2 ; i
Y (7)) o)
fABCfABCf-BCD /B?D(( —kips + kips)cos((2/ —

1 )¢ABCDD

D¢ agcp)

+k/l;D6 Sinslance Sln[(zj - (220)
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To ensure that the &, and kaDs terms never decrease in
energy as the geometry undergoes an infinitesimal displace-
ment away from the optimized ground-state geometry,
combining eqn (219) and (220) shows the following constraints
should be enforced during linear regression

K pa = (221)

kips = (222)

Each sin[2jgapcp] and sin[(2j — 1)¢ascp] term decreases in
energy as the dihedral undergoes an infinitesimal displacement
away from the optimized ground-state geometry in one direction
and increases in energy as the dihedral is displaced away from
the optimized ground-state geometry in the opposite direction.
Because the optimized ground-state geometry is an energy
minimum, this means the sin[2j@spcp] and sin[(2j — 1)¢asco)
terms cannot appear by themselves in the optimized forcefield,
but rather they can only occur if a force constant for one or more
cos[2jparcp] OF cos[(2] — 1)¢apcp) Mmodes is non-zero. In this case,
the force constant(s) for the cosine mode(s) must be large enough
to ensure that any active sine modes cannot lower the isolated
bonded cluster's energy below that of its optimized ground-state
geometry. Instead of enforcing this as an explicit constraint on
the force constants, we rely on the training dataset fitting to
obtain (asymptotically close to) this behavior during linear
regression that optimizes the values of force constants.

Putting this altogether gives

o

Uses [Kasc, Kecp, apep] = Z <U§DLD

J=1

( ABC) ( jBCD>2 (kiDl (1 — cos[2j¢apcn))

ADLD
U2/ 1 )

Ms

~.
I

+ k] py (1 + co8[2jpapcp)) + k/LmSinstanceSin[zj‘pABCD})

Z ABCfABCf BCDfBCD (( _kij + leDs)COS[(zj — 1)¢agcp)

+kLD55mstanceSln[( )j — l)quBCD] 3 Z ((fABC) ( BCD)

2 2\, . .
) (7)) W+ o) (223)
subject to the constraints
Kip1.k b2kl pa-kLps = 0 (224)

This can also be re-written in the equivalent form
— Z UADLD
n
n=1

- Z Q"((k: O —k,* OS)COS[M’ABCD] + k:inSinsumceSin[”¢ABCDD

n=1

v 2 () (m2) "+ () (8 ) o 0

(225)

ADLD
Upscp [ 2Kasc, Ksep, ¢agep)
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subject to the constraints

koS ki, s = 0 (226)

9.2 Selecting specific modes from the linear dihedral torsion
potential

A particular linear dihedral normally involves only a small subset
of the terms shown in eqn (223). The particular terms involved
depend on the type of linear dihedral. A single-linear dihedral
contains exactly one linear (or close to linear) equilibrium bond
angle: (Tt — fagc < €) xor (7T — O5¢p < ¢). A double-linear dihedral
contains two linear (or close to linear) equilibrium bond angles:
(t — fakc <€) and (T — 5¢p < ¢). Here, we consider four cases.

Case # 1 is a symmetry-induced single-linear dihedral. Case # 1
corresponds to the situation in which the linear equilibrium
bond angle is a w-fold axis of rotational symmetry for some
whole number 1 < w < . This symmetry eliminates all of the
terms in eqn (223) except those for which 7 is wholly divisible by
w. For example, if w = 2 then only the n = even (i.e., the n = 2j
terms) survive and all of the odd terms (i.e., the n = (2j — 1)
terms) are eliminated. If n = 3, then only the terms for which n
(which is 2j or (2j — 1)) is wholly divisible by 3 (i.e.,n =3, 6,9, ...)
survive. Depending on the situation, the bent equilibrium bond
angle may be contained in a mirror plane (Case 1a) or not (Case
1b). If the bent equilibrium bond angle is contained within
a mirror plane (Case 1a), then this mirror symmetry eliminates
all of the odd functions (i.e., the sine terms) in eqn (223).
Examples of Case 1a include boranecarbonitrile (H,B-C=N)
and isocyanoborane (H,B-N=C) which have a 2-fold axis of
rotational symmetry and acetonitrile (H;C-C=N) which has a 3-
fold axis of rotational symmetry. (Since n = 1 is not wholly
divisible by any number o > 1, it follows that the n = (2(j = 1) —
1) = 1 terms are always eliminated in Cases 1a and 1b.)

Case # 2 is a symmetry-induced double-linear dihedral. Case # 2
corresponds to the situation in which the linear ABCD equilib-
rium axis (along which the two linear equilibrium bond angles
ABC and BCD reside) is either contained within two mirror
planes (Case 2a) or a w-fold axis of rotational symmetry (Case 2b).
Either of these two symmetries (i.e., Case 2a or Case 2b) ensures
that the atom-in-material forces are zero on atoms A, B, C, and D
when they are arranged along this linear axis. Case 2a: If two
mirror planes contain the linear ABCD equilibrium axis, then
this mirror symmetry eliminates all of the odd functions (i.e., the
sine terms) in eqn (223). Examples of this case include the
acetylene (H-C=C-H) and fulminic acid (H-C=N-0) molecules.
In this case, the torsion potential expands as

case_2
l]lmear dihedral [>KABC7 Kpcep, ¢ABCD}

2 2
= (5K + ko) (07 + (7))
+ A BCD( ~kips + kiDs)COSWABCD]) +hot (227)
where h.o.t. stands for ‘higher-order terms’. In practice, only the

leading-order terms explicitly written in eqn (227), which are the
n=(2(j=1) — 1) = 1 terms, are needed if the non-equilibrium
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bond angle fluctuations are modest in amplitude. This simpli-
fication arises because for small 2Kapc the angle-damping factor
f#%¢is proportional to (}Ksgc)”. In Case 2b, none of the terms in
eqn (223) are necessarily automatically eliminated by symmetry;
however, depending on the circumstances some of the terms in
eqn (223) may turn out not to be significant. The C-C-N-O
double-linear dihedral in the acetonitrile N-oxide (H;C-C=N-
0O) molecule is an example of Case 2b.

Case # 3 is an accidental single-linear dihedral. In this context,
the term ‘accidental’ means that the single-linear dihedral ari-
ses due to a close to linear equilibrium bond angle that is not
caused by any intrinsic symmetry. Depending on one's
perspective, this case could be regarded as either ‘rare’ or ‘not
rare’. Specifically, when examining a single material, it is
comparatively ‘rare’ that the balancing of forces would fortu-
itously lead to an after-dihedral-pruning close to linear equi-
librium bond angle not caused by any intrinsic symmetry.
(Before dihedral pruning, close to linear equilibrium bond
angles would occur frequently. The vast majority of these would
be removed from the active dihedrals list by dihedral pruning.)
However, when examining a large database of materials, the
sheer large number of materials investigated makes it probable
that a few of these materials will contain an accidental single-
linear dihedral after dihedral pruning. Since the force for small
(i.e., infinitesimal) displacements of the linear bond angle must
be zero, it follows (see ESIT Section S8) that the n = (2(j =1) — 1)
=1 terms are eliminated in eqn (223), while higher-order terms
can potentially contribute to the torsion potential.

Case # 4 is an accidental double-linear dihedral. This case
corresponds to the situation in which a double-linear dihedral
arises due to a balance of forces that causes a linear ABCD
moiety not caused by intrinsic symmetry. In this case, none of
the terms in eqn (223) are necessarily automatically eliminated
by symmetry; however, depending on the circumstances some
of the terms in eqn (223) may turn out not to be significant. If
considering relatively local symmetries of the chemical group
rather than global symmetries of the entire chemical system,
this case would be rare after dihedral pruning.

Depending on one's perspective, an acetylene molecule
adsorbed in a MOF could be considered either as Case #2 or

View Article Online
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Case #4 if it has a double-linear dihedral. If one considers an
acetylene molecule’s symmetry without including the MOF
adsorbent, this double-linear dihedral would be classified as
Case #2. If one considers the global symmetry of the MOF plus
adsorbed acetylene molecule, the lower symmetry of this
combined system could result in classifying this double-linear
dihedral as Case #4. Ultimately, this demonstrates that the
classification into various cases is a judgement call that
depends on how large a chemical subunit is chosen when
evaluating the symmetry properties. A reasonable compromise
would be to consider a local region that extends ~3 bonds in all
directions around the edges of the dihedral being considered.

10. Results and discussion

10.1 CCSD quantum chemistry calculations of small
molecules

All quantum chemistry calculations in this section were performed
in Gaussian16 (ref. 33) using the CCSD method with def2-TZVPD**
basis sets. (In this article, CCSD not CCSD(T) calculations were
used.) For molecules containing no elements heavier than neon,
all electrons were correlated in the coupled-cluster calculation. For
molecules containing one or more elements heavier than neon,
the FreezeNobleGasCore keyword was used, which applies the
coupled-cluster correlation to the valence shell electrons only on
all atoms. Geometries were optimized to the following conver-
gence criteria: (1) the maximum force is less than 0.00045 hartrees/
bohr; (2) the root-mean squared (RMS) force is less than 0.0003
hartrees/bohr; (3) the maximum displacement is less than 0.0018
bohr; and (4) the RMS displacement is less than 0.0012 bohr. As
described below, some of the calculations constrained one or
more internal coordinates to generate energy scans.

Values of calculated geometric parameters in the CCSD/def2-
TZVPD optimized ground-state structures of 13 molecules
containing no linear bond angles are shown in Table 1 and of
five molecules containing one or more linear bond angles are
shown in Table 2. For each molecule, optimized bond lengths
and angles are listed for the particular dihedral that was
subsequently studied in detail as described below. Fig. 7 shows
the optimized geometries.

Table 1 Key values of calculated geometric parameters in the CCSD/def2-TZVPD optimized ground-state structure of each molecule. These

dihedrals contain two nonlinear equilibrium bond angles

Molecule Atoms in dihedral deq (°) Bond 1 (A) Bond 2 (A) Bond 3 (A) Angle 1 (°) Angle 2 (°)

(CCIFH), HCCH 180.0 1.090 (HC) 1.524 (CC) 1.090 (CH) 111.2 (HCC) 111.2 (CCH)
C(OH)CIFH FCOH —64.70 1.358 (FC) 1.355 (CO) 0.967 (OH) 111.1 (FCO) 109.0 (COH)
Ethane HCCH 180.0 1.093 (HC) 1.525 (CC) 1.093 (CH) 111.3 (HCC) 111.3 (CCH)
FSSF FSSF 87.42 1.625 (FS) 1.913 (SS) 1.625 (SF) 107.2 (FSS) 107.2 (SSF)

Glyoxal 0CCo 180.0 1.201 (OC) 1.520 (CC) 1.201 (CO) 121.3 (OCC) 121.3 (CCO)
H,0, HOOH 111.1 0.967 (HO) 1.438 (00) 0.967 (OH) 100.8 (HOO) 100.8 (OOH)
HNCO HNCO 180.0 1.006 (HN) 1.211 (NC) 1.160 (CO) 123.6 (HNC) 173.0 (NCO)
HNCS HNCS 180.0 1.005 (HN) 1.199 (NC) 1.572 (CS) 131.7 (HNC) 174.3 (NCS)
HONC HONC 180.0 0.969 (HO) 1.327 (ON) 1.168 (NC) 105.1 (HON) 173.3 (ONC)
HSNC HSNC 180.0 1.343 (HS) 1.665 (SN) 1.175 (NC) 95.4 (HSN) 173.8 (SNC)
IF;CIOH CIIOH 180.0 2.343 (ClI) 1.861 (I0) 0.972 (OH) 83.5 (CIIO) 107.1 (IOH)
N,O, ONNO 0.00 1.151 (ON) 1.872 (NN) 1.151 (NO) 103.4 (ONN) 103.4 (NNO)
PF,OH FPOH 180.0 1.543 (FP) 1.617 (PO) 0.963 (OH) 88.0 (FPO) 113.1 (POH)
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Table 2 Key values of calculated geometric parameters in the CCSD/def2-TZVPD optimized ground-state structure of each molecule. These

dihedrals contain one or two linear equilibrium bond angles

Molecule Atoms in dihedral Bond 1 (&) Bond 2 (&) Bond 3 (A) Angle 1 (°) Angle 2 (%)

Acetonitrile HCCN 1.090 (HC) 1.462 (CC) 1.152 (CN) 109.9 (HCC) 180.0 (CCN)
Acetylene HCCH 1.064 (HC) 1.202 (CC) 1.064 (CH) 180.0 (HCC) 180.0 (CCH)
H,BCN HBCN 1.185 (HB) 1.533 (BC) 1.156 (CN) 118.8 (HBC) 180.0 (BCN)
H,BNC HBNC 1.186 (HB) 1.432 (BN) 1.175 (NC) 118.3 (HBN) 180.0 (BNC)
HCNO HCNO 1.062 (HC) 1.152 (CN) 1.202 (NO) 180.0 (HCN) 180.0 (CNO)

For the ONNO molecule, CCSD/def2-TZVPD geometry opti-
mization was performed for both the cis and trans conforma-
tions in both the singlet and triplet spin states. The computed
relative energies (in eV) were 0.00 (cis, singlet), 0.11 (trans,
singlet), 0.48 (cis, triplet) and 0.53 (¢rans, triplet). East previously
studied the electronic states of this molecule in cis and trans
geometries with complete active space self-consistent field
(CAS-SCF), multireference configuration (MRCISD), and other
electronic structure methods.** Those computations indicated
the cis geometry with singlet spin state to be the ONNO mole-
cule's ground state.*

10.2 Detailed torsion analysis for rotatable dihedrals using
ADDT and CADT model potentials

Table 3 summarizes torsion mode analysis for these 13 mole-
cules containing nonlinear dihedrals. Both rigid and (fully or
partly) relaxed torsion scans are presented. For HNCO, HNCS,
HONC, and HSNC, fully relaxed torsion scans could not be
computed, because due to ‘slip torsion’ (see Section 10.4) some
constrained dihedral values yielded a relaxed bond angle that
was too close to linear for the optimizer to converge. (The
dihedral value becomes indeterminate when the bond angle
becomes linear.) For each of these four molecules, a partly
relaxed torsion scan was thus performed holding the two bond
angles rigid but allowing the bond lengths to relax as the con-
strained dihedral was scanned. As shown in Table 3, these
partly relaxed torsion scans yielded results virtually equal to the
rigid torsion scans. Fully relaxed dihedral scans were performed
for the other nine molecules. In Table 3, the columns labeled
‘mode 1, ‘mode 2, etc. display the coefficients (i.e., ¢; values) for
these individual modes. As demonstrated by the SumCSq =
1.00 values in Table 3, my new seven-mode dihedral torsion
model potential yielded superb fits for all of these molecules.
Fig. 8 plots the quantum chemistry results and model fits
(including all seven torsion modes) for the rigid and fully relaxed
torsion scans. In some cases (e.g., ethane, glyoxal, and H,0,), the
relaxed torsion scan gave nearly the same results as the rigid
torsion scan. In other cases (e.g., (CCIFH),, IF;CIOH, N,0,, and
PF,OH), there was a huge difference between the relaxed and
rigid torsion scans. FSSF and C(OH)CIFH showed modest non-
negligible differences between relaxed and rigid torsion scans.
Angle-scan energy curves were QM-computed for the 10
molecules from this set that contained at least one atom with
a coordination number equal to 2. Fig. 9 compares these QM-
computed results to a model potential. The model potential
was the sum of the ADDT torsion offset potential (computed
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Fig. 7 Optimized geometries of molecules used to study dihedral
torsion.

using the rigid torsion parameters from Table 3) and the
following angle-bending model potential® with the kapg1e value
displayed on each graph:

2(cos 6 — cos Beq)z

(228)
tanh|2 sin[6/2]]
)

UManzﬁbend [0] = kangle

L, .2
sin“6 + 3sin0,, (tanh [2 sin[0cq /2]
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Fig.8 Example dihedral scan energy curves for several molecules. The y-axis plots the energy relative to the low energy conformation. The filled
circles show the QM-computed (CCSD/def2-TZVPD) values. The solid lines show the fitted model potential of egn (161) and (162) using the DT
projectors (egn (122) and (123)) with the parameters from Table 3. Bond angles and bond lengths were held fixed to generate the results shown in
orange. Bond angles and bond lengths were relaxed to generate the results (where available) shown in blue. The SumCSq values are listed in

Table 3.

In this model potential, the torsion offset potential and angle-
bending potential were only included for the one angle of
interest and not for any other angles. Since the torsion param-
eters (listed in Table 3) were already computed from the torsion
mode analysis, kange was the only parameter freely adjusted to
generate the model curves displayed in Fig. 9. Agreement
between the QM-computed results and the model potential was
generally good; however, as the bond angle became acute (<90°)
steric repulsion often caused the quantum-mechanically-

© 2025 The Author(s). Published by the Royal Society of Chemistry

computed results to rise higher in energy than the model
potential. For HNCO, HNCS, HONC, and HSNC, the angle-
scan energy curve was completely described by the ADDT
torsion offset potential with negligible contribution (i.e., kangie
= 0) from the angle-bending model potential. For C (OH )CIFH,
FSSF, HOOH, IF;CIOH, ONNO, and PF,OH, the angle-scan
energy curve was almost completely described by the angle-
bending model potential with only a tiny contribution from
the torsion offset potential. In summary, these results show the
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Fig. 9 Angle-scan energy curves for several polyatomic molecules. The orange curves show the QM-computed (CCSD/def2-TZVPD) values
holding the bond lengths (and other geometric parameters) fixed as the constrained angle varied, while the blue points (CCSD/def2-TZVPD)
relaxed all geometric parameters except the constrained angle. (Blue points were not available in some instances due to the bond angle being
too close to linear for either the relaxed torsion scan or the relaxed angle-bending energy to be computed.) The model potential (solid black line)
is the sum of the angle-bending model potential (dashed black line) and the ADDT torsion offset potential (dotted black line). The angle-bending
force constant is displayed treating radians as dimensionless units. The ADDT torsion offset potential was computed using the rigid torsion

parameters from Table 3.

angle-bending model potential is typically much more signifi-
cant than the torsion offset potential when the equilibrium
bond angle is highly bent (i.e., (Tt — f.q) is large).

The torsion offset potential occurs for the cosine modes (e.g.,
modes 1 to 4) of the ADDT model potential. There is no torsion
offset potential for the sine modes of the ADDT and CADT
model potentials. The torsion offset potential is also zero for the

7282 | RSC Adv, 2025, 15, 7257-7306

CADT cosine modes, because TOP,, =J, — H, (see eqn (106)) and
Jn = H, =1 (see eqn (136)) for the CADT model potential.

An angle-bending model potential must have a slope of zero
at # = m in order for its derivative (and hence force) to be
continuous at § = . As explained in prior literature, this
restriction arises from the reflection symmetry of cos[§] about
0 = 7.'*** In contrast to the bond angle, the directed dihedral is
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not required to have reflection symmetry. An angle-scan energy
curve for a subgroup of 3 atoms within a larger bonded cluster is
not required to have a slope of zero at § = w for its derivative
(and hence force) to be continuous at # = 7, because this energy
curve is the sum of an angle-bending potential and a torsion
offset potential. Accordingly, any non-zero slope of the angle-
scan energy curve at § = 7 is assigned to the torsion offset
potential and not to the angle-bending model potential. In the
examples studied here, the QM-computed angle-scan energy
curves have highly non-zero slopes at § = 7 for HNCO, HNCS,
HONC, and HSNC. As shown in Fig. 9, these nonzero slopes
were practically perfectly described by the torsion offset
potentials. Remarkably, this practically perfect agreement in
slopes at § = m occurred without using any freely adjustable
parameters, because the torsion parameters had already been
obtained from the torsion mode analysis as listed in Table 3.

Why is it useful to compute both rigid and relaxed angle-
bending and dihedral-torsion scans? Comparing the rigid scan
energy curve to the relaxed scan energy curve provides extremely
valuable insights into the relative importance of some cross terms.
First, consider the angle-scan curves shown in Fig. 9. Iff the relaxed
scan curve is greatly below the rigid scan curve, then this indicates
that changing bond lengths (or other geometric parameters)
substantially lowers the energy at non-equilibrium angle values,
and in this case bond-bend (or other) cross terms may be needed
to construct an accurate forcefield. Iff the relaxed and rigid angle-
scan curves are nearly identical, this suggests bond-bend cross
terms are not required to construct an accurate forcefield model.
Second, consider the dihedral-scan energy curves shown in Fig. 8.
Iff the rigid and relaxed torsion scans have nearly identical energy
profiles, then this suggests that bond-torsion and bend-torsion
cross terms are not required to construct an accurate forcefield
model. Iff the relaxed torsion scan curve is greatly below the rigid
torsion scan curve, then this indicates that changing bond lengths,
angle values, or other geometric parameters substantially lowers
the energy at non-equilibrium dihedral values, and in this case
bond-torsion, bend-torsion, and/or torsion-torsion cross terms
may be needed to construct an accurate forcefield.

For purposes of optimizing flexibility model parameter values,
one can choose to use either rigid torsion scans or relaxed torsion
scans in the training dataset for rotatable dihedrals. Some
quantum-chemistry software packages do not have built-in con-
strained geometry optimization algorithms that facilitate holding
one dihedral's value constant while relaxing all other internal
coordinates. For practical reasons, relaxed torsion scans would
be extremely difficult to perform using those software packages;
consequently, rigid torsion scans would be preferred in those
cases. Because rigid torsion scans do not require constrained
geometry optimization, they are computationally cheaper and
easier to implement than relaxed torsion scans. For slip torsions,
either rigid or ‘partly relaxed’ (i.e., with at least one bond angle's
value constrained) scans are required, because this allows
sampling the full range of dihedral values. On the other hand,
relaxed torsion scans may be preferred in some cases when
constructing the training dataset for rotatable dihedrals, because
relaxed torsion scans can provide a more accurate and realistic
estimate of the torsion energy barrier than rigid torsion scans.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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How accurate is the ADDT model potential for predicting
changes in the torsion norm due to non-equilibrium bond angle
values? Two datasets were studied to explore this question. The
first dataset contained dihedrals for which at least one of the
contained equilibrium bond angles was =130°. The second
dataset contained dihedrals for which both contained equilib-
rium bond angles were <130°. To generate these two datasets,
one bond angle was constrained while the corresponding
dihedral was scanned and all other geometric parameters were
relaxed. These constrained CCSD/def2-TZVPD calculations were
performed in Gaussian 16 using the opt = modredundant
method.

For the first dataset, the bond angle chosen for study had an
equilibrium value =130° in the optimized ground-state struc-
ture. Dihedral scans were attempted for HNCO , HNCS , HONC,
and HSNC at constrained values of 125°, 140°, 155°, and 165°
for the underlined bond angle. In some of these calculations,
the other (i.e., unconstrained) bond angle became too close to
linear for the default geometry optimizer in Gaussian16 (ref. 33)
to converge.

The ADDT model predictions shown in Tables 4, 6 and
Fig. 10 were made using the following steps:

(1) (Partly or fully) relaxed torsion mode analysis was per-
formed as shown in Table 3. This yielded the ‘optimized’ torsion
norm and the ‘optimized’ ¢, to ¢; for each dihedral studied.

(2) CCSD/def2-TZVPD energies were computed at each con-
strained bond angle value for a series of uniformly spaced
dihedral values over the range —m < ¢ =< 7. In each of these
calculations, one bond angle and one dihedral were held rigid
while all other geometric parameters were relaxed. In some
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cases, molecular symmetry could be exploited. Taking HSNC as
an example, QM calculations were performed for HSNC dihe-
dral values of 0°, 20°, 40°, 60°, 80°, 100°, 120°, 140°, 160°, and
180° for each constrained SNC angle value of 125°, 140°, 155°,
and 165°. The HSNC molecular symmetry shows the energy at
a HSNC dihedral value of ¢ = vy equals that at a value of ¢ = —7.

(3) For each constrained bond angle value, ¢, was identi-
fied as the ¢ value having the lowest QM-computed energy. In
some cases, this occurred at a symmetry plane such as ¢ = 180°
(for HSNC) or 0° (for N,0,). Otherwise, ¢, was computed via
a CCSD/def2-TZVPD calculation that held one bond angle rigid
(at the constrained value) while all other geometric parameters
were relaxed.

(4) Using results from (2), torsion mode analysis was then
performed at each of the constrained bond angle values. This
yielded the QM torsion norm and QM torsion mode coefficients
for each constrained bond angle value.

(5) The ADDT model predictions were made as follows.
Starting with the optimized torsion norm and coefficients as
computed in 1), the potential was then rewritten as:

ADDT ADDT €q eq cq —
UABCD [H(ABC7 X(BCDv ¢ABCD] - UABCD [XABC’ >I(BCD’ ¢ABCD] -

4
Z (k;’)Jn[@ABC, Osco] + Hy[0asc, Opcp)] < ki cos[n(¢ — geq)]

n=1

+Sinstanccb$ sin [" (¢ - ¢eq)])>

The f3,°, fR°, fn eq, and f oy values were computed using the

Oconstry Dother, angle_1, and angle_2 values listed in Tables 1 and
4 or 6. The predicted norm and mode coefficients were then
computed as

(229)
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Fig. 10 Comparison of ¢ and ¢, mode coefficients for HONC (top panels) and HSNC (bottom panels) molecules at different constrained values
of the ONC or SNC bond angle. Solid bars show the QM-extracted values using the DT projectors (left panels) and CO projectors (right panels).
Diagonally-hashed bars show the values predicted using the ADDT model (left panels) and ADCO model (right panels).
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. 1 ) 2 A2
predicted_norm = 3 nz:]: (H,[0aBc; O8cp)) (<k¢) + (b¢> )
(230)
. 1 H,[0apc, 67BCDV€$
predicted_c, = predicted_norm ( NG > (231)

for n=1 to 4

The factors of \/% appear in eqn (230) and (231), because the

root-mean-squared values of cosine and sine functions is /2.

Caution: The relationship between the predicted torsion norm
and the torsion force constants as shown in eqn (230) and (231)
holds only when the relevant internal coordinates are non-
redundant and there are no multicollinearity issues of the
related flexibility terms. This condition was clearly met for the
dihedral torsions studied here.

(6) For each value of the constrained bond angle, the ADDT
predicted ¢mi, value was computed by calculating the full
UAPDY XK apc, Kpop, Papcp) curve over the range —180° < ¢apcp =
180° in 0.01° increments and identifying which value of ¢spcp
produced the minimum value of Upen [*Kagc, Kpcps $apcp)-

For the first dataset, QM torsion norms for all of the
converged calculations are listed in Table 4 and compared to
predictions of the ADDT and CADT models. Here, the CADT
model approximated the torsion norm as equal to the partly
relaxed torsion norm listed in Table 3. As shown in Table 4, for
these systems the QM torsion norm systematically increased as
the constrained bond angle decreased in value. My ADDT model
reproduced this trend, while the CADT model did not.

Table 5 summarizes the torsion mode coefficients extracted
from these QM results. For HNCO and HNCS, only ¢, was larger
in absolute value than 0.1. For HONC and HSNC, both ¢; and ¢,
were larger in absolute value than 0.1, while c; to ¢; were smaller
than this. For HONC and HSNC, ¢, systematically increased in
magnitude as the constrained bond angle decreased. As shown
in Fig. 10, my ADDT model predicted this trend with good
quantitative accuracy.

View Article Online
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The second dataset contained six molecules. In each mole-
cule, the selected dihedral had both included equilibrium bond
angles <130° in its optimized ground-state structure. For the
same three bonded atoms as studied in Fig. 9, torsion mode
analysis was performed at constrained bond angle values 10°
larger and 10° smaller than the equilibrium value. As shown in
Fig. 9, the energy penalty for changing the bond angle is much
larger for the bond angles studied in dataset 2 compared to
those in dataset 1. In other words, the bond angles in dataset 2
were much stiffer than those in dataset 1. Accordingly, during
a molecular dynamics or Monte Carlo simulation, the bond
angles in dataset 2 would be expected to change less compared
to those in dataset 1. This explains why Table 6 for dataset 2
studied smaller changes in the constrained bond angle
compared to Table 4 for dataset 1. As shown in Table 6, the QM
torsion norm increased more often (~2/3 of the time) than
decreased (~1/3 of the time) as the constrained bond angle
decreased. The ADDT model predicted a systematic increase in
the torsion norm as the constrained bond angle decreased,
while the CADT model predicted unchanged amplitudes.

Table 7 lists summary statistics for the ADDT and CADT
models. The mean log;, error (MLE) was defined as the average
value of log;[predicted_norm/QM_norm]. The mean unsigned
logyo error (MULE) was defined as the average value of abs
[logyo[predicted_norm/QM_norm]]. For dataset 1, the ADDT
model performed much better than the CADT model. For
dataset 2, both models performed acceptably and neither was
substantially more accurate than the other. Given the much
lower computational cost of the CADT model compared to the
ADDT model, this clearly leads to the following conclusions. If
the dihedral contains a bond angle whose equilibrium value is
= 130°, the ADDT model is preferred both due to its higher
accuracy and also due to its higher stability, because it yields
continuous derivatives even if the perturbed bond angle reaches
linearity (i.e., 180°) during a molecular dynamics or Monte
Carlo simulation. If both contained bond angles in the dihedral
have equilibrium values < 130°, then these bond angles are
likely to be sufficiently stiff that it will be extremely rare for the
perturbed bond angle to reach linearity (ie., 180°) during

Table 5 QM-computed torsion mode coefficients using the DT projectors for the same systems and constrained bond angles as analyzed in

Table 4

Molecule Oconstr (°) c Cy [ Cs Cs,y Cey C7 SumCSq
HNCO 125.0 0.9994 0.0143 0.0308 —0.0011 0.0000 1.0000
HNCO 140.0 0.9999 0.0070 0.0119 —0.0012 0.0000 1.0000
HNCO 155.0 1.0000 0.0035 0.0035 0.0000 0.0000 1.0000
HNCO 165.0 1.0000 0.0019 0.0012 0.0001 0.0000 1.0000
HNCS 165.0 1.0000 —0.0040 —0.0004 0.0005 0.0000 1.0000
HONC 125.0 0.8816 0.4718 0.0089 0.0022 0.0000 1.0000
HONC 140.0 0.8985 0.4389 0.0072 0.0003 0.0000 1.0000
HONC 155.0 0.9438 0.3304 0.0026 0.0003 0.0000 1.0000
HONC 165.0 0.9764 0.2160 0.0010 0.0002 0.0000 1.0000
HSNC 125.0 0.6597 0.7514 —0.0107 0.0059 0.0000 1.0000
HSNC 140.0 0.7672 0.6414 0.0039 0.0013 0.0000 1.0000
HSNC 155.0 0.8847 0.4661 0.0031 0.0001 0.0000 1.0000
HSNC 165.0 0.9530 0.3029 0.0014 0.0000 0.0000 1.0000
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a molecular dynamics or Monte Carlo simulation. In this case,
the CADT model is preferred, because it is computationally
cheaper than the ADDT model yet of comparable accuracy for
these dihedrals.

10.3 Detailed torsion analysis for rotatable dihedrals using
ADCO and CACO model potentials

The goal of this section is to repeat the analysis of Section 10.2
except using the ADCO and CACO model potentials in place of
the ADDT and CADT model potentials. The key principle to keep
in mind is that the CADT model potential is functionally
equivalent to a full Fourier series expansion of the torsion
potential as a function of the dihedral value ¢ subject to the
constraint that

dUGE (4]

=0 (232)
dg |,y

In stark contrast, the CACO model potential spans the subset
of even functions of the dihedral value ¢ while omitting all odd-
function contributions. A constraint analogous to eqn (232) is
not imposed for the CACO model potential; however, if sym_-
value = 0 and the CACO model potential is untruncated then
fitting the CACO model potential to a torsion scan curve should
cause dUspop[@]/d¢|525ieg to asymptotically approach zero.

It directly follows that CO projectors (which are used by the
CACO and ADCO model potentials) provide asymptotically close
to functionally equivalent results to the DT projectors (which
are used by the CADT and ADDT model potentials) for a torsion
scan curve that has no odd-function contributions; that is, when
sym_value = 0. When sym_value = 0, the SumCSq values from
Table 3 computed using the DT projectors were nearly identical
to the SumCSq values in Table 8 computed using the CO
projectors. On the other hand, when sym _value # 0 (e.g,
sym_value = 0.847 for the FCOH dihedral in the C(OH)CIFH
molecule) then the SumCSq value using the CO projectors was
much smaller than the SumCSq value using the DT projectors.
When sym_value = 0, the model fits using the CO projectors
were nearly identical to those using the DT projectors; this is
visually illustrated by comparing the torsion scan curves in
Fig. 8 (using the DT projectors) to those in ESI Fig. S1} (using
the CO projectors). However, the CO projectors performed
markedly worse than the DT projectors when sym_value #
0 (e.g., for the FCOH dihedral in the C(OH)CIFH molecule as
shown in Fig. 11).

Table 7 Summary statistics comparing the ADDT model potential to
the CADT model potential. MLE = mean log;o error; MULE = mean
unsigned log;g error

ADDT model CADT model
Dataset MLE MULE MLE MULE
An equil. angle = 130° 0.098 0.098 —0.647 0.647
Both equil. angles < 130° —0.035 0.087 —0.019 0.109
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Using the trigonometric identities in eqn (26) and (27), the
DT projectors for modes 1 to 4 can be re-written as

Py [9] = —cos[n( — ¢eg™"®)] = —cos[ngeq ™ "*Jcos[n¢] — sin
[ngeq ™" <lsin[ng] (233)
Inserting this into eqn (164) gives

T QM QM_avg
DT _ training cos[ng] ERs [0] — Egts
¢, = —Cos [ncpeq } J% W NG d¢
T o QM _ QM_avg
_sin [n(ﬁglaining] J 511\1/[’:_:7’} (ERTS [¢]\/WERTS ) d¢ (234)

When sym_value = 0, the odd-function components of the
torsion potential are zero, which means that

‘.n sin[ng] (EgTMs [¢] — E%avj d6 =0

(235)

Jw VT vw

so that eqn (234) reduces in this case to

T M_avg
cos[ng)] (EQM [¢] — ™

= VT v

DT training
¢, = —(:os[n¢eq } J

>d¢> (236)

Combining eqn (145), (164), and (236) gives

4, = BT + SOcos[nglinne] (237)
equals zero when sym_value = 0. This is numerically confirmed
for rigid torsion scans and relaxed (or partly relaxed) torsion
scans of 12 molecules in Table S1 of the ESL.}

The torsion offset potential for the ADCO model potential
can be computed by substituting ¢ = ¢%™"¢ into the ADCO
model potential:

Nmax

TOP[GABC, HBCD} = kADCO Z CSOCOS |:n¢glaining:| (Hn — J,,) (238)

n=1

Comparing this to the TOP using the ADDT model potential

CO projectors using average potential offset

relaxed scan: R-squared = 0.3569, SumCSq = 0.3569

. can: R-squarec 9 < CSc 299
rigia scan: R-squarec 2829, 5um(C5q = 0.2829

energy (kJ/mol)

-90 0 90
FCOH dihedral angle (°)

180
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4
TOP(0asc, Osco] = > kj(J, — H,) (239)
n=1
shows the two are equal iff
kgg = *kADcoC,(,:OCOS[n(PgIaming] (240)

for n = 1 to 4. When sym_value = 0, then 4,, = 0 so eqn (240)
holds in this case. The ADCO model potential and eqn (240) do
not apply when sym_value # 0.

The results shown in Table S1 of the ESIf confirm that eqn
(240) is satisfied for all 12 molecules having sym_value = 0.
Accordingly, the angle-scan curves shown in Fig. 9 are
unchanged when replacing the ADDT model potential with the
ADCO model potential for those molecules having sym_value =
0. This includes all molecules shown in Fig. 9 except C(OH)CIFH
(for which sym_value = 0.847). In summary, the ADCO model
potential gives angle-scan curves and TOP identical to those of
the ADDT model potential for FSSF, HOOH, HNCO, HNCS,
HONC, HSNC, IF;CIOH, ONNO, and PF,0OH.

ESI Table S27 lists ADCO and CACO model predictions for
four molecules (HNCO, HNCS, HONC, and HSNC) that have at
least one equilibrium bond angle = 130°. ESI Table S27 re-
analyzes the systems and constrained bond angles that were
previously analyzed using DT projectors in Tables 4 and 5.

Although the mode coefficients using CO projectors were
different from those using the DT projectors, the SumCSq
values (i.e., SumCSq = 1.0000) and predicted norms for each of
these four molecules using the CO projectors were identical to
those using the DT projectors.

Table 9 lists ADCO and CACO model predictions for five
molecules (FSSF, H,0,, IF;CIOH, N,0,, and PF,0OH) that have
both equilibrium bond angles < 130° and sym_value = 0. For
these five molecules, the ADCO and CACO predicted norms in
Table 9 are identical to the ADDT and CADT predicted norms,
respectively, in Table 6.

For each value of the constrained bond angle in Table 9 and
ESI Table S2,f the ADCO predicted ¢, value was computed by

CO projectors using equilibrium potential offset

25 relaxed scan: R-squared = -1.1642, SumCSq = 0.3569
rigid scan: R-squared = -1.5396, SumCSq = 0.2829

AZO E -
E -
=15 4 EPPN PR
= . e N
10 4 ’ ]
[ NN P
= | \ S~

5 A \‘ /

0 -

-180 -90 0 90 180

FCOH dihedral angle (°)

Fig. 11 When sym_value > O, then the CO projectors do not provide a good description of the dihedral scan curve. This figure compares model
fits using the DT projectors (dashed lines) to CO projectors using the average potential offset (solid lines in lefthand panel) and CO projectors
using the equilibrium potential offset (solid lines in righthand panel) for the S enantiomer of C(OH)CIFH. The filled circles show the QM-
computed (CCSD/def2-TZVPD) values. Bond angles and bond lengths were held fixed to generate the results shown in orange. Bond angles and
bond lengths were relaxed to generate the results shown in blue. When using the DT projectors, the R-squared values were 0.9995 (relaxed scan)
and 0.9999 (rigid scan), and the SumCSq values using the DT projectors were 0.9999 (relaxed scan) and 1.0000 (rigid scan).
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+85.9
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60.04

+87.72
+111.1
+120.8
+103.5
180.0
180.0
180.0
0.00

0.

+10 (SSF)
0 (OOH)

FSSF

1.00
1.11
0.86
1.00

9.15
0.70
0.86
0.51
5.38
6.50
4.20

10.7
11.9

+111.3
+120.8
+103.5
180.0
180.0
180.0
0.00
0.00
0.00

0.70
0.70
0.70
5.38
5.38
5.38

10.7
10.7
10.7

+111.3
+111.3
+111.3
180.0
180.0
180.0
0.00
0.00
0.00

1.00
1.35
0.79
1.00

10.68
8.41
0.70
1.21
0.55
5.38
7.79
3.55

14.45

—10 (OOH)
+10 (OOH)
0 (I0H)

HZOZ
H,0,
HZOZ
IF;CIOH
IF;CIOH
IF;CIOH
NZOZ
N0,

7257-7306

1.23
0.73
1.00
1.21
0.78
1.00
1.26
0.71

1.74
0.78
1.00
1.45
0.66
1.00
1.21
0.79

—10 (IOH)
+10 (IOH)
0 (NNO)

00

—10 (NNO)
+10 (NNO)
0 (POH)

0.00

N,O,

1.67°
2.11
1.19

180 (—60, 60)°
180 (—60, 60)°
180 (—60, 60)°

1.67°

180 (—60, 60)°
180 (—60, 60)°
180 (—60, 60)°

69
04
33

1.

180 (—60, 60)°
180 (—60, 60)°
180 (—60, 60)°

PF,OH
PF,OH
PF,OH

1.67°

2.

—10 (POH)
+10 (POH)

1.67°

1.

“ Due to the 3-fold symmetry of this molecule, there are chemically equivalent minima at ¢ = 60°, 180°, and —60°. b For PF,OH, the model-fitted fully relaxed norm from the four fitted CO dihedral

modes is 1.67 kJ mol ™ compared to 1.69 k] mol " for a complete modal expansion; this reflects the SumCSq value of 0.98 as listed in Table 8.
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calculating the full UARGY[PKapc, XKecp, Papcp] curve over the
range —180° < ¢apcp = 180° in 0.01° increments and identifying
which value of ¢apcp produced the minimum value of
URLEO 2K apc, Kpep, Papcp)- The CACO predicted ¢ value
remains constant as the bond angle changes, because the CACO
model potential is not a function of bond angle. The CACO and
ADCO predicted ¢min values are equal at the optimized bond
angle value (i.e., at Afconser = 0)-

In Table 9 and ESI Table S2, the ADCO predicted torsion
norm was computed as

1 &
predicted_norm = kapco 3 Z (SO H,[0agc, 5BCDD2 (241)

n=1

The factor of \/% appears in eqn (241), because the root-mean-

squared value of cosine functions is y/1. Table 10 summarizes

the mean log;, error (MLE) and mean unsigned log;, error
(MULE) for the ADCO and CACO model predicted torsion
norms. When (633%¢ or 65¢p) = 130°, the ADCO model was much
more accurate than the CACO model. When (03%¢ and 65¢p) <
130°, both the ADCO and CACO models performed acceptably
and had similar accuracy to each other.

As shown in Fig. 10, the ADCO model correctly predicted
trends for changes in c;;° values as the constrained bond angle
changed in the HONC and HSNC molecules. The predicted
coefficients were computed using

. k CO .10 0
predicted_c, = ADCOC, [98c, O] (242)

predicted_normy/2

In summary, when sym_value = 0 then the ADDT and ADCO
models provide nearly functionally equivalent results to each
other if all seven ADDT modes and all four ADCO modes are
included in the model potential. If some of the less important
(but nonzero) modes are removed during smart selection so
that the model is restricted to the more important ADDT or
ADCO modes, then this introduces additional approximation
that can make model results slightly different for the ADDT and
ADCO model potentials. When sym_value = 0, then the CADT
and CACO models provide nearly functionally equivalent results
to each other if all seven CADT modes and all four CACO modes
are included in the model potential. If some of the less
important (but nonzero) modes are removed during smart
selection so that the model is restricted to the more important
CADT or CACO modes, then this introduces additional
approximation that can make model results slightly different

Table 10 Summary statistics comparing the ADCO model potential to
the CACO model potential for molecules having sym_value = 0. MLE
= mean logg error; MULE = mean unsigned log;q error

ADCO model CACO model
Dataset MLE MULE MLE MULE
An equil. angle = 130° 0.098 0.098 —0.647 0.647
Both equil. angles < 130° —0.039 0.086 —0.022 0.128

© 2025 The Author(s). Published by the Royal Society of Chemistry
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for the CADT and CACO model potentials. Of course, the ADCO
and CACO model potentials are not good approximations if
sym_value differs substantially from zero.

10.4 Slip torsion and the indispensable torsion offset
potential

By comparing model potential energy surfaces to the CCSD-
calculated potential energy surface, Fig. 12 shows that
including the torsion offset potential is absolutely required to
describe angle-damped dihedral torsions. The CCSD-calculated
potential energy surface used the underlying quantum chem-
istry data for the constrained torsion scans at NCO angle =
125°, 140°, 155°, and 165° listed in Table 4, plus the energy for

View Article Online

RSC Advances

linear (180°) bond angle. The model potential energy surfaces
were generated using the torsion parameters listed in Tables 3
and 8 for the partly relaxed torsion scan. (For the lower right
panel in Fig. 12, the added angle-bending potential used
a greatly exaggerated value of kangle = 2000 kJ mol ™" with my
new angle-bending potential to make the effect of including an
angle-bending potential more visible.) The CCSD potential
energy surface was interpolated between data points to make it
appear smoother. The model potential energy surfaces were
computed in 1°(angle) and 5°(dihedral) increments. Agreement
between the CCSD-calculated and ADDT/ADCO model potential
energy surfaces was excellent. As shown in Fig. 12, potential
energy surfaces omitting the torsion offset potential had
incorrect shapes, and this makes them bad models. This

calculated and model potential energy surfaces for HNCO molecule
(angle refers to NCO)

CCSD-computed potential energy surface

0=125°
0=235° (125) i ~ p=125° ¢=0°
$=-180° (0) slips off hill $=-180
300 if only
= dihedral
g > 0=235° (125)  value is 1050
S 200 $=180° (0)  constrained o
2 180
= 1%0 6=180°
3 100
ul
w 5o
0
/7 6=180°
angle (°) ¢=180°
Angle-damped torsion model potential without torsion
offset potential
(*does not satisfy branch equivalency conditions)
0=170° ezlgg
$=-180°
6=190° (*) &
Bo=180°()
L]
w
[
%
6=170°

$=180°

0=190° (*)
¢=180° (*)

Shape of ADDT and ADCO model potentials for HNCO
molecule (only mode 1 is significant)
includes torsion offset potential

slips off hill
0=190° (170) J qroni.
$=-180° (0) value-is 0=170°
constrained 9=170: $=0°
‘g‘_ . $=-180
uf 0=180

$=-180°

6=190° (170)
$=0° (180)

06=180°
$=180°

6=170°
$=180°

6=190° (170) angle (°)
$=180° (0)

Angle-bending potential plus angle-damped torsion
model potential without torsion offset potential
(*does not satisfy branch equivalency conditions)

X

6=180°
$=-180°

0=170°
¢=-180°

£0=190° ()
w’ $=-180° (*)

9=170°
—9=180° $=180°
$=180°

a“g\e (o)

6=190° (*) 6=190° ()
$=0° (*)  $=180°(*)

Fig. 12 Calculated and model potential energy surfaces of the HNCO molecule demonstrating that it is absolutely critical to include the torsion
offset potential. This potential energy surface also illustrates the ‘slip torsion’ phenomenon. The CCSD-calculated potential energy surface
(upper left panel) matches the ADDT and ADCO model potential energy surfaces (upper right panel) which include the mode 1 term

ADDT
Umode,l

[XKasc, 2Kacp, asco) OF UARSS 1 [Kasc, Kacp, dasco) s the model potential. Both the CCSD-calculated and the ADDT and ADCO model

potentials satisfy the angle-dihedral coordinate branch equivalency condition. For example, in the upper left panel the point marked (4, ¢) =
(235°,-180°) is a branch replicate of the point marked (6, ¢) = (125°,0°). For comparison, the two lower panels show model potentials that do not
include the torsion offset potential. The lower left panel shows the same potential model as the upper right panel, except the lower left panel
excludes the torsion offset potential. This omission destroys the angle-dihedral coordinate branch equivalency and makes the model useless,
because it is physically inconsistent. As shown in the lower right panel, adding an angle-bending potential does not rectify the physical

inconsistency created by omitting the torsion offset potential.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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conclusion still holds when any conceivable kind of angle-
bending potential is included without including the torsion
offset potential.

For this molecule, the ADDT and ADCO model potentials
happened to coincide with each other for the following reasons.
As shown in Table 3, the ADDT projection coefficients c; are zero
for all of the sine modes in this molecule. Since ¢.q = 180° for
this molecule, it directly follows that cos[m(¢ — ¢eq)] = (—1)"cos
[m@], and this means the coefficient for cosine mode m in this
molecule has the same magnitude but not necessarily the same
sign for the ADDT and ADCO model potentials. Examining
Tables 3 and 8, mode 1 dominates (i.e., abs[c¢;] = 1.0000) for the
partly relaxed torsion scan. For mode 2, abs[c,] = 0.0004 is
below the smart selection thresholds for the ADDT and ADCO
model potentials. The remaining ADDT and ADCO modes have
smaller magnitude coefficients that make them negligible.

In some materials, the angle-damped dihedral torsion
(which includes the torsion offset potential) gives rise to a new
physical phenomenon called ‘slip torsion’. This is illustrated in
Fig. 12 for the HNCO molecule. In this molecule, the optimized
dihedral value is ¢.q = 180°. Consider a geometry optimization
in which the HNCO dihedral value is constrained but all other
geometric parameters are allowed to relax. When the HNCO
dihedral is constrained to a value of ¢ between —90° and +90°,
the molecule is situated on the side of a potential energy hill.
The molecule's energy can be lowered by sliding down the hill in
the direction of increasing bond angle, fyco. When the mole-
cule slides down as far as fyco = 180°, then the HNCO dihedral
value for this non-equilibrium linear bond angle becomes
undefined and the constrained geometry calculation crashes
(i.e., abruptly terminates due to undefined dihedral value). True
to form, this is exactly what happened when attempting to
calculate fully relaxed torsion scans for the HNCO, HNCS,
HOCN, and HSNC molecules. For these molecules, constraining
only the dihedral value produced converged results when —180°
< ¢ < —90° and 90° < ¢ = 180°, while the calculations did not
converge when —90° < ¢ < 90°. As explained in Section 10.2,
converged results were achieved by performing partly relaxed
dihedral scans in which both bond angles were constrained in
addition to constraining the dihedral's value.

View Article Online
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10.5 Potential energy surfaces for linear dihedrals

For five molecules with linear dihedrals, CCSD/def2-TZVPD
calculations were performed at a series of constrained bond
angles and constrained dihedral values to generate potential
energy surfaces. These constrained geometry optimizations
were performed in Gaussian 16 software using the opt = mod-
redundant method. For the calculations used in this subsec-
tion, the bond lengths were not constrained. For the three
molecules containing single-linear dihedrals, the angle for
which 6., # 7 was not constrained, while the other angle was
constrained to 130°, 145°, and 160°. For the two molecules
containing double-linear dihedrals, the two bond angles were
constrained to all combinations of fOspc,fscp €
{150°,160°,170°}. Dihedrals were constrained to a series of
symmetry unique values to generate data for the full range
—180° < ¢ = 180° at each constrained bond angle. Finally, the
relative energy difference (ES — Ef,lpt) was computed for each
geometry u, where Eglpt is the QM-computed electronic energy of
the molecule's fully unconstrained ground-state geometry.

The Generalized Reduced Gradient (GRG) solver in Excel was
used to optimize the force constants of the ADLD model
potential plus the Manz angle-bending potential. These force
constants were optimized to maximize the R-squared value (see
eqn (17)) using the following definitions

>

W € training geoms

SSE = ((EZ‘ - Eiim) - (U;;mde‘ - Ug;gde‘))Z (243)

SST =

(€ training geoms

Eel _ Eel )2
"

ont (244)
while constraining each optimized force constant to be non-
negative. For the single-linear dihedrals, the Manz angle-
bending potential was included only for the bond angle that
was constrained to a series of different values. For the double-
linear dihedrals, the Manz angle-bending potential was
included for both bond angles, because these were constrained
to a series of different values. Because the unconstrained opti-
mized geometry of each molecule contained mirror planes, the
odd-function (i.e., sine modes) in the ADLD model potential
have zero contributions and were not included in the fitting

Table 11 Optimized ADLD force constants and R-squared values for five molecules having linear dihedrals. The number of unique geometries
includes the optimized ground-state geometry plus displaced geometries

Number unique geometries

Force constants optimized to

Force constants optimized

Formula in training set nonzero values (k] mol ") to zero R-squared

HCCH 61 1ps = 322.92, (both) ib1 =kips =kipa =0 0.9988
keepe-Pend = 105.25

HCNO 91 kips = 473.10, KManzbend _ gl Lkl =kips =0 0.9974
¥38e-bend = 329,99

H;CCN 22 s = 5.249, IBpa=0 0.9993
ERe-Perd = 194.90

H,BCN 22 1Dz = 182.43, kipi =0 0.9967
klﬁdglr\}z_bend —98.14

H,BNC 22 ki, = 106.30, kip, =0 0.9971

Iage-berd — 61,50
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Fig. 13 Comparison of QM-computed CCSD potential energy surfaces (lefthand panels) to ADLD model potential energy surfaces (middle
panels) for three molecules having single-linear dihedrals. The righthand panels are parity plots comparing QM-computed CCSD energies to
ADLD model potential energies for the computed datapoints for these three molecules. Note: these surface plots used linear interpolation
between computed datapoints to create the appearance of smooth surfaces.
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Fig. 14 Parity plots comparing QM-computed CCSD energies to ADLD model potential energies for two molecules having double-linear
dihedrals. This figure contains all of the computed datapoints used to generate the contour plots in Fig. 15.

process. For the even-function (i.e., cosine modes), the multi-
plicities (i.e., n values) were chosen to match the n-fold rota-
tional symmetry of the molecule's unconstrained optimized
geometry. For example, H;CCN has a 3-fold rotational

© 2025 The Author(s). Published by the Royal Society of Chemistry

symmetry, while H,BCN and H,BNC have 2-fold rotational
symmetry. Table 11 summarizes the optimized force constants
and R-squared values. The R-squared values were >0.99 indi-
cating superb fits of the ADLD model potential.
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Fig.15 Comparison of QM-computed CCSD potential energy contour plots (first and third rows) to ADLD model potential energy contour plots
(second and fourth rows) for two molecules having double-linear dihedrals. Note: these contour plots use interpolation between computed

datapoints.

As shown in Fig. 13, the ADLD model potential energy
surfaces closely reproduced the QM-computed CCSD potential
energy surfaces for the three molecules with single-linear
dihedrals. Fig. 13 also contains parity plots showing excellent
agreement between the QM-computed CCSD energies and the
ADLD model predicted energies for the computed datapoints.
As shown in Fig. 14 and 15, the ADLD model potential closely
reproduced the CCSD-computed energies for the two molecules
with double-linear dihedrals. Overall, these results showed that
my ADLD model potential (when including the Manz angle-
bending potential) does an excellent job of describing poten-
tial energy surfaces for linear dihedrals.

In Fig. 15, each midline corresponds to one of the bond angles
being constrained to 180° while the other bond angle was con-
strained to 150°, 160°, or 170°. The corresponding CCSD energy
for each midline was computed in Gaussian16 (ref. 33) using the
keyword opt = (ModRedundant,GIC) where GIC stands for
Generalized Internal Coordinates. Since one of the angles was
linear (ie., 180°) along this midline, its dihedral value was

7294 | RSC Adv, 2025, 15, 7257-7306

undefined. Using GIC allowed the constrained midline geometry
during the CCSD calculation to be specified using constrained
linear bend internal coordinates plus unconstrained bond
lengths and constrained nonlinear bond angle. (These midlines
were not included in the training dataset used to optimize the
force constants.) For the ADLD model panels in Fig. 15, the
energy along the corresponding midline was computed directly
from the parameterized ADLD model potential.

10.6 Brief recap of results for metal-organic frameworks
containing linear dihedrals

In a companion article, 5 out of 116 MOFs studied contained
after-pruning linear dihedrals.*®" As shown in Fig. 16, these
included: (a) accidental single-linear dihedrals (Case #3) in the
MOFs BEPVID, GIWMOP, and XAHROQ, (b) a symmetry-
induced single-linear dihedral (Case #1a) in HECQUB, and (c)
both a symmetry-induced double-linear dihedral (Case # 2,
which locally looks like Case # 2a) and a symmetry-induced

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 16 Some linear dihedrals in MOFs studied in ref. 18 and 19:
BEPVID, GIWMOP, HECQUB, KEWZOD, and XAHROQ. In each panel,
the blue line is adjacent to the linear bond angle. Below each panel are
listed the atomic symbols comprising the linear bond angle and the
associated after-pruning linear dihedrals.

single-linear dihedral (Case # 1, which locally looks like Case #
1a) in KEWZOD. In the companion article, the n = 2 j but not the
n=(2j-1) modes shown in eqn (223) were derived using part of
the theoretical analysis described in Section 9.1 above.'® The
optimized flexibility models for those 5 MOFs included flexi-
bility terms for the single-linear dihedrals and used the modes
corresponding to the force constants kip: and kip, in eqn
(223).*®' For KEWZOD, the single-linear dihedral was included
in the parameterized flexibility model, but the double-linear
dihedral was not included in the parameterized flexibility
model.

A linear dihedral has no torsion barrier at its equilibrium
bond angle. For small deviations of the bond angle from its
equilibrium value, the torsion barrier will be small in magni-
tude. Consequently, it is often not required to include torsion
potentials for the linear dihedrals when constructing classical
forcefields for complex materials. For the 5 MOFs having after-
pruning linear dihedrals, flexibility models parameterized with
and without including torsion potentials for the linear

View Article Online
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dihedrals produced essentially the same validation R-squared
values."*® These R-squared values are listed in Table 12.

10.7 Torsions in chiral chain-like molecules

The rigid (or relaxed) torsion scans used in ADDT, CADT, ADCO,
or CACO torsion mode smart selection (see Section 7.2 above
and ref. 18) are intended to be used when the rotatable group on
one side of the rotatable middle bond is small enough that it
does not sterically collide with the surrounding structure when
rigidly rotated. Typical examples of small rotatable groups
include methyl (-CHj3), hydroxyl (-OH), amino (-NH,), nitro (-
NO,), carboxyl (-C(O)OH), carboxylate (-CO, ), etc. substituent
groups.

Sometimes rotatable dihedrals are contained in long chains
comprising polymers, large biomolecules (e.g., proteins, DNA,
RNA, enzymes, fatty acids, polysaccharides, phospholipids,
etc.), hydrocarbon chains (e.g., petroleum), etc. A chain-like
molecule often has many different conformers that are local
ground-state structures in which all atom-in-material forces are
zero. (Each conformer is a local energy minimum on the
molecule’'s potential energy surface.) For example, a specific
protein chain can often fold in different ways to form many
different conformers. For these chain-like molecules, a rigid
torsion scan of the entire chain may not be appropriate, because
it may cause one part of the molecule's chain to sterically collide
with another part of the molecule's chain. In these cases,
a different strategy besides torsion scans of the full chain
should be used to construct the training dataset for optimizing
the chain's torsion force constants.

Two basic strategies could be suggested for optimizing the
torsion force constants of chain-like molecules. The first
strategy uses short pieces of the chain to separately optimize the
torsion force constants for each type of rotatable middle bond.
Each snippet of the chain should be capped with appropriate
atoms; for example, a cut C-C single bond could be turned into
a C-H termination. This strategy uses model molecules that are
small enough so that rigid torsion scans can be performed
without encountering any steric clashes of the rotating group.
The reference energy for each torsion scan geometry would be
computed using a high-level quantum chemistry method. If the
molecule is small enough, a QM-computed relaxed torsion scan
could be performed (instead of a rigid torsion scan) without
causing large changes (i.e., large relaxations) in the uncon-
strained internal coordinate values (i.e., bond lengths, angle
values, and unconstrained other dihedral values). This rigid (or

Table 12 Comparison of validation R-squared values for 5 MOFs containing after-pruning linear dihedrals. Values are listed with using individual
[average] equilibrium values of internal coordinates. This data is taken from calculations (after pruning and without bond—bond cross terms)
described in ref. 19. For KEWZOD, the torsion potential for linear dihedrals included the single-linear dihedral but not the double-linear dihedral

Validation R-squared with torsion

MOF refcode potential for linear dihedrals

Validation R-squared using no torsion
potential for linear dihedrals

BEPVID 0.9392 [0.9356]
GIWMOP 0.9209 [0.9044]
HECQUB 0.9002 [0.9002]
KEWZOD 0.9208 [0.9194]
XAHROQ 0.9385 [0.9377]

© 2025 The Author(s). Published by the Royal Society of Chemistry

0.9392 [0.9356]
0.9210 [0.9044]
0.9002 [0.9002]
0.9208 [0.9194]
0.9386 [0.9377]
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relaxed) torsion scan allows smart mode selection (see Section
7.2) to be used successfully. The model molecule should be
large enough to capture the relevant chemical environment
around the corresponding target middle bond.

The second strategy employs the entire full chain without
invoking model molecules. One could generate a training set
containing many chain configurations. For example, molecular
dynamics or Monte Carlo simulations could be used to generate
an ensemble containing many chain configurations. The energy
of each chain configuration would then be computed using
a high-level quantum chemistry method. These quantum-
mechanically-computed energies would then be used in the
training set used to optimize the ADDT, CADT, ADCO, CACO,
and/or ADLD torsion force constants. Symmetry properties
could be used to eliminate some of the unimportant torsion
modes prior to force-constant optimization. For example, the 3-
fold rotation symmetry of methyl groups implies corresponding
torsion modes of the form cos[3j(¢ — ¢eq)] and sin[3j(¢ — ¢eq)]
for ADDT or CADT model potentials or cos[3j¢] for ADCO or
CACO model potentials, where j is a whole number. Similarly,
the 2-fold rotation symmetry of amino (-NH,), nitro (-NO,), and
carboxylate (-CO,”) groups implies corresponding torsion
modes of the form cos[2j(¢ — ¢q)] and sin[2j(¢ — ¢eq)] for ADDT
or CADT model potentials or cos[2j¢] for ADCO or CACO model
potentials, where j is a whole number.

Most biomolecules contain many chiral centers. Chiral
centers lack mirror-image (reflection) symmetry.

Fig. 11 shows a dramatic failure of the cosine-only model
potential for the relaxed and rigid torsion scan curves of the
FCOH dihedral in the S enantiomer of the chiral molecule
C(OH)CIFH. As shown in Fig. 8, my CADT and ADDT model
potentials gave R-squared values of 0.9995 (relaxed torsion scan)
and 0.9999 (rigid torsion scan) for this same dihedral.

As a more complex example, here we study the 25-2-amino-
propanal molecule. This molecule contains a chiral center.
‘28’ indicates the specific enantiomer studied here. (The 2 in

2R-2-amino-propanal

0.00
kJ/mol

View Article Online
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‘28’ indicates the chain position of the S chiral center.) Although
this molecule only contains three rotatable middle bonds, it is
still large enough to form many different conformers. The
various conformers shown in Fig. 17 were generated by the
following procedure. First, the three rotatable dihedrals (i.e.,
OCCN, HNCC, and HCCH) were systematically rotated to
a series of different values to generate a set of 24 starting
structures. Beginning with each starting structure, geometry
optimization was then performed in Gaussian 16 to compute
equilibrium structures in which all atom-in-material forces are
zero. I computed these using the B3LYP + D3BJ/def2-TZVPD
(ref. 34 and 36-39) level of theory. Next, a frequency calcula-
tion was performed on each distinct equilibrium structure to
identify whether it is a local ground state (i.e., local energy
minimum) or a saddle point (e.g., transition state). Fig. 17
shows the resulting conformers that had all real-valued non-
negative frequencies.

For comparison, Fig. 17 also shows the lowest energy
conformer of the 2R enantiomer. The 2R enantiomer has the
same number of conformers as the 2S enantiomer, such that
each 2R conformer is a mirror image of and has the same energy
as the corresponding 2S conformer.

As shown in Fig. 18, the CADT model potential accurately
reproduces the distinct mirror-image torsion scan curves for the
R and S enantiomers. As described in Sections 3-5 above, both
the ADDT and CADT model potentials achieve this in a way that
allows mirror-image dihedral instances to be included within
the same dihedral type. When using the ADDT and CADT model
potentials, both the R and S enantiomers are described by the
same dihedral types and torsion force constant values. In stark
contrast, the cosine-only torsion model potential (i.e., eqn (202)
and (150)) cannot provide distinct mirror-image torsion scan
curves for the R and S enantiomers. Depending on the specific
situation, this limitation of the cosine-only torsion model
potential (i.e., eqn (202) and (150)) may result in any of the
following: (a) negligible change in the R-squared value (e.g.,

Fig. 17 Various conformers of the 2S-2-amino-propanal molecule as computed using the B3LYP + D3BJ/def2-TZVPD level of theory. The
computed relative energy (in kJ mol™) is listed next to each conformer. For comparison, the lowest energy conformer of the 2R enantiomer is

also shown.
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Fig. 18 Better performance of the CADT model potential (left panels) compared to the CACO torsion model potential (right panels). Results are
shown here for three rotatable dihedrals in the R (orange points and orange curves) and S (blue points and blue curves) enantiomers of the
2-amino-propanal molecule. The filled circles show the QM-computed (B3LYP + D3BJ/def2-TZVPD) energies for the dihedral scan curve in
which all geometric parameters were relaxed except the constrained dihedral. The solid lines show the fitted model potentials including CADT

modes 1-7 (left panels) and CACO modes 1-4 (right panels).

rotation of a methyl group as shown in the lower panels of
Fig. 18), (b) a moderate reduction in the R-squared value (e.g.,
rotation of the HNCC or OCCN dihedrals in 2-amino-propanal
as shown in the middle and top panels of Fig. 18), or (c)
a huge catastrophic reduction in the R-squared value (e.g,
rotation of the FCOH dihedral in the C(OH)CIFH molecule as
shown in Fig. 11).

The computed sym_value (see eqn (159)) for these three
dihedrals was 0.299 for the OCCN dihedral, 0.174 for the HNCC
dihedral, and 0.014 for the HCCH dihedral. Using these
sym_values, the equilibrium bond angle values, and the

© 2025 The Author(s). Published by the Royal Society of Chemistry

flowchart shown in Fig. 6, the CADT model potential is rec-
ommended for all three of these dihedrals. For the CADT
model, the following modes were smart selected using the
cutoff values recommended in Section 7.2: modes 3, 5, and 7 for
the HCCH dihedral; modes 1, 2, 3, 5, 6, and 7 for the HNCC
dihedral, and modes 1, 2, 3, 4, 5, and 6 for the OCCN dihedral.
For the CACO model, the following modes were smart selected
using the cutoff value of 0.001 recommended in Section 7.2:
mode 3 for the HCCH dihedral; modes 1, 2, 3, and 4 for the
HNCC dihedral, and modes 1, 2, 3, and 4 for the OCCN
dihedral.

RSC Adv, 2025, 15, 7257-7306 | 7297
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For this molecule, different sets of torsion force constants
were optimized by fitting models to a training dataset. The
training dataset contained the following QM-computed (B3LYP
+ D3BJ/def2-TZVPD) geometries and energies for the S enan-
tiomer: (a) the six conformers shown in Fig. 17, (b) the
symmetry-unique geometries for the relaxed torsion scan curves
shown in Fig. 18 (i.e., 18 geometries for OCCN dihedral, 18
geometries for HNCC dihedral, and 6 geometries for HCCH
dihedral), and (c) 30 geometries in which the 3 dihedral values
were chosen using a uniform random number generator. For
(c), the geometries were relaxed in Gaussian 16 (using the B3LYP
+ D3BJ/def2-TZVPD level of theory) keeping the three random-
ized dihedral values constrained but allowing the bond lengths
and angles to relax. This training dataset contained a total of 78
geometries.

Torsion force constants were optimized in Matlab by mini-
mizing the following loss function:

2
1 1 FF FF
L= Y (E; - Egpl) - (U# - Uopt>> (245)
1 € training geoms
UEF — UEonded + Uzonbonded (246)

Uzonbonded — U:tracluster_nonbonded + U:tercluster_nonbonded (247)

where  is the geometry number in the training dataset. £ and
Ef}},t are the QM-computed electronic energies of training
geometry u and the fully optimized ground-state geometry,
respectively. U;" and Ugp, are the forcefield model's potential
energies of training geometry u and the fully optimized ground-
state geometry, respectively. Since the forcefield was trained on
an isolated bonded cluster (i.e., an isolated molecule), there
were no intercluster interactions in the training dataset geom-
etries: Ul;j'ntercluster_nonbonded —0.

Six variations of the forcefield model were constructed from
two different torsion models and three different nonbonded
interaction models: 2 (torsion models) x 3 (nonbonded inter-
action models) = 6 forcefield models. The two torsion models
were: (a) the CADT model potential with smart selected modes
and (b) the CACO torsion model potential using smart selected
modes. Since the bond angles and bond lengths were relaxed in
all training and validation geometries, dihedral torsions were
the only bonded interactions included in the six forcefield
models. This was chosen to directly compare the CADT model to
the CACO torsion model.

The three nonbonded interaction models were: (i) no
nonbonded interactions (i.e., all nonbonded interactions set to
zero), (ii) electrostatic and Lennard-Jones interactions between
all atoms except first, second-, and third-neighbors (ie.,
excluding self, 1-2, 1-3, and 1-4 nonbonded interactions), and
(iv) electrostatic and Lennard-Jones interactions between all
atoms except first- and second-neighbors (i.e., excluding self,
1-2, and 1-3 nonbonded interactions). Nonbonded electrostatic
interactions were modeled with an atom-centered point charge
model computed using the DDEC6 (ref. 40 and 41) method.
Lennard-Jones parameters and combining rules were taken
from the Universal Force Field (UFF).** These were used as
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inputs for Manz's interaction separation ansatz following the
case in which a cutoff distance is not used for the nonbonded

interactions.” Following the notation of ref. 20, this gives:
intracluster_nonbonded __ intracluster
U p = (e (248)
Aecluster_jBe (cluster_j — {excluded 4 })

eq_j
@imracluster o tanhz dAB _ dAB Unonbonded R’
ABx - d eq_j ABx intracluster C
AB  dyp
nonbonded 3edJ
— “ ABu,intracluster |:{RC }} ) (249)
nonbonded 3 ~ 77(g+LI)
U B intracluster [{RC }] = Uyp (250)

atomic charges
12

dU AU °
+eﬁ§<(d‘:2> _z(dig)) (251)

repulsion+dispersion
(e.g., Lennard-Jones))

——
U(q+LJ) _ qaqs
AB 4TC€0dAB

where R is the nuclear position of atom C, cluster_j is the
specific molecule, d5%’ is the equilibrium distance between
atoms A and B in the optimized ground state of isolated clus-
ter_j, {excluded,} is the set of excluded nonbonded interactions
(e.g., self, 1-2, 1-3, and optionally 1-4 interactions), ¢y} is the
Lennard-Jones well-depth, and dy; is the Lennard-Jones refer-
ence distance.

The validation dataset contained 30 geometries in which the 3
dihedral values were chosen using a uniform random number
generator. These geometries were relaxed in Gaussian 16 (using
the B3LYP + D3B]/def2-TZVPD level of theory) keeping the three
randomized dihedral values constrained but allowing the bond
lengths and angles to relax. These 30 validation geometries were
generated independently (i.e., using different random numbers)
from the 30 randomized geometries used in the training dataset.

R-squared values were computed for the training and vali-
dation datasets using eqn (17) with the following definitions
from ref. 20:

(252)

SST = ZM:<E;‘ - E;Ll)2

(253)

SSE = %:«EZ‘ ~E) - (U - Ufp‘i))z

Minimizing the loss function in eqn (245) gives the same
optimized force constant values as maximizing R-squared
training. The root-mean-squared-error (RMSE) was defined as

RMSE = /SSE/Nops

where Nyps is the total number of observation datapoints (i.e.,
number of ‘y values’) in the (training or validation) dataset used
to compute SSE. (In cases where the training or validation
dataset contains atom-in-material forces and/or total energies,
a total energy or atom-in-material force component counts as
a ‘y value’."®)

(254)

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 13 Performance of six different forcefield models for describing dihedral torsions in the chiral 2-amino-propanal molecule

Torsion Nonbonded R-squared RMSE R-squared RMSE

model interactions included training training (eV) validation validation (eV)
CADT None (0.9424)° (0.0326)° (0.9227)° (0.0651)"
CADT Except 1-2, 1-3, 1-4 0.9317 0.0355 0.9444 0.0552

CADT Except 1-2, 1-3 0.9259 0.0370 0.9427 0.0560

CACO None (0.9034)° (0.0423)° (0.9451)7 (0.0548)7
CACO Except 1-2, 1-3, 1-4 0.7803 0.0637 0.8806 0.0809

CACO Except 1-2, 1-3 0.8542 0.0519 0.9170 0.0674

“ The results with all nonbonded interactions excluded are listed here for comparison purposes only. Since this molecule contains several 1-5 pairs
(i-e., fourth neighbors), it would actually not be appropriate to use a forcefield for this molecule that neglected all nonbonded interactions. Please

see the main text for a discussion of this issue.

Tables S3 and S4 of the ESIf list the optimized torsion force
constant values. The Matlab codes and output results are found
in the supporting data zip archive of the ESL.{ As shown in
Table 13, the CADT model potential performed better overall
than the CACO torsion model potential for this molecule.

Although the two forcefield models that omitted all
nonbonded interactions also appeared to perform well for this
small molecule, the following point should be kept in mind. For
long flexible chains, including nonbonded interactions is
mandatory during classical molecular dynamics and Monte
Carlo simulations. If all nonbonded interactions are excluded
during such atomistic simulations, then different parts of
a long flexible chain could occupy the same spatial local
volume. This behavior would be physically unreasonable,
because it violates the Pauli exclusion principle. To prevent
such unphysical behavior, the forcefield must include short-
range repulsion that causes nonbonded atoms to repel each
other at short distances. For example, the Lennard-Jones
potential includes a short-range repulsion that prevents two
non-bonded atoms from occupying the same spatial local
volume. Examining Table 13, for the forcefields including some
nonbonded interactions, the CADT model performed signifi-
cantly better than the CACO model for this molecule.

The same force constant values, R-squared values, and RMSE
values would have resulted if some or all of the geometries in
either the training or validation datasets were swapped for their
mirror images. (The ADDT, ADCO, CADT, CACO, and ADLD
model potentials are constructed to achieve this property.)
Accordingly, changing S to R enantiomers by taking mirror
image geometries would not have altered any of the results. Of
course, for those mirror-image geometries, one is required to
use the correct dihedral equilibrium value (¢.q) for each corre-
sponding dihedral instance in that enantiomer. Taking a mirror
image (e.g., changing S to R enantiomer) has the following
effect:

Pakcp[R enantiomer] =

7 — mod[(¢xkcplS enantiomer] + 7),27]  (255)
¢aBcp[R enantiomer] =
7 — mod[(¢papcp[S enantiomer] + 1),27T]  (256)

© 2025 The Author(s). Published by the Royal Society of Chemistry

In eqn (255) and (256), the mod function ensures that —m <
$ascpR enantiomer] < .

10.8 Comparison of vibrational frequencies computed from
forcefield models to experimental data

Forcefields were optimized for the isocyanic acid (HNCO),
hydrogen peroxide (HOOH), and acetylene (HCCH) molecules.
These molecules were chosen, because they allow each of the
five dihedral torsion model potentials (i.e., ADCO, ADDT, CACO,
CADT, and ADLD) to be tested, and the computed vibrational
frequencies were compared to experimental data. No cross
terms were included in these forcefields, because computa-
tional tests showed they were not required to achieve good
performance. The small size of these molecules greatly simpli-
fied the forcefield parameterization and testing. Since these
molecules contained no further than third-neighbors, all
intracluster nonbonded interactions were excluded.

For simplicity, the harmonic bond stretch potential was
used:

DRI — L dnr — ) (257)
Prior work showed the Manz stretch potential better models
bond stretch anharmonicity.>* However, this involves an addi-
tional non-empirical parameter (ie.,, the quantum-
mechanically-computed exponent 7,;).2° Since the normal
mode frequencies were computed here within the harmonic
oscillator approximation which neglects bond stretch anhar-
monicities, the simpler harmonic bond stretch potential was
used in these optimized forcefields.

Vibrational frequencies were computed using the procedure
described in a prior publication: “For each flexibility model,
normal vibrational mode analysis within the harmonic oscil-
lator approximation was performed by diagonalizing the mass-
weighted Hessian (MWH) matrix expressed in Cartesian
coordinates:

1 0*U
MWH 34 1)4i),68-1)4) = NI 8<E ) 6(§ > (258)
A B
i J

where m, is the mass of atom A. Here, (ﬁA)i for i € {1,2,3}
denotes the X, Y, or Z component of the nuclear position R,. The
second derivatives can be computed either analytically or
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numerically; here, they were computed numerically using the
central finite difference approximation. The eigenvalues {A;} of
the MWH matrix are related to the normal mode frequencies
{freq;} via:*

freq, = v/ / (2m)

(259)

Each normal mode frequency was converted to wavenumber
by dividin dg by the speed of light, c. Each eigenvector
(‘—/»normal M%) of the MWH matrix is the corresponding normal
mode's mass—welghted differential displacement vector:

—normal_mode —normal_mode
% =3 j(dRA iy )
A

(260)

for infinitesimal |¢|.

For linear molecules, five of the MWH eigenvalues are zero;
these correspond to molecular rotation (2 modes) and center-of-
mass translation (3 modes). For nonlinear molecules, six of the
MWH eigenvalues are zero; these correspond to molecular
rotation (3 modes) and center-of-mass translation (3 modes).”?°

For HNCO, the training dataset included 145 geometries: (a)
the optimized ground-state geometry (1 geometry), (b) a rigid
torsion scan in 20° increments over the range 180° < ¢ < 180° (17
geometries outside the optimized geometry), (c) a partly relaxed
torsion scan (in which bond angles were constrained but bond
lengths were relaxed) in 20° increments over the range 180° < ¢ <
180° (17 geometries outside the optimized geometry), (d) all
possible combinations of bond lengths being displaced by
—0.05, 0.00, and/or +0.05 A (26 geometries outside the optimized
geometry), (e) a rigid HNC angle scan in 5° increments over the
range 30° = Afync = 30° (12 geometries outside the optimized
geometry), (f) a relaxed HNC angle scan in 5° increments over the
range 30° =< Afync = 30° (12 geometries outside the optimized
geometry), (g) a rigid NCO angle scan in 2° increments over the
range 150° < fyco = 180° (16 geometries), (h) a relaxed NCO
angle scan in 2° increments over the range 150° < fyco =< 164° (8
geometries), (i) a torsion scan in 20° increments over the range
180° < ¢ = 180° in which fyxco Was constrained to 155° while all
other geometric parameters were relaxed (18 geometries), and (j)
a torsion scan in 20° increments over the range 180° < ¢ = 180°
in which fyco was constrained to 165° while all other geometric
parameters were relaxed (18 geometries).

In this subsection, the force constants were optimized using
least-squares fitting in Matlab to minimize the cost function

View Article Online
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shown in eqn (245), where the forcefield contained no intra-
cluster nonbonded interactions as explained above. The
training R-squared and RMSE values were computed using eqn
(17) and (252)-(254).

Table 14 summarizes the optimized force constants and
training dataset statistics for the HNCO molecule using force-
fields with ADCO or ADDT dihedral torsion model potentials. A
bend potential for the NCO angle is not needed and was not
used, because this angle scan curve is completely described by
the HNCO torsion offset potential as clearly shown in Fig. 9. For
this molecule, the QM-computed dihedral torsion potential
energy surface contains no odd-function contributions (i.e., U
[#] = U[—¢]). For ADCO and ADDT, the smart mode selection
criteria described in Section 7 above were used. As shown in
Table 14, the forcefields using the ADCO and ADDT model
potentials performed extremely well and yielded nearly iden-
tical results for this molecule.

Table 15 summarizes the validation dataset results for this
molecule. The vibrational frequencies computed using each
forcefield were in good agreement with the experimentally-
measured frequencies.

For HOOH, the training dataset included 132 geometries: (a)
the optimized ground-state geometry and its mirror image (2
geometries), (b) a rigid torsion scan in 20° increments over the
range 180° < ¢ =< 180° (18 geometries), (c) a relaxed torsion scan
in 20° increments over the range 180° < ¢ = 180° (18 geome-
tries), (d) a torsion scan in 20° increments over the range 180° <
¢ = 180° in which Afyoo was constrained to —10° while all
other geometric parameters were relaxed (18 geometries), (e)
a torsion scan in 20° increments over the range 180° < ¢ = 180°
in which Afyoo was constrained to +10° while all other
geometric parameters were relaxed (18 geometries), (f) all
symmetry-unique combinations of bond lengths being dis-
placed by —0.14, 0.00, and/or +0.14 A (17 geometries outside the
optimized geometry), (g) mirror images of the structures from
() (17 geometries), (h) a rigid HOO angle scan in 10° increments
over the range 80° < fxco = 130° (6 geometries), (i) a relaxed
HOO angle scan in 10° increments over the range 80° = fyco =
130° (6 geometries), and (j) mirror images of the structures from
(k) and (i) (12 geometries).

Table 16 summarizes the optimized force constants and
training dataset statistics for the HOOH molecule using force-
fields with CACO or CADT dihedral torsion model potentials.
For this molecule, the QM-computed dihedral torsion potential

Table 14 Training dataset performance for isocyanic acid (HNCO) forcefields using harmonic bond stretch, Manz angle-bend, and ADCO or
ADDT dihedral torsion model potentials. The QM-computed (CCSD/def2-TZVPD) equilibrium values were 1.00578 A (HN), 1.21144 A (NC),
1.16029 A (CO), 123.57915° (HNC), 172.98777° (NCO), and 180.000° (HNCO)

Kstretch Kpend Kiorsion Training RMSE Training Popt
(evA?) (eV) (eV) (eV) R-squared )
Forcefield w. 45.10 (HN), 56.60 1.696 (HNC) 0.05818, (¢; = [0.999999, 0.0283 0.9880 180.000°
ADCO (NC), 104.46 (CO) 0.001117, 0.000000, 0.000000])
Forcefield w. 45.10 (HN), 56.61 1.696 (HNC) 0.05817 (mode 1) 0.0283 0.9881 180.000°
ADDT (NC), 104.46 (CO)
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Table 15 Validation dataset performance for isocyanic acid (HNCO) forcefields using harmonic bond stretch, Manz angle-bend, and ADCO or
ADDT dihedral torsion model potentials. This validation dataset compares the normal-mode vibrational frequencies computed from the
forcefield to experimentally-measured frequencies (in wavenumber, cm™Y). The percent error relative to experiment is shown in parentheses.

Modes 4 and 6 are two different in-plane bends, and each of these modes involves changes in both the HNC and CNO angles

1 2 3

freq— (HN stretch)

(asymmetric NCO stretch) (symmetric NCO stretch) (in-plane bend) (torsion)

4 5 6
(in-plane bend)

Experiment (ref. 44 and 45) 3538
Forcefield w. ADCO 3616 (+2%)
Forcefield w. ADDT 3616 (+2%)

2269
2279 (0%)
2279 (0%)

1322 777 656 577
1160 (—12%) 789 (+2%) 574 (—13%) 542 (—6%)
1161 (—12%) 789 (+2%) 574 (—13%) 542 (—6%)

Table 16 Training dataset performance for hydrogen peroxide (HOOH) forcefields using harmonic bond stretch, Manz angle-bend, and CACO
or CADT dihedral torsion model potentials. The QM-computed (CCSD/def2-TZVPD) equilibrium values were 0.9666 A (HO), 1.4378 A (Q0),

100.8215° (HOO), and 111.0568° (HOOH)

kstretch kbend ktorsion Training RMSE Training ¢opt
(eVvA™) (eV) (eV) (eV) R-squared (°)
Forcefield w. CACO  50.71 (HO), 5.683 (HOO) 0.1552, (¢; = [0.833919, 0.1194 0.9530 +111.47
31.81 (00) 0.549530, 0.050017, 0.009368])
Forcefield w. CADT  50.96 (HO), 5.760 (HOO) 0.04466 (mode 1), 0.06460 (mode 2), 0.1192 0.9531 —104.71, +111.0568
31.85 (00) —0.00888 (mode 3),

—0.11657 (mode 5),
0.04935 (mode 6),
—0.05040 (mode 7)

energy surface contains no odd-function contributions (i.e., U
[¢] = U[—¢]). For CACO and CADT, the smart mode selection
criteria described in Section 7 above were used. Except for one
key distinction, the forcefields using CACO and CADT model
potentials yielded similar results. The key distinction is that
CACO strictly yielded Ul¢] = U[—¢] giving ¢ope = £111.47°
which is close to but not identical to the QM-computed value of
+111.0568°. On the other hand, CADT reproduced ¢qp =
+111.0568° on the positive side but yielded a slightly asym-
metric potential U[¢] = U[—¢] so that on the negative side ¢op;
was —104.71° instead of —111.0568°. Both forcefields yielded
training R-squared > 0.95.

Table 17 summarizes the validation dataset results for this
molecule. The vibrational frequencies computed using each
forcefield were in good agreement with the experimentally-
measured frequencies. For this molecule, the experimental
reference frequency for each vibrational mode was taken as the
median of the experimental values compiled from various
sources as listed in the NIST Chemistry Webbook.*® Please see
the ESIT for calculation of these median experimental values.

For HCCH, the training dataset included 78 geometries: (a)
the optimized ground-state geometry (1 geometry), (b) all
symmetry-unique combinations of bond lengths being dis-
placed by —0.14, 0.00, and/or +0.14 A (17 geometries outside the
optimized geometry), (c) torsion scans in 20° increments over
the range 0 =< ¢ = 180° in which each HCC angle was con-
strained to 150, 160, or 170° while all other geometric param-
eters were relaxed (60 geometries). For (c), the range —180° < ¢ <
0 was not required, because due to symmetry U[¢] = U[—¢]. For
(c), due to the molecular symmetry, there were six pairs of
symmetry-unique constrained bond angles: (6,, 6,) = (150°,
150°), (160°, 150°), (170°, 150°), (160°, 160°), (170°, 160°), and
(170°, 170°).

Table 18 summarizes the optimized force constants and
training dataset statistics for the acetylene molecule using
a forcefield with the ADLD model potential. Since this molecule
contains a double-linear dihedral, the n = 2(j = 1) — 1 =1
modes form the dominant contribution. Due to the mirror
plane, the sine torsion modes do not contribute, and thus
kips = kipe = 0. As shown in Table 11, for this molecule ks >

Table 17 Validation dataset performance for hydrogen peroxide (HOOH) forcefields using harmonic bond stretch, Manz angle-bend, and CACO
or CADT dihedral torsion model potentials. This validation dataset compares the normal-mode vibrational frequencies computed from the
forcefield to experimentally-measured frequencies (in wavenumber, cm™Y). The percent error relative to experiment is shown in parentheses

1 2 3 4

(asymmetric (symmetric (symmetric (asymmetric 5 6
freq— OH stretch) OH stretch) HOO bend) HOO bend) (OO stretch) (torsion)
Experiment 3613 3587 1389 1271 869 371

Forcefield w. CACO
Forcefield w. CADT

3815 (+6%)
3824 (+6%)

3814 (+6%)
3823 (+7%)

1421 (+2%)
1430 (+3%)

1349 (+6%)
1358 (+7%)

981 (+13%)
982 (+13%)

388 (+5%)
378 (+2%)

© 2025 The Author(s). Published by the Royal Society of Chemistry RSC Adv, 2025, 15, 7257-7306 | 7301
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Table 18 Training dataset performance for acetylene forcefields using harmonic bond stretch, Manz angle-bend, and ADLD torsion model
potentials. The QM-computed (CCSD/def2-TZVPD) equilibrium values were 1.06358 A (HC), 1.20183 A (CC), and 180.000° (HCC)

Kstreten (€V AT kpena (€V) Keorsion (€V) Training RMSE (eV) Training R-squared

Forcefield w. ADLD 41.91 (HC), 111.34 (CC) 1.045 (HCC) 3.400 (kips) 0.1307 0.9681

Table 19 Validation dataset performance for acetylene (HCCH) and deuterated acetylene (DCCD) forcefields using harmonic bond stretch,
Manz angle-bend, and ADLD torsion model potentials. This validation dataset compares the normal-mode vibrational frequencies computed
from the forcefield to experimentally-measured frequencies (in wavenumber, cm™Y). The percent error relative to experiment is shown in

parentheses. Due to the molecular symmetry, mode 5 has the same frequency as mode 4, and mode 7 has the same frequency as mode 6

1 2 3 4,5 6,7
Molecule freq— (symmetric CH stretch) (asymmetric CH stretch) (CC stretch) (bowl) (wave)
HCCH Experiment (ref. 47) 3372 3295 1974 730 599
HCCH Forcefield w. ADLD 3588 (+6%) 3501 (+6%) 2106 (+7%) 701 (—4%) 641 (+7%)
DCCD Experiment (ref. 47) 2704 2431 1766 538 504
DCCD Forcefield w. ADLD 2855 (+6%) 2571 (+6%) 1872 (+6%) 534 (—1%) 515 (+2%)

0 is significant while kip; = kip, = kips = 0. Consequently,
kips was the only ADLD mode included in the parameterized
forcefield. This forcefield yielded training R-squared > 0.95.

Table 19 summarizes the validation dataset results for this
molecule. For both HCCH and DCCD, the vibrational frequen-
cies computed using the forcefield were in excellent agreement
with the experimentally-measured frequencies. Both HCCH and
DCCD used the same forcefield parameters from Table 18. The
change in frequencies from HCCH to DCCD arose solely due to
the different masses of D versus H atoms.

11. Conclusions

Dihedral torsion model potentials can be categorized into five
classes. Class A (aka ‘dihedral-only’) torsion potentials depend
exclusively on the dihedral value (e.g., ¢apcp) With no explicit
dependence on the bond lengths or bond angles. Class B (aka
‘angle-damped’) torsion potentials depend exclusively on the
dihedral value (e.g., ¢apcp) and the two contained bond angle
values (i.e., O5pc and fpcp) with no explicit dependence on the
bond lengths. Class C (aka ‘distance-damped’) torsion poten-
tials depend exclusively on the dihedral value (e.g., ¢apcp) and
the three contained bond lengths (i.e., Rag, Rpc, and Rgp) with
no explicit dependence on the bond angles. Class D (aka ‘fully-
damped’) torsion potentials depend exclusively on the dihedral
value (e.g., dapcp), the two contained bond angle values (i.e.,
Oasc and Opcp), and the three contained bond lengths (i.e., Ryg,
Rpc, and Rgp). Class E contains all of the miscellaneous torsion
potentials that do not fit into any of the first four classes.

The most important new developments in this article pertain
to the Class B (‘angle-damped’) dihedral torsion potentials.
First, the combined angle-dihedral coordinate branch equiva-
lency conditions and mathematical constraints were derived
and used to construct a model of the angle-damping factors.
Second, using the concept of ‘completing the squares’ these
angle-damping factors were used to construct series expansions
defining the ADDT, ADCO, and ADLD model potentials. These
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new dihedral torsion model potentials require only a small
number of terms to achieve excellent accuracy, high computa-
tional efficiency, and continuous derivatives of all orders with
respect to atom-in-material displacements. They capture correct
dynamics across a wide range of bond angles including the
limiting value of § = . In contrast, most previously used
dihedral-torsion model potentials have either a derivative
discontinuity or incorrect dynamics when the bond angle rea-
ches 0 = .

To properly resolve the derivative discontinuity at § = m, I
showed the torsion term must depend on both the bond angles
and dihedral value. Of particular interest, this gives rise to a new
torsion-derived angle-bending energy term called the torsion
offset potential (TOP). I showed the TOP gives rise in some
materials to the unusual physical phenomenon of slip torsion.

The CADT and CACO torsion model potentials apply only to
torsions for which it is energetically inaccessible for any con-
tained bond angle to reach # = 7. Because neither contained
bond angle can energetically reach § = m, this allows the
derivative continuity condition for § = 7 to be relaxed for such
torsions. These two Class A torsion model potentials approxi-
mate the torsion barrier height as constant as the contained
bond angles change values. As a less computationally expensive
and simpler option compared to the ADDT and ADCO model
potentials, the CADT and CACO model potentials can be used
when the equilibrium values of both contained bond angles are
<130°.

I derived a new orthonormal representation of the inde-
pendent rotatable torsion modes that facilitates automated
identification of which particular torsion modes contribute
significantly for each dihedral type. This smart selection
enables insignificant torsion modes to be excluded from the
subsequent forcefield parameterization process. This makes the
parameterized forcefields both compact and accurate.

These torsion model potentials cover the following
situations:

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(1) The new angle-damped dihedral torsion (ADDT) model
potential is preferred when neither contained equilibrium bond
angle is linear (i.e., (63%c and 65¢p) # 180°), at least one of the
contained equilibrium bond angles is = 130° (i.e., (63%c or
6%¢p) = 130°), and the dihedral torsion potential contalns some
odd-function contributions (i.e., U¢] # U[—4¢]).

(2) The new angle-damped cosine only (ADCO) model
potential is preferred when neither contained equilibrium bond
angle is linear (i.e., (633c and 65¢p) # 180°), at least one of the
contained equilibrium bond angles is = 130° (i.e., (053¢ or

0%5¢p) = 130°), and the dihedral torsion potential contams no
odd-function contributions (i.e., U¢] = U[—¢]).

(3) The new constant amplitude dihedral torsion (CADT)
model potential is preferred when neither contained equilib-
rium bond angle is linear (i.e., (fagc and 5¢ip) # 180°), both
contained equilibrium bond angles are < 130° (i.e., (fapc and
08¢p) < 130°), and the dihedral torsion potential contains some
odd-function contributions (i.e., U¢] # U[—4¢)).

(4) The constant amplitude cosine only (CACO) model
potential is preferred when neither contained equilibrium bond
angle is linear (ie., (fagc and 65¢p) # 180°), both contained
equilibrium bond angles are <130° (i.e., (fakc and 6gdp) < 130°),
and the dihedral torsion potential contains no odd-function
contributions (i.e., U¢] = U—¢]).

(5) The new angle-damped linear dihedral (ADLD) model
potential is preferred when at least one contained equilibrium
bond angle is linear (i.e., (633¢ or 65Lp) = 180°).

The combination of dihedral pruning;*** classifying each
dihedral type as non-rotatable, rotatable, hindered, or
linear;'®" selecting a ADDT, CADT, ADCO, CACO, or ADLD
model potential for each dihedral type; and torsion mode smart
selection results in an extremely computationally efficient,
accurate, numerically stable, and versatile treatment of dihedral
torsion in classical forcefields.

Analytic first derivatives and forces associated with the
ADDT, CADT, ADCO, CACO, and ADLD potentials are derived in
the ESI.f These analytic formulas are useful for computing
forces during classical molecular dynamics simulations. As
summarized in Section S11 of the ESI,{ these analytic derivative
and force formulas were rigorously checked via extensive
comparisons to values computed numerically using the central
finite-difference approximation. The ESIT zip archive contains
software code that implements these analytic derivative and
force formulas and compares them to values computed
numerically using the central finite-difference approximation.

In Section 10, these five torsion model potentials were
extensively tested for selected molecules and compared to
high-level quantum chemistry calculations or experimental
data. In Section 10.2, detailed torsion modal analysis using
the ADDT and CADT model potentials was performed for 13
molecules that have two nonlinear equilibrium bond angles:
(CHFCl),, C(OH)CIFH, ethane, FSSF, glyoxal, H,0,, HNCO,
HNCS, HONC, HSNC, IF;CIOH, N,0,, and PF,OH. Torsion
modal analysis was performed for all of these molecules using
rigid bonds and angles, and for some of these molecules also
using relaxed bonds and angles. As shown in Table 3 and
Fig. 8, for a torsion model containing only the first seven
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ADDT/CADT orthonormal modes, the model showed superb
fit (R-squared > 0.93) to the QM-computed CCSD/def2-TZVPD
results.

For C(OH)CIFH, FSSF, HOOH, HNCO, HNCS, HONC,
HSNC, IF;CIOH, ONNO, and PF,OH, angle-bending curves
were QM-computed and compared in Fig. 9 to the sum of the
Manz angle-bending potential plus the new torsion offset
potential and found to be in excellent agreement. For HNCO,
HNCS, HONC, HSNC, excellent agreement was achieved
without using any adjustable parameters. For the other six
molecules, excellent agreement was achieved using only one
adjustable parameter, kange, Which is the angle-bending force
constant. The other parameters, which were not adjusted when
preparing these angle-bending curves, were taken directly from
the torsion modal analysis (see Table 3) for each molecule.

For HNCO, HNCS, HONC, HSNC, C(OH)CIFH, FSSF, H,0,,
IF;CIOH, N,0,, and PF,OH, torsion modal analysis was per-
formed at different constrained bond angles and compared to
predictions of the ADDT and CADT model potentials. As
summarized in Table 7, the ADDT model potential is a more
accurate predictor of the torsion barrier height than the CADT
model potential when the equilibrium value of at least one of
the contained bond angles is =130°. In addition to predicting
changes in the torsion barrier height, ADDT also predicts
changes in the modal coefficients (see Fig. 10) and ¢, as the
constrained bond angle varies. When the equilibrium values of
both contained bond angles are <130°, the ADDT model has
similar overall accuracy to the CADT model; however, the
CADT model is preferred in this case due to its greater
simplicity.

Section 10.3 performs an analogous torsion modal analysis
using the ADCO and CACO model potentials for those mole-
cules containing no odd-function contributions (i.e., Ul¢] = U
[—¢] which makes sym_value = 0). The ADCO and CACO model
potentials provided results similar to (but not necessarily
identical to) the ADDT and CADT model potentials for these
systems. As summarized in Table 10, the ADCO model potential
is a more accurate predictor of the torsion barrier height than
the CACO model potential when the equilibrium value of at
least one of the contained bond angles is =130°. Section 10.3
also demonstrated (see Fig. 11) that the cosine-only model
torsion potential fails when sym_value is substantially larger
than zero.

Section 10.4 proves the torsion offset potential is indis-
pensable. Specifically, the CCSD-computed potential energy
surface for the HNCO molecule can only be reproduced when
the torsion offset potential is included. This molecule exhibits
slip torsion.

Section 10.5 analyzed in detail three molecules (i.e., H;CCN,
H,BCN, and H,BNC) having single-linear dihedrals plus two
molecules (i.e., HCCH and HCNO) having double-linear dihe-
drals. For each of these five molecules, the Manz bend and
ADLD force constants were optimized to a training dataset
containing the optimized geometry plus numerous geometries
having constrained bond angle(s) and/or constrained dihedral
values. In all cases, the training R-squared was >0.995, and this
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indicates superb model performance. The CCSD-computed and
ADLD model potential energy surfaces were nearly identical.

Section 10.6 briefly recaps flexibility model performance for
five MOFs containing linear dihedrals as described in
a companion article.”®*® Since the torsion barrier is zero when
the bond angle is linear, excellent performance was obtained
even when the linear dihedral torsions were omitted from the
flexibility models.

Section 10.7 studies a chiral molecule containing multiple
adjacent rotatable dihedrals leading to many local ground-state
conformations. This type of example was included to examine
coupling between multiple adjacent rotatable dihedrals. Also,
this molecule is large enough to examine the effects of different
intracluster nonbonded interaction models. Using Manz's
bonded/nonbonded interaction separation ansatz,*® the
training and validation R-squared values depended only weakly
on the specific choice of intracluster nonbonded interaction
model. Comparisons were also made between the CADT and
a cosine-only torsion model potential. Some of the prior litera-
ture used a cosine-only torsion model potential even for mole-
cules where it does not strictly apply because U¢] # U[—¢]
which makes sym_value > 0. Although this approximation
sometimes yields reasonable results, I recommend that cosine-
only torsion potentials such as ADCO and CACO be used only
when U[¢] = U[—¢] which makes sym_value = 0. The ADDT and
CADT model potentials are preferred when U[¢] # U[—¢]. A key
advantage of the ADDT and CADT model potentials is that
a single set of force constant values simultaneously describes
both mirror images (e.g., enantiomers) of a chiral center. This
was clearly demonstrated for the S and R enantiomers of the
chiral 2-amino-propanal molecule.

Section 10.8 compared vibrational frequencies computed
from forcefield models to experimental data for the HNCO,
HOOH, and HCCH molecules. These molecules were chosen
to provide examples including the ADCO, ADDT, CACO, CADT,
and ADLD torsion potentials. Full flexibility models including
bond stretches, angle bends, and dihedral torsions were
parameterized. For each molecule, the training dataset R-
squared was >0.95. Vibrational frequencies computed from
the parameterized forcefields using the harmonic oscillator
approximation were in excellent agreement with the previ-
ously published experimentally-measured vibrational
frequencies.

In summary, all of these computational tests showed that the
new theory of angle-damped dihedral torsion introduced in this
article is a remarkable success.

Data availability

Optimized geometries of molecules, selected data analysis
spreadsheets, and selected Matlab codes and results are
included as part of the ESL.}
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