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Graphitic carbon nitride (g-C3Ny4) is utilized across various fields, including catalysis, hydrogen
production, and biosensing, due to its basic surface sites. However, g-C3N4 often shows limited
efficiency in such applications, mainly due to challenges related to absorption and low conductivity.
This study aimed to synthesize S-doped g-CsN4/CuO/ZrO,-based semiconducting ternary
nanocomposites (NCs) for catalytic applications using a chemical precipitation method. A
straightforward gas-templating technique was applied to achieve one-step nano-structuring of S-
doped g-CzN4 at 550 °C. The interactions between cubical CuO structures, monoclinic ZrO,, and
flower-like S-doped g-CsN4 morphologies were investigated using a range of analytical techniques,
including X-ray diffraction (XRD), high-resolution X-ray photoelectron spectroscopy (HR-XPS), high-
resolution scanning electron microscopy (HR-SEM), transmission electron microscopy (TEM), Fourier
transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-Vis) diffuse reflectance spectroscopy
(DRS), thermogravimetric analysis (TGA), differential thermal analysis (DTA), Brunauer—Emmett-Teller
(BET) surface area analysis, and photoluminescence (PL) studies. The superior performance of CuO/
ZrO,@,S-doped g-C3zN4 (30%) nanocomposite is attributed to its smaller crystalline size, optimized
band gap energy, and large surface area. These features collectively enhance electron—hole pair
separation efficiency and increase the number of active sites for adsorption and reaction. Such
improvements not only enhance sensitivity but also boost sensor efficiency through better charge
carrier generation, selective detection capabilities, and facilitated charge transfer. These
enhancements also contribute to reducing recombination losses and accelerating signal generation
and g-CsN4 transport. These synthesized ternary NCs were applied to bisphenol A (BPA) detection.
The electrocatalytic behaviour of the modified carbon paste electrode (CPE) was assessed by
measuring BPA via cyclic voltammetry (CV) under ideal conditions (pH 5). The CuO/ZrO,@S-doped g-
C3N4 (30%)/CPE system demonstrated high electrocatalytic performance, achieving reproducibility
with a 1.7 uM detection limit and 2.1 uM limit of quantification. Overall, this research highlights the
potential of synthetic ternary NCs as versatile materials for environmental remediation applications.
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1. Introduction

Water contamination is largely driven by the rapid growth of
industrial activities. Among the hazardous chemicals contrib-
uting to this issue, bisphenol A (BPA) stands out due to its
extensive production for applications primarily in poly-
carbonate plastics, epoxy resins, and thermal paper products.
BPA is present in a wide range of items, including impact-
resistant windows, eyewear, reusable water bottles, bottle
caps, and water supply piping systems." Exposure to these
chemicals has been associated with gestational length and
several growth parameters at birth, including birth weight and
birth length” as well as cognitive disorders.® Overall, evidence
supports the notion of an increased risk of adverse effects due to
exposure to high concentrations of BPA and other chemicals.**
In relation to this, modifying the existing methods for moni-
toring and detecting the levels of BPA is still at an early stage.
Therefore, the development of novel nanocomposites with high
sensitivity and detection of BPA at low concentration is crucial.®
Besides this, most of the methods used for the removal of such
chemicals require complicated sample preparation and pre-
treatment, high-cost instruments and skilled manpower.*”

In contrast to other semiconductors, g-C;N, has promising
electrical and morphological properties, and has great thermal
stability up to 600 °C. However, the widespread use of g-C;N, in
photocatalysis, sensors and reduction reactions is eventually
hampered by various intrinsic properties, such as low quantum
efficiency, small specific surface area, and quick recombination
of photogenerated electron-hole pairs.>*® Several techniques
have been implemented to improve the catalytic performance of
2-C3N, by utilizing various manufacturing processes. Doping
with nonmetal elements such as nitrogen,® oxygen," and
sulfur'? exhibited significant opportunity to increase the ability
to absorb visible light by g-C;N,. However, when two or more
semiconductors are combined, the combined semiconductors’
properties are improved over those of the constituent semi-
conductors.” For instance, several studies investigated the
loading of transition metal oxides like ZnO,** CuO," and
Fe,05,'* which significantly boosted the potential dangerous
organic pollutants detection and degradation rates of g-C3N,
based NCs.

CuO, a p-type semiconductor, is favored for its adaptable
electrical structure, narrow bandgap, low cost, and eco-friendly
synthesis. However, its photocatalytic efficiency is limited by
low light absorption and rapid electron-hole recombination."”
In contrast, ZrO, offers superior mechanical strength, high
ionic conductivity, low thermal conductivity, and excellent
thermal stability, making it a popular alternative.'® Additionally,
ZrO, is a promising candidate for various applications due to its
unique characteristics, including a high surface area and the
presence of abundant oxygen vacancies. These features make it
suitable for use as solid-state electrolytes, thermal barrier
coatings, electro-optical materials, and as a catalyst or catalyst
support,*'® and sensor technology.”® ZrO,, on the other hand,
presents difficulty in decreasing its broad band gap energy (>3.5
eV), which restricts its application in photocatalysis,
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particularly in UV-Vis applications.”* As a result, new multi-
functional semiconducting ternary NCs based on g-C;N, has to
be manufactured to improve the aforementioned environ-
mental issues as well as employing novel materials and
processes. g-C3N, can easily be prepared via one-step polymer-
ization of cheap feed stocks such as melamine,” cyanamide,*
dicyanamide,** or thiourea.”® Different techniques have been
employed to improve the limitations of g-C;N,. For example,
some researchers synthesized metal oxide incorporated g-C;N,
NCs via precipitation,*®” impregnation and hydrothermal®®
methods. However, due to limitations in yield and energy
consumption, the simplest and familiar calcination method is
recommended. At present, direct pyrolysis of precursors, fol-
lowed by ultrasonication and chemical precipitation, is
considered as the most efficient synthesis method for g-C;N,-
based nanocomposites due to its cost-effectiveness, simplicity,
and high yield. Fig. 1 show the preparation and application
processes used in this study.

The ternary CuO/ZrO,@S-doped g-C3N, nanocomposites
were prepared through a straightforward pyrolysis approach
that integrates chemical precipitation and pyrolysis methods.
Employing advanced analytical techniques, this work estab-
lishes a foundation for future synthesis, characterization, and
potential applications of ternary semiconducting hetero-
structures. To the best of our knowledge, this is the first report
detailing the synthesis of ternary nanocomposites comprising
sulphur-doped graphitic carbon nitride, copper oxide, and
zirconia for versatile applications.

2. Experimental details
2.1 Chemicals and reagents

The chemicals and reagents utilized in this study include urea
(CO(NH,),), ammonium sulphate ((NH,),SO,), absolute ethanol
(CH3CH,OH, 97%), sulfuric acid (H,SO,), sodium hydroxide
(NaOH), aqueous ammonia (NH3(OH)), zirconium oxychloride
(zrOCl,-8H,0), copper nitrate (Cu(NOj),-3H,0), hydrochloric
acid (HCl, 98%), and bisphenol A (BPA), all sourced from Sigma-
Aldrich. All reagents were of analytical grade and were used as
received, without additional purification.

2.2 Synthesis of sulphur doped graphite carbon nitride (S-
doped g-C3N,)

S-Doped g-C3N, NC was prepared by applying previously re-
ported method, with enhanced gas templating method.>**

2.3 Synthesis of CuO/ZrO,@S-doped g-C;N, NCs

Ternary CuO/ZrO,@S-doped g-C;N, NCs were prepared by
employing a simple chemical precipitation method. In a typical
synthesis, a mixture of C,HsOH and S-doped g-C;N, was soni-
cated for 2 h, labelled as solution “A”. Applying a chemical
precipitation technique, the CuO solution was prepared from
the desired amount of Cu(NO;),-3H,0 (3.77 g), labelled as
solution “B”. Similarly, ZrOCl,-8(H,0)-3H,O (3.25 g) was
prepared and labelled as solution “C”. To prepare ternary
powder sample, both solutions “A” and “B” were added to

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra08941c

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

Open Access Article. Published on 26 February 2025. Downloaded on 1/20/2026 12:32:57 AM.

(cc)

Paper

Cubic Zirconia

View Article Online

RSC Advances

Calcination

HO

0]

Fig. 1 Schematic illustration for preparation and application processes.

solution “C” and the mixture was stirred for 4 h, while adding
deionized water until the pH reached approximately 10. After
filtering and repeatedly washing with deionized water and
ethanol (98%), the mixture was dried in an oven at 180 °C
overnight. After grinding, the sample was placed in a muffle
furnace at 500 °C and heated at a rate of 5 °C min~" for 3 h. In
previous studies,'®***" it was noticed that S-doped g-C;N, is
stable at 500 °C. After allowing the furnace to cool, the resulting
ternary CuO/ZrO,@S-doped g-C;N, powder sample was ob-
tained. Following similar experimental conditions, the
remaining ternary CuO/ZrO,@S-doped g-CsN,; (5%), CuO/
ZrO,@S-doped g-C3N, (10%) and CuO/ZrO,@S-doped g-C3N,
(20%) NCs and CuO/ZrO,@S-doped g-C3N, (30%) powder
samples were prepared.

© 2025 The Author(s). Published by the Royal Society of Chemistry

2.4 Materials characterization

The synthesized samples were analysed using a suite of advanced
instrumental techniques. The phase structure was identified via
powder X-ray diffraction (XRD) using a Cu Ka radiation target (40
kV, 30 mA) at a scanning rate of 3° min~* with a SHIMADZU XRD-
7000 diffractometer. Sample purity was assessed by Fourier
transform infrared (FTIR) spectroscopy on a PerkinElmer Spec-
trum 65 in the 4000-400 cm ™' range (resolution: 4 cm ™, 4 scans)
using KBr pellets. Optical properties were explored through UV-
Vis diffuse reflectance spectroscopy (DRS) with a PerkinElmer
Lambda 950 spectrometer and BaSO, integrating sphere over
a wavelength range of 200-800 nm. Thermal stability was evalu-
ated using capillary tubes and a digital melting point apparatus,
while thermogravimetric analysis (TGA) and differential thermal

RSC Adv, 2025, 15, 6441-6456 | 6443
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analysis (DTA) were performed with a DTG-60H Shimadzu
thermal analyser under an N, atmosphere (20 mL min~") and
a heating rate of 15 °C min~', spanning from room temperature
to 1000 °C. Photoluminescence (PL) spectra were acquired on
a Cary Eclipse fluorescence spectrophotometer with 324 nm
excitation, using a xenon flash lamp.

To visualize the morphology, energy-dispersive X-ray spec-
troscopy (EDS), selected area electron diffraction (SAED), and
high-resolution scanning electron microscopy (HR-SEM) using
a JEOL 7800F SEM were employed, along with high-resolution
transmission electron microscopy (HRTEM) performed on
a JEOL TEM 2100. Chemical composition was analysed through
X-ray photoelectron spectroscopy (XPS) using a PHI 5000 Ver-
saprobe. Surface area and porosity were assessed using the Bru-
nauer-Emmett-Teller (BET) method with a Micromeritics ASAP
2020 analyser and ASAP 2020 v2.0 software. These methods align
with previous studies and have been validated for reliability.*

2.5 Electrochemical sensor test studies

2.5.1 Preparation of carbon paste-modified sensors for BPA
detection. To evaluate the synthesized semiconductors' perfor-
mance, g-C;N,, S-doped g-C;N, and ternary CuO/ZrO,@S-doped
2-C3N; NCs carbon pastes were modified to detect BPA in
aqueous solution. Briefly, to prepare g-C;N,/CPE, S-doped g-
C;N,/CPE  and CuO/ZrO,@S-doped g-C3;N,/CPE sensors,
a mixture of 0.455 g of graphite powder, 0.025 g of synthesized
NCs, and 0.4 mL of paraffin oil was blended by hand, mixed in
a mortar and pestle, and then inserted in the bottom of a plastic
tube syringe (internal radius: 2 mm and 10 cm long). Electrical
contact was performed by pushing a conductive copper wire into
the end of the glass tube to stick to the carbon paste. When
a fresh electrode surface was required, the new surface was
generated by rapidly extruding a small plug of the carbon paste
with a stainless-steel rod and smoothing the resulting surface on
white paper.

2.5.2 Preparation of BPA solution. A 0.5 mM stock solution
of BPA was prepared by dissolving 70 mg of BPA in 100 mL of
distilled water, then further diluting this to a total volume of
1000 mL in a volumetric flask. From the stock solution, a range
of BPA working solutions were freshly prepared by diluting with
10 mL of phosphate buffer solution (PBS) at pH 7.0. All solu-
tions were made with double distilled water, and measurements
were performed at room temperature (25 + 5 °C).*°

2.6 Density functional theory (DFT) calculations

The DFT calculations were performed using Gaussian 16
program package®” and the B3LYP**** functional together with 6-
311++G(d,p) basis sets** and Grimme's dispersion®” correction.
All the optimized geometries were confirmed to be real minima
by ensuring that there are no imaginary vibrational frequencies.

3. Results and discussion

3.1 Crystal structure, phase, and purity analysis

Fig. 2 shows the XRD patterns of g-C3;N,, S-doped g-C3N,, CuO/
ZrO,@S-doped g-C3N, (5, 10, 20 and 30%) NCs and pure CuO
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Fig. 2 XRD pattern (top) and FT-IR (bottom) of g-CsN4 and S-doped
g-C3Ng4, CuO/ZrO,@S-doped g-CsNy4 (5, 10, 20, and 30%) NCs, pure
CuO and pure ZrO, NPs.

and ZrO, NPs. Two prominent peaks for g-C;N, and S-doped g-
C;3;N, were observed. The distinctive graphitic structure of g-
C;3N, is indicated by the high peak at 26 = 26.99° and the low
intensity peak at 26 = 13.4°, which are both attributed to (100)
and (002) diffraction planes, respectively.*® Compared to g-C;N,,
the prominent peak for S-doped g-C;N, appears sharper and
more intense, suggesting an increased crystallinity. Addition-
ally, the 26 values and the main peak of S-doped g-C;N, were
observed to shift slightly to lower angles, with peaks at 20 =
23.98° (Table S1t) and 26 = 26.99°, indicating the presence of
impurities introduced by sulphur doping. The diffraction
patterns confirmed that the fundamental structure of g-C3N,
remains unchanged in S-doped g-C;N, sheets, consistent with
previous studies.*® No significant diffraction peaks of the CuO
and ZrO, phases were observed in the ternary CuO/ZrO,@S-
doped g-C3N, (5, 10, 20 and 30%) NCs samples through XRD
examination. This may be due to the presence of small amounts
of CuO and ZrO, NPs in the ternary NC, which could not be
synchronized by the XRD instrument.®* However, the presence of
CuO and ZrO, NPs were confirmed by HRSEM, TEM, and XPS
studies. For comparison, when the amounts of CuO and ZrO,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Diffuse reflectance absorption spectra (a) and optical band gap plot transformed by the Kubelka—Munk function (b—h) of pristine g-C3Ny,
S-doped g-C3Ny4, CuO/ZrO,@S-doped g-C3N4 (5%), CuO/ZrO,@S-doped g-CzN4 (10%), CuO/ZrO,@S-doped g-C3Ny4 (30%) NCs, pure CuO,

and pure ZrO.

NPs were increased, the major peaks of S-doped g-C3N4, CuO  Fig. S17). The two XRD patterns of Fig. 1 indicate no change in

and ZrO, became clearly visible, suggesting deposition of both
CuO and ZrO, NPs under similar experimental conditions (see

© 2025 The Author(s). Published by the Royal Society of Chemistry

the basic structure of S-doped g-C3;N,, which is in agreement

wi

th a previous report.**
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The average crystallite sizes of the g-C;N,, S-doped g-C;3N,,
CuO/ZrO,@S-doped g-C;N, (5, 10, 20 and 30%) NCs and pure
CuO and ZrO, NPs were found to be 5.52, 13.23, 13.23, 17.53,
5.80, 3.36, 30.09 and 13.10 nm, respectively, as presented in
Table S1.1 By considering the presence of the skeleton structure
of the ternary NCs, the CuO and ZrO, NPs amount optimization
was conducted by increasing the total amounts of the two metal
oxides (5-30%). As shown in Table S1,} the crystal size of CuO/
ZrO,@S-doped g-C3N, NCs is smaller (3.36 nm) than single g-
C3N, (5.52 nm), S-doped g-C3N, (13.23 nm), CuO (30.09 nm) and
ZrO, (13.10 nm). Cleary, this shows that, increasing the
amounts of CuO and ZrO, NPs, the approximate crystalline size
of ternary NCs decreased from 13.23 nm to 3.36 nm. This
confirms the synergistic effect of the metallic NPs with the host
S-doped g-C;N,4, which is consistent with similar studies re-
ported earlier.*® Additionally, the full width at half maximum
(FWHM) of the ternary NCs is broader than that of the binary
NCs, aligning with the principle that smaller crystallite sizes
lead to broader FWHM values. Complementing the XRD anal-
ysis, FT-IR spectroscopy was performed to examine surface
functional groups and chemical bonding characteristics within
the synthesized NCs. The FT-IR spectra for S-doped g-C;Ny,
CuO, Zr0,, and CuO/ZrO,@S-doped g-C3N, (at 5%, 10%, 20%,
and 30%) NCs are presented in Fig. 2.

The spectrum of S-doped g-C;N, shows absorption bands at
1572 and 1645 cm™ ', which are attributable to the -C=N
stretching vibration modes, while the peaks at 1241, 1319,
1404 ecm ' and 1649 cm ™' are due to the aromatic -C-N
stretching frequency of heptazine derivatives. The peak at
805 cm™' is related to the s-triazine ring modes which are
associated with the condensed CN heterocycles. Sulphur doping
was revealed by the peak at 705 cm ", which is attributed to the
—-C-S stretching vibration.* For pure ZrO,, the absorption peaks
at 509 cm~' and 745 cm™ ' are attributed to the stretching
vibrations of -Zr-O. The peak at 537 cm ™' is the stretching
vibrational band of the -Cu-O bond in monoclinic CuO
crystal.*! It is important to notice that the phases of both CuO
and ZrO, NPs could not be detected in the given ratio in the NC.
The shifting of the major peak in S-doped g-C;N, in CuO/
ZrO,@S-doped g-C3N, NCs positively indicates the incorpora-
tion of impurities, which in this case are CuO and ZrO,.*>*

3.2 Optical property analysis

UV-Vis diffuse reflectance spectra were used to evaluate the
bandgaps (E,) of g-C3N,, S-doped g-C3;N,, CuO/ZrO,@S-doped g-
C;N, NCs, CuO and ZrO, samples. With the loading of S, CuO
and ZrO,, as compared to pristine g-C;N,, a broad absorption
band with a red shift in the hybrid NCs appears from 450 nm to
near 700 nm. This is attributed to structural defects formed in
the NCs that was treated at a given temperature, illustrating
easy incorporation of the impurities, S, CuO and ZrO,, in the g-
CsN,.

Using the band-gap energy relationship (£, = 1240/4,)** and
Kubelka-Munk function,* the variations of all band gaps are
displayed in Fig. 2. The cut line method, which involves drawing
a tangent and a horizontal line parallel to the baseline, was
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employed to identify the absorption wavelength threshold. The
optical band gap energies (E,) of the synthesized samples were
calculated using the Kubelka-Munk equation. Diffuse reflec-
tance (R) was determined using eqn (1).*

(1-R)

F(R) = ~—4 (1)

To obtain Eg, the Kubelka-Munk function was used, as rep-
resented by eqn (2).

(F(R)hvY" = A(hv — Ey) )

Here, A represents the wavelength of the light source, and 4 is
a constant influenced by the transition probability, which
relates to the effective masses of carriers in the valence and
conduction bands. The parameter n is a power index that
corresponds to the optical absorption process and depends on
the nature of electronic transitions within the semiconductor.
For directly allowed transitions, n is set to 1/2. Additionally, 7
denotes Planck's constant; v is the light frequency, and E,
represents the energy gap between the conduction band (CB)
minimum and the valence band (VB) maximum.

From the corresponding K-M plots (Fig. 3), the obvious
change in E; was observed with increasing percentage of CuO
and ZrO, NPs, resulting in further narrowing of the band gap
from 2.66 eV of g-C;N, to 1.85 eV of CuO/ZrO,@S-doped g-C3N,
NCs (30%) (see Table S17). This could be attributed to shifting
to the visible range by doping-induced modification in the
lattices and structure of the S-doped g-C;N, layers that is
observed for Cu/ZrO,@S doped g-C3;N, NCs.*»*® This shows that
it is possible to suitably tune the band gap with the incorpo-
ration of CuO and ZrO, NPs in the S-doped g-C;N, host.

Fig. 4a and b display the photoluminescence (PL) intensities
of pristine g-C3N,, S-doped g-C3;N,, CuO, and ZrO, samples,
which are higher than the PL intensity of the ternary NCs shown
in Fig. 4b. This indicates an optimized electron/hole recombi-
nation rate in the ternary NCs. Notably, CuO/ZrO,@S-doped g-
C3N, (5%) exhibits a higher PL intensity compared to the 10%,
20%, and 30% CuO/ZrO,@S-doped g-C;N, samples (Fig. 4b),
suggesting a shorter charge carrier lifespan due to faster
recombination.

In contrast, the PL intensity decreases for CuO/ZrO,@S-doped
2-C3N, (20%) NC, possibly due to surface defects. However, the
increased PL intensity observed with higher ZrO, and CuO
content suggests an enhanced recombination centre in CuO/
ZrO,@S-doped g-C3N, (30% and 20%) NCs. This is an indication
for the presence of larger number of photon-activated sites on the
ternary NCs. This also implies that the ternary CuO/ZrO,@S-
doped g-C;N, NCs demonstrate a superior capability to sepa-
rate photo-generated charge carriers compared to binary CuO@Ss-
doped g-C;N, (ref. 47) and ZrO,@S-doped g-C3N, NCs,*® which is
advantageous for the planned applications.

3.3 Thermal stability analysis

The thermal stabilities of the S-doped g-C;N, and CuO/ZrO,@S5-
doped g-C3N, samples were investigated from the precursors

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 PL of (a) pristine g-C3Ng4, S-doped g-C3N4, CuO, and ZrO, NCs and (b) CuO/ZrO,@S-doped g-CzN4 NCs.

before calcination by TGA/DTA technique under an N, atmo-
sphere. The thermal stability property of the precursors
(CO(NH,),, (NH,),S0,, ZrOCl,-8H,0, and Cu(NO3),-3H,0) was
studied by thermogravimetric analysis (TGA). It was used to
investigate the thermal stability property of the precursors to
synthesize ternary material. The DTA curve presented in Fig. 5a
reveals an endothermic transformation at 132.19, 237.51 and
380.91 °C. The isomerization, which is the decomposition
reaction of urea and ammonium sulphate, which also occurs as
the weight loss rate increases to its maximum, which produces
gases that will overflow and may absorb heat from the system.

The TGA curve for CO(NH,), and (NH,),SO, (Fig. 5a, blue
line), demonstrates progressive four weight loss steps that
include the evaporation of adsorbed water molecules, the
breakdown of NO; from (NH,),SO, and/or the breakdown of
amorphous parts of CO(NH,),, and finally the decomposition of
the crystalline part to produce carbon, nitrogen, sulphur,
hydrogen, and ash, above 400 °C. Afterwards, the remaining
portion of CO(NH,), and (NH,4),SO, are decomposed very slowly
up to higher temperature. Thus, considering the DTA property
(Fig. 5a) and similar previous studies,***' the temperature at
550 °C was selected for the synthesis of S-doped g-C;N,.*”

As seen in Fig. 5b, the TGA curve begins to stabilize around
400 °C, which is caused by mixing of the precursors,
Cu(NO3), - 3H,0 and ZrOCl, - 8H,0. From the TGA/DTA results it
is observed that the total decomposition temperature of the
precursors ends at >520 °C. 500 °C was therefore chosen for the
synthesis of ternary samples by taking into account the thermal
stability of the precursors.*

3.4 Morphology and composition analyses

The HR-SEM/EDS technique (Fig. 6) was used to examine the
morphology and elemental composition of both the inner and
outer surfaces of the synthesized heterostructured g-C;Ny, S-
doped g-C3N,, and CuO/ZrO,@S-doped g-C3N, NCs. This
approach offered detailed insights into the size, shape,
elemental distribution, crystallography, and other physical and
chemical characteristics through highly magnified imaging.

© 2025 The Author(s). Published by the Royal Society of Chemistry

0 T T T T
400 450 500 550
Wavelength (nm)
-90 237.510C (@) — DTA(i) 2
-804 @) -79.42V —TeA) | o
-70
-60 4 Weight Loss -13.148 img -2
o -97.465 ¢
—_ -45.19 pVvj| S
?:5'40' Al 38001 oc -6 E
< -30 -27.79 v Weight Loss-6.611 ng g
) ’ [
20+ Weight Loss-6.596 mg
-10 -48.895 % --10
0 {Veight Loss-0.059 rhg 0 L .12
-0.437 ¢
+10 — 14
+20 r r T r
0 200 400 600 800 1000
Temperature (°C)
.70 Weight Loss b e DTA(i) 2
_235.44 °CWeight Loss14.2747mg . o~ | o
1.67.90pV -94.149% .
)
331.13°C )
-44.94 pV )
- -6 é
5 &
|_
--10
--12
_______ --14
10 - (i)
T T T T '1 6
0 200 400 600 800 1000

Temperature (°C)

Fig. 5 TGA (blue)/DTA (black) thermogram for mixture of precursors
(@) CO(NHy)2, and (NH4)2SO4. (b) CO(NH,),, (NH4)2S04, Cu(NOs3),-
-3H,0 and ZrOCl,-8H,0 before calcination.

The HR-SEM image of g-C;N, at various magnifications reveals
maximum porosity, specific surface area (Table S1t), an amor-
phous structure, and irregularly formed particles, consistent
with findings in other studies.*!
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Fig. 6 HRSEM images of (a) bulk g-C3Ny, (b) S-doped g-C3Ny, (c) cubical-shaped CuO NPs, (d) monoclinic-shaped ZrO, NPs, (e) SED image
CuO/ZrO,@S-doped g-C3N4 NCs at 1 um, and (f) SED image CuO/ZrO,@S-doped g-C3zN4 NCs at x200 pm.

CuO/ZrO,@S-doped g-C3N, NC is made up of three different
types of morphological microspheres, including a thin straight
bar, i.e. rod-shaped S, flower-shaped S-doped g-C;N, (Fig. 6c
and d), cubic-shaped CuO and monoclinic-shaped ZrO, NPs.
These findings support the fact that CuO/ZrO,@S-doped g-C3;N,
NCs were successfully formed. This form of hybrid hetero-
structured composite enhances electron accumulation on the
conduction band, sustaining electron flow and reducing the
rate of electron-hole recombination.?® The cubical-shaped CuO
(Fig. 6¢) and the monoclinic-shaped ZrO, (Fig. 6d) NPs exhibit
a morphology that shows the particles aggregated together to

6448 | RSC Adv, 2025, 15, 6441-6456

form irregular shapes and variable packing densities of CuO/
ZrO,@S-doped g-C3N, NC (Fig. 6e). Interestingly, the HR-SEM/
SED analysis (Fig. 6a-f) additionally verified the presence of N,
C, S, O, Cu, and Zr elements within the CuO/ZrO,@S-doped g-
C3N, NCs, providing evidence for the likely presence of CuO and
ZrO, nanoparticles, which was challenging to confirm through
the XRD study. Such heterostructures are important to enhance
electron flow and reduce the recombination rate, which is
favourable for catalytic reduction, photocatalytic degradation of
molecules and electrochemical processes.*®

© 2025 The Author(s). Published by the Royal Society of Chemistry
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To ascertain the existence of CuO and ZrO, NPs in the S-
doped g-C3N, substrate, TEM images were provided for
ternary NCs CuO/ZrO,@S-doped g-C3;N,; (30%). Small NPs
dominate the structure. The ZrO, NPs were covered by black
coloured S-doped g-C3;N,, and the small CuO NPs are seen in
white colour (Fig. 7a). Even though it is difficult to determine
the spotty diffraction rings of the selected area electron
diffraction (SAED) pattern for CuO and ZrO, NPs, it is possible
to differentiate the NPs constructing the composite on the TEM
image (Fig. 7b). From the PL and XPS data, it can be concluded
that the presence of CuO, ZrO, and S in the synthesized NCs
showed surface defects. Here, particle size distribution analysis
shows the sizes of the synthesized NCs found to be in the
nanometre range (~4-30 nm), which aligns with the XRD
analysis. In conclusion, the development of ternary NCs, which
was challenging to see in the XRD investigation, is clearly visible
in the TEM pictures and is consistent with the findings of
HRSEM and XPS.

RSC Adv, 2025, 15, 6441-6456 | 6449


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra08941c

Open Access Article. Published on 26 February 2025. Downloaded on 1/20/2026 12:32:57 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

RSC Advances Paper

The use of S, CuO and ZrO, NPs resulted in increased surface
area and pore volume, with profound decrease in pore diameter
as compared to g-C;N, (Fig. 8b). Thus, when the amount of CuO
and ZrO, is 30%, the surface area increased to 46.5 m*> g ' as
compared to 28.2 m* g~ ' in CuO/ZrO,@S-doped g-C;N, (5%). As
shown in Table S1,f the CuO/ZrO,@S-doped g-C;N, NCs'
surface area showed an increase in specific surface area with
decrease in crystallite size, and profound change in pore
volume.

3.5 Brunauer-Emmett-Teller (BET) analysis

The BET (Brunauer-Emmett-Teller) method was used to measure
the surface areas of the samples, and the pore sizes were derived
from the pore volume distribution curves using the BJH (Barrett—
Joyner-Halenda) technique. For ternary NCs, the specific adsorp-
tion of N, as well as the pore volume increased when the amount of
CuO and ZrO, increased (see Fig. 8a and b). The sorption of ternary
samples exhibits type IV isotherms with hysteresis loops (Fig. 8a),
which mostly corresponds to the mesoporous nature of materials.
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Fig. 10 High-resolution spectra of (a) O 1s, (b) Zr 3d, (c) Cu 2p of CuO/ZrO,@S-doped g-CsN4 NC, and high-resolution spectra for (d) Cu 2p of
pure CuO and (e) Zr 3d of pure ZrO,.
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3.6 X-ray photoelectron spectroscopy (XPS) analysis

XPS was employed to confirm the oxidation states of CuO and
ZrO,. The survey spectrum of g-C;N, revealed the composition
of carbon and nitrogen exclusively (Fig. 9). The observed peaks
at 288.1 eV and 398.7 eV correspond to C 1s and N 1s in g-C3Ny,
respectively.®* These results are in good agreement with re-
ported values for bonds in g-C3N,.*'*** In the C 1s region of the
three nanocomposites, there are peaks observed at 284.6 eV for
2-C3N,.> Similar C 1s peaks were also observed for S-doped g-
C3N, (Fig. 9b) and CuO/ZrO,@S-doped g-C;N, (Fig. 9¢). These
peaks were previously assigned to S-doped g-C3N,, sp>-bonded
carbon (N=C=N), and m-excitation, respectively.>> The S-doped
2-C3;N, nanocomposite reveals distinct peaks for C 1s and N 1s,
with binding energies similar to those of pure g-C;N,. Sulphur
(S), however, is not observed, likely due to its low concentration,
which is below the detectable range of the analytical instrument
used. The survey spectra for CuO/ZrO,@S-doped g-C3N, nano-
composites confirm the presence of core elements, including C
1s, N 1s, Cu 2p, O 1s, and Zr 3d, indicating a substantial
interaction between CuO, ZrO,, and S-doped g-C3N,.*'**°
CuO/ZrO,@S-g-C3N, NCs are depicted in Fig. 10. The high-
resolution spectra of O 1s (Fig. 10a) reveal two distinct peaks.
The low binding energy peak at 529.2 eV is attributed to lattice
oxygen in Zr-0,***** while the higher binding energy peak at
530.5 eV arises from the lattice oxygen of Cu-0.>* Additionally,
the O 1s signal at 529.2 eV is assigned to Zr-O bonds associated
with O ions in monoclinic Zr0,.>* Fig. 10b exhibits the Zr
3ds, and Zr 3d;, peaks of the CuO/ZrO,@S-doped g-C;N, NCs,
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showing peaks at 183.3 eV and 181 eV, respectively. These peaks
correspond to the Zr 3d spin-orbit split peaks, with previous
studies assigning the peaks around 184.1 eV and 181.7 €V to Zr
3ds/, and Zr 3dj,, respectively.®*®

Fig. 10c shows the presence of a Cu-O bond in CuO/ZrO,@Ss-
doped g-C3;N,, with the spin-orbit split peaks at 931.6 eV for Cu
2pss and 951.4 eV for Cu 2p, ,.** Notably, these peaks are shifted
compared to those observed for pure CuO (Fig. 10d), 953.6 eV and
933.7 eV, respectively. The Zr 3ds, and Zr 3d;, peaks of pure
ZrO, (Fig. 10e) are observed at 183.8 eV and 181.5 eV, respectively,
indicating peak-shifting upon incorporation of CuO in CuO/
ZrO,@S-doped g-C3N, (Fig. 10c). XPS, therefore, confirms the
presence of nitrogen, carbon, copper, oxygen and zirconium
elements in the CuO/ZrO,@S-doped g-C;N, NC.>*

3.7 Electrochemical behaviour of BPA at carbon paste-
modified electrodes

BPA was employed as a model pollutant to evaluate the sensor
capabilities of the synthesized NCs. The Carbon Paste Electrode
(CPE) was utilized to assess the sensing performance of ternary
NCs for BPA detection. Electrochemical studies were conducted
on various modified electrodes, including g-C;N,/CPE, S-doped
2-C3N,/CPE, CuO/ZrO,@S-doped g-C3N, (30%)/CPE, and the
bare CPE. Experiments were carried out using a BPA concen-
tration of 0.1 nM, a scan rate of 50 mV s~ *, and a pH of 5. The
results are depicted in Fig. 11. It was evident from the results
that, except for the bare CPE, all the modified CPE electrodes
exhibited well-defined cyclic voltammetry (CV) peaks indicative
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of various electron transfer capabilities. The bare CPE demon-
strated limited electron transfer efficiency compared to the
modified electrodes, mainly because its poor electrical
conductivity hampers the electron transfer process for BPA on
its surface. In contrast, the ternary CuO/ZrO,@S-doped g-C3N,
(30%)/CPE electrodes exhibited distinct peak currents, signi-
fying improved electron transfer performance, higher conduc-
tivity, and an increased surface area provided by the
nanocomposites.

3.7.1 Effect of scan rate. To determine whether the elec-
trochemical response mechanism was diffusion-controlled or
not, experiments were conducted at varying scan rates (Fig. 11).
An increase in peak current with the scan rate indicated
enhanced electrocatalytic activity at the modified electrode's
surface. In this context, the peak current increased linearly with
the square root of the scan rate, suggesting that BPA oxidation
at the modified CPE electrodes follows a diffusion-controlled
process.”” In comparing peak current intensity among the
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Fig. 13 Proposed electrochemical oxidation reaction mechanism of BPA at CuO/ZrO,@S-doped g-CzN,4 (30%) carbon paste electrode (CPE).
The change in Gibbs free energies were calculated using B3LYP-D3/6-311++G(d,p).
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modified electrodes, the ternary NC CuO/ZrO,@S-doped g-C5N,
(30%)/CPE exhibits the highest peak current of —1.152 x 107> A
at a potential of 0.166 V. The slope of the CuO/ZrO,@S-doped g-
C3N, (30%)/CPE curve suggests that electron transfer is more
rapid at CuO/ZrO,@S-doped g-C;N, (30%) than at the pristine g-
C3N,/CP and S-doped g-C;N,/CP electrodes.?

3.7.2 Effect of concentration of bisphenol A. The quanti-
tative chemical analysis potential of the modified electrodes
was assessed by examining the relationship between anodic
current and BPA concentration. Electrochemical measurements
were performed on the modified CPEs across various BPA
concentrations, with a scan rate of 50 mV s~ ' over a potential
range from —0.5 V to 0.9 V (Fig. 12). The modified CPE exhibited
a stable response for BPA detection. Cyclic voltammetry (CV)
cycles displayed small anodic peaks at the CuO/ZrO,@S-doped
g-C3N, (30%)/CPE, indicating reliable electrochemical activity.
Generally, comparing with other previously reported results®®
the CuO/ZrO,@S-doped g-C3N, (30%)/CPE system demon-
strated good electrocatalytic performance, achieving reproduc-
ibility with a 1.7 uM detection limit and 2.1 pM limit of
quantification.

The oxidation process is a multistep electron-transfer
process. As illustrated in Fig. 13, the oxidation of BPA involves
the transfer of two electrons, meaning that two protons are
involved in the electrochemical oxidation reaction of BPA.>*”
The B3LYP calculated results indicate that the first step is an
endergonic reaction. It was predicted that this is the main step
that needs to be initiated by the NC, probably the rate deter-
mining step. The next step is an exergonic reaction with
a change in Gibbs free energy of —18.64 kcal mol~" which
involves the transfer of two electrons to the electrode, forming
a diradical species. The third step involves transfer of additional
two electrons, forming a dicationic species. Once the dicationic
species is formed, it then reacts with two OH™ ions to form the
final product with a change in Gibbs free energy of
—145.76 keal mol .

4. Conclusions

This study developed a gas-templating method to achieve one-
step synchronous nano-structuring of S-doped g-C;N,. The
process utilizes bottom-placed (NH,),SO, as both a bi-
functional gas template and a doping agent, enabling the
transformation of top-placed urea into S-doped g-C;N, at 550 °
C. As the urea precursor, hydrated copper nitride and hydrated
zirconium oxychloride are inexpensive and easily available,
while the synthesis method is facile. We thus synthesized
a ternary CuO/ZrO,@S-doped g-C3;N, NCs efficiently and
successfully. The crystallite size of the generated NCs was
confirmed to be in the nanometre range by using the XRD and
TEM investigations. The findings from UV-Vis/DRS, and PL
indicate that, compared to pristine samples, the ternary NCs
showed the best electron-hole recombination rate and band
gap energy. BET analysis of the pore size distribution in the
samples revealed that most pores exhibit type IV adsorption
isotherms and type H3 hysteresis loops, with sizes ranging from
2 to 50 nm. The combination of S-doped g-C3;N,, CuO, and ZrO,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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creates materials with beneficial properties, including a large
specific surface area, mesoporous structure for enhanced
adsorption, controlled electron-hole recombination, lower
band gap energy, and improved crystallinity. Additionally, the
ternary nanocomposites effectively catalysed the electro-
chemical oxidation of BPA, outperforming both g-C;N, and S-
doped g-C3;N,. This enhancement is primarily due to the
inclusion of CuO and ZrO,, which introduces larger number of
photon-activated active sites on the CuO/ZrO,@S-doped g-C3N,
surface. The size of photon-activated site was estimated based
on a decrease in the intensity of photoluminescence, which
indicates a higher number of photon-activated sites contrib-
uting to enhanced charge separation. In addition, the large
surface area of the NCs also provides more exposure allowing
more BPA molecules to interact with the modified sensor. The
heterojunction structure minimizes charge carrier recombina-
tion, fine-tunes the band gap energy, and provides additional
active sites, thereby significantly maximizing electrochemical
oxidation efficiency for BPA. This study addresses existing gaps
in the literature by employing low-cost, readily available mate-
rials and a cost-effective synthesis method. Our results
demonstrate the potential for scalable applications of such
nanocomposites for environmental remediation.
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