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The blending proportion of cut tobacco significantly affects the intrinsic quality of the cigarette product.
Variability in the moisture content of cut tobacco markedly influences its near-infrared (NIR) spectral
signature and the accuracy of blending proportion prediction models. To address this critical challenge,
spectral data were systematically collected from tobacco samples at various moisture levels. Four partial
least squares regression (PLSR)-based correction methods were implemented to mitigate the moisture
effect: global correction, orthogonal signal correction (OSC), generalized least squares weighting
(GLSW), and dynamic orthogonal projection (DOP). The results indicate that moisture content strongly
influences the diffuse transmission spectrum of cut tobacco. A model calibrated at a fixed 12.15%
moisture content achieves satisfactory prediction accuracy under that specific condition but exhibits
substantial errors when applied to samples with different moisture levels. This underscores the necessity
of correcting for moisture effects to establish a more robust and generalizable blending proportion

. 4 16th D ber 2024 prediction model. Among the correction methods, DOP yielded the most promising performance,
eceive th December . - N . .
Accepted 31st October 2025 enhancing the coefficient of determination for prediction (Ry) from 0.39 to 0.90 and decreasing the root
mean square error of prediction (RMSEP) from 5.50% to 2.22% compared to the uncorrected model.

DOI: 10.1035/d4ra08806a These findings have significant practical implications for advancing the application of blending
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1. Introduction

The blending proportion of cut tobacco is a critical process in
tobacco manufacturing, significantly influencing the intrinsic
quality and sensory characteristics of the final product.”* Near-
infrared spectroscopy (NIR) offers a fast, simple, and non-
destructive method for inspecting the blending proportion of
cut tobacco in the tobacco industry.>* While previous studies
have demonstrated the feasibility of NIR for this application,
their practical utility in dynamic production environments
remains limited. For instance, Hu* employed PLSR with NIR to
estimate cut tobacco content in cigarette blends, but required
a large calibration set to ensure model stability and accuracy.
Similarly, Liu® utilized linear non-negative regression coeffi-
cient regression combined with NIR to determine the cut
tobacco blending proportion, but the model was validated only
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proportion prediction in the tobacco industry.

under offline conditions for a single brand of tobacco. These
limitations highlight the challenges of applying NIR models
directly in real-world production scenarios. A major challenge
lies in the high susceptibility of cut tobacco moisture content to
environmental humidity, which can significantly alter the
absorption bands and intensities associated with water's O-H
groups.® When models developed under specific moisture
conditions are applied to samples with different moisture
levels, prediction accuracy often deteriorates.” Although
temperature-compensation strategies have been explored for
models of fruit soluble solids,® analogous work for tobacco
moisture correction is scarce.

To address these challenges, this study focuses on investi-
gating the effects of moisture content and developing robust
correction methods for NIR models used in detecting internal
quality indicators of cut tobacco. The ultimate goal is to
establish models that maintain high accuracy, stability, and
adaptability across varying moisture conditions. The main
moisture content correction methods include global correction
modeling,® exclusion of moisture-sensitive spectral bands,"
spectral correction techniques,' formula correction methods"
and multi-step modeling incorporating moisture content

RSC Adv, 2025, 15, 50045-50052 | 50045


http://crossmark.crossref.org/dialog/?doi=10.1039/d4ra08806a&domain=pdf&date_stamp=2025-12-15
http://orcid.org/0009-0009-1083-2541
http://orcid.org/0000-0002-8827-9354
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra08806a
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA015058

Open Access Article. Published on 15 December 2025. Downloaded on 2/10/2026 10:13:50 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

information.”™ Global moisture correction modeling improves
model robustness by incorporating moisture variations into the
model. However, the accuracy of the model depends heavily on
the size and representativeness of the calibration set, and the
model's predictive power may be limited if the range of mois-
ture variation is not adequately covered.” The method of
excluding moisture-sensitive spectral bands uses algorithms
such as simulated annealing,” successive projections algo-
rithm' and genetic algorithm' to remove bands sensitive to
moisture. While this helps reduce moisture interference, it may
also remove important chemical information, thereby reducing
model precision. Formula-based correction methods adjust for
the effects of moisture through empirical formulas or by
introducing intermediate variables related to moisture.
However, indirect modeling using these variables can introduce
secondary errors. Over-reliance on these variables can lead to
cumulative errors and affect the model's final accuracy.'” Multi-
step modeling that incorporates moisture content as a key
variable in the modeling process progressively corrects for
moisture effects to improve model prediction accuracy.
However, the use of intermediate variables in such models may
introduce additional errors, especially when moisture is used as
an intermediate variable, potentially leading to error propaga-
tion and inaccurate predictions.”® In contrast, spectral correc-
tion techniques, such as OSC,"” DOP,"® and GLSW,? offer a more
direct approach by transforming moisture-affected spectra to
standard moisture conditions, effectively reducing the impact
of moisture on model accuracy.

Based on this analysis, the study aims to achieve the
following objectives: (1) to quantitatively elucidate the inter-
ference mechanism of moisture content on the NIR spectra of
tobacco; (2) to construct and evaluate new models using upda-
ted methods such as Global correction, OSC, DOP, and GLSW;
(3) to establish a robust and moisture-adaptive NIR model for
accurately determining the blending proportion of cut tobacco.

2. Materials and methods
2.1 Materials

In this study, a specific cigarette brand produced in Jiangxi
Province was selected as the research subject. To simulate the
industrial blending process, a predetermined quantity of cut
tobacco and tobacco stem was collected, homogenized, and
then stored separately in sealed bags before being sent to the
laboratory for further analysis. Considering that the typical
proportion of tobacco stem blended in cigarette production is
generally below 20%, the experiment established a 25-level
blending matrix with tobacco stem proportions ranging from
1% to 25% by mass. For each blending level, 160 samples were
prepared and subsequently divided into three portions: Portion
A (20 samples), Portion B (120 samples), and Portion C (20
samples). Each sample weighed 10 grams, forming a compre-
hensive baseline blending matrix. To account for the moisture
variation of cut tobacco in actual production, where the mois-
ture content typically fluctuates around 12%, occasional
extreme cases may see moisture content levels as low as 5% or
as high as 18%. Samples from portions A, B, and C underwent
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three different moisture treatments: natural air-drying for
a predetermined period, no treatment, and controlled moisture
adjustment by spraying an appropriate amount of water. This
was followed by a 24 hours equilibration in sealed bags at
a constant temperature and humidity to ensure uniform mois-
ture distribution. The actual moisture contents of the prepared
samples, measured using the oven-drying method, were stan-
dardized to 5.08%, 12.15%, and 18.09%, respectively. Following
preparation, all samples were placed in sealed bags to prevent
any further moisture exchange.

For model development and validation, the following sample
sets were designated: calibration set: 100 samples selected from
the 12.15% moisture Portion B. Prediction set: 10 samples at
each of the three moisture levels, equally selected from the
corresponding moisture-treated portions. Update set: another
10 samples at each of the three moisture levels, equally selected
from the corresponding moisture-treated portions, intended for
model updating. All sample preparation and subsequent
experiments were conducted in a controlled environment of
constant temperature and humidity to mitigate the impact of
tobacco's hygroscopic nature on the measurement results.

2.2 NIR spectral acquisition

NIR testing was conducted at the Jiangxi Province Agricultural
Product Optoelectronic Testing Technology and Equipment
Engineering Laboratory, using a Bruker Fourier Transform
Infrared Spectrometer (TENSOR 37) from Germany. Measure-
ments were taken in standard transmission mode, covering
a spectral range of 10000 to 4000 cm ™" with a resolution of
4 cm™". Each sample was scanned for 16 seconds. Prior to
spectral acquisition, the spectrometer underwent a 30 minutes
preheating phase. The equilibrated samples were then placed
into sample cups, compacted, and rapidly analyzed to collect
spectra. The rotational feature of the sample cups was utilized
to minimize the impact of sample inhomogeneity by collecting
three spectra from different regions of the same sample. To
prevent interference from external environmental factors, the
bottom of the sample cup was firmly pressed against the spec-
trometer's measurement head. An average of the three spectra
was calculated to obtain the final averaged spectrum.

2.3 Data processing and analysis

The spectral data from tobacco samples were imported into
MATLAB and Unscrambler software to establish PLSR models
for predicting the blending proportion of cut tobacco. The
performance of these models was evaluated using several
statistical indicators, including the coefficient of determination
for cross-validation and prediction (R* and Ry,), the root mean
square error for cross-validation and prediction (RMSECV and
RMSEP). Generally, a higher R,,, a lower RMSEP indicate supe-
rior predictive accuracy.

To mitigate the adverse effects of moisture content on the
predictive accuracy of the model, this study employed several
advanced spectral correction methods in conjunction with the
PLSR algorithm.* These methods included Global correction,
OSC, DOP, and GLSW (The framework of predicting the cut

© 2025 The Author(s). Published by the Royal Society of Chemistry
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tobacco blending proportion in Fig. 1). (1) Global correction:
this approach constructs a single, comprehensive calibration
model by incorporating a representative subset of samples from
all moisture content levels. The resulting model inherently
accounts for variations caused by moisture and other external
factors, allowing it to be directly applied to predict samples with
different moisture contents.?® (2) OSC: the OSC algorithm aims
to standardize spectral data acquired under varying conditions
by eliminating spectral variations that are not correlated with
the target analyte concentration. It projects the spectral data
into a subspace where the variations due to moisture content
and other interferences are orthogonal to the predictive infor-
mation, thereby enhancing the model's robustness and speci-
ficity. (3) DOP: unlike methods that require a set of standard
reference samples, DOP enables model transfer without them,
requiring only partial reference measurements under new
conditions. It projects the spectral data into a low-dimensional
subspace, effectively separating the variations caused by
instrument differences and moisture content effects from the
predictive information.*” This approach, derived from External
Parameter Orthogonalization, allows a recalibrated model to be
directly applied to new samples without the need for a complete
re-calibration.”® (4) GLSW: the GLSW algorithm constructs
a weighting matrix by analyzing differences in the spectral data
(X matrix) corresponding to similar concentration values (y
matrix). This matrix is then utilized to weight the spectral data,
effectively eliminating systematic variations in the X matrix
caused by external variables such as moisture content, thereby
enhancing the model's predictive accuracy.

3. Results and discussion
3.1 Tobacco spectra at different moisture contents

To investigate the effect of moisture on the spectra, we collected
tobacco samples with varying moisture levels and analyzed their
NIR spectra. Fig. 2 illustrates the raw averaged spectra (A) and
the first derivative transformed averaged spectra (B) for various
moisture contents. In panel A, the most pronounced features
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are the combination absorption band of water's O-H group at
1448 nm and its overtone band at 1942 nm. Moreover, combi-
nation bands linked to the C-H group, appearing at 2222-
2381 nm and their overtones at 1667-1786 nm, are also
distinctly visible across different components.”® The applica-
tion of the first derivative transformation, as shown in panel B,
effectively corrects baseline drift. However, this technique does
not eliminate spectral deviations caused by variations in
moisture content. The most significant differences in the
sample spectra are mainly seen as variations in the absorption
intensity at the 1942 nm band. Although the spectral shape and
trend of the same tobacco largely remain consistent across
different moisture contents, the spectral intensity varies
considerably. This suggests that the NIR spectra of the collected
tobacco samples contain information not only related to their
intrinsic components but also to their moisture content,
resulting in corresponding spectral variations when the mois-
ture content changes.

3.2 Effect of moisture content on the prediction model

A PLSR calibration model was developed using samples with
a moisture content of 12.15%. The K-S algorithm classified the
2500 experimental spectra into calibration and validation sets,
comprising 1750 and 750 spectra, respectively. This algorithm
was selected because it maximizes the Euclidean distances
among multivariate spectra, resulting in a calibration set that
spans the moisture and blending proportion space more evenly
than random or duplex selection methods, thereby enhancing
the model's extrapolation reliability. To prevent overfitting or
underfitting, the optimal number of latent variables (LVs) was
determined by optimizing the model within the range of 1 to 20.
Specifically, the RMSECV was evaluated across this range of 1 to
20 latent variables, and ultimately, the value that minimized
RMSECV without causing overfitting was selected. As shown in
Fig. 3(A), the model developed at 12.15% moisture content
exhibited strong predictive performance, with a high coefficient
of determination (R*) of 0.94 for the calibration set and a R,, of
0.91. The RMSEC and RMSEP were both 2.21%. The results

- w’ L j [\\ )
Spectral analysis ‘
Global calibration
Spectral correetion
methods

Regression model establishment

Fig. 1 The framework of predicting the cut tobacco blending proportion.
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tobacco moisture levels of 5.08%, 12.15%, and 18.09%.

indicate that the model established under a constant moisture
condition of 12.15% can achieve accurate and reliable predic-
tions. However, when applied to mixed moisture content
samples (Fig. 3(B)), the model's performance significantly
declines. The R, for the validation samples' blending ratio
prediction was 0.39, and the RMSEP was 5.50%. Suggesting that
the model's prediction error at 12.15% increased and the
accuracy of the validation samples decreased. This is primarily
due to the significant impact of moisture content on the NIR
spectra of the samples, which results in a decline in the
predictive performance of the single moisture content model at
12.15% for mixed moisture content samples.

To further understand the spectral variations in blend
samples with different moisture contents, principal component
space plots were generated. These plots depict the blend
samples from both the 12.15% moisture modeling set and
prediction set (Fig. 3(C)), as well as the blend samples from the
modeling set and a new prediction set after the addition of three
moisture gradients (Fig. 3(D)). Fig. 3(C) demonstrates that the
modeling set sufficiently covers the prediction set, indicating
strong predictive performance. Conversely, Fig. 3(D) illustrates
that the samples within the modeling set do not adequately
encompass the compositions of the new prediction set after
introducing varying moisture contents, leading to diminished
model performance. This finding suggests that while the
predictive model is effective for blend samples under consistent
moisture conditions, its performance declines for samples with
differing moisture levels. Thus, it is necessary to explore rele-
vant spectral correction methods to mitigate the impact of
moisture on the predictive model for cut tobacco blend
prediction.
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(A) Averaged absorption spectra for the three moisture levels. (B) 1D spectra for the three moisture levels. In the A, B, and C represent

3.3 Model correction

3.3.1 Global correction. The global correction method
utilizes sample spectra with varying moisture content to
establish a quantitative analysis model. Samples from the
update set were used as standard samples and were incorpo-
rated in different proportions into either the original calibra-
tion set or the calibrated spectra. The final number of samples
introduced into the modeling set was determined by moni-
toring changes in the RMSEP value. As shown in Fig. 4(A) and
(B), the inclusion of different quantities of update set samples
generally led to enhancements in prediction outcomes. When
all update set samples were included, a favorable prediction
result was achieved (R, = 0.90, RMSEP = 2.18%), due to the
improved coverage of the prediction set by the new modeling
set. Interestingly, incorporating just 20% of the update samples
yielded an optimal prediction (R, = 0.89, RMSEP = 2.31%), with
only minor improvements observed in R, and RMSEP upon
adding more samples. This outcome is consistent with Achar-
ya's findings.** Although this method is straightforward and
somewhat alleviates the impact of moisture on model predic-
tions, its accuracy significantly relies on the quantity and
representativeness of the calibration set data. The proportion of
new samples added remains uncertain, and a considerable
amount of redundant information persists.® Therefore, further
research is required to explore alternative methods that can
effectively eliminate the influence of moisture on the prediction
model.

3.3.2 Generalized least squares weighting. The GLSW
algorithm involves the adjustment of the weighting parameter
«, which determines the extent of the weighting effect. The
parameter typically ranges from 0.0001 to 1, with a smaller
a value corresponding to a stronger filtering effect. The optimal
parameter combination was determined to be « =1 and LV =5.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(A) Scatter plot of single moisture content model prediction results at 12.15%. (B) Scatter plot of blending proportion predictions for mixed

moisture content samples from a single moisture content model at 12.15%. (C) The score plot of the principal component analysis (PCA) for
absorption (12.15% moisture modeling and prediction sets). (D) The score plot of the principal component analysis (PCA) for absorption
(modeling set with added moisture gradients and a new prediction set). Note: In C and D, black denotes the modeling set, while red indicates the

prediction set.

The prediction results are presented in Fig. 4(C)(D), where the
R, increased to 0.40, and the RMSEP decreased to 5.4%. This
finding is inconsistent with the study by Liu et al.** suggesting
that the advantages observed in handling moisture variations in
granular soils do not directly translate to the case of tobacco.
3.3.3 Dynamic orthogonal projection. The objective of the
DOP algorithm is to derive a spectral matrix that is independent
of moisture content using the difference matrix (D). The
parameter optimization process is analogous to that of the
GLSW algorithm. As depicted in Fig. 4(E) and (F), the optimal

© 2025 The Author(s). Published by the Royal Society of Chemistry

combination of parameters was a g value of 20 and an LV value
of 5. The prediction outcomes are illustrated in Fig. 4(F), where
the R, improved to 0.90, and the RMSEP was reduced to 2.22%.

3.3.4 Orthogonal signal correction. The OSC algorithm is
used to eliminate spectral variations in the spectral matrix that
are uncorrelated with the target analyte and the blending
proportion, thereby removing irrelevant information that could
affect the prediction. The outcomes of predicting the blending
proportion of validation set samples using the OSC model are
depicted in Fig. 4(G). The application of the OSC algorithm

RSC Adv, 2025, 15, 50045-50052 | 50049
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Fig. 4 (A) The relationship between RMSEP and RP values in global
correction and the proportion of new samples added to the modeling
set. (B) Scatter plot of global correction prediction results. (C)
Prediction results of the GLSW correction model, with variation in
RMSEP based on the D1 difference matrix. (D) Scatter plot of GLSW
correction model prediction results. (E) Prediction results of the DOP
correction model, with variation in RMSEP based on the D1 difference
matrix. (F) Scatter plot of DOP correction model prediction results. (G)
Scatter plot of predicted results from the OSC correction model. (H)
External validation scatter plot of blending proportion predictions for
cut tobacco.

significantly enhanced the model's predictive accuracy,
increasing the R, to 0.67, decreasing the RMSEP to 4.05% for
the validation set samples. It is clear that the OSC model
exhibits enhanced performance compared to both the original
spectral model and the global correction model.
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3.4 External validation

To address concerns regarding external validation, we con-
ducted an additional experiment using a new batch of samples
collected three months later from the same production line but
from different tobacco lots. These samples were prepared
following the same protocol and measured on a different Bruker
TENSOR 37 unit located at a different laboratory. A total of 90
independent samples. The previously established DOP-
corrected PLSR model was directly applied to predict the
blending proportions of cut tobacco for these new samples,
without any re-calibration. As depicted in Fig. 4(H),The external
validation yielded: R, = 0.87, RMSEP = 2.45%. These results are
consistent with the internal test set performance (R, = 0.90,
RMSEP = 2.22%), demonstrating that the DOP-corrected model
generalizes well across different batches, time points, and
instruments. Furthermore, we performed a ¢-test between pre-
dicted and reference values, and no significant bias was found
(p > 0.05), confirming the accuracy and robustness of the model
under external conditions. Future research could investigate the
use of larger validation sets to further substantiate the model's
robustness across a wider range of conditions.

3.5 Model comparison

The prediction results for the single moisture content model, as
well as the Global, OSC, GLSW, and DOP correction models, are
summarized in Table 1. These results indicate that all moisture
content correction methods enhance the model's predictive
capability compared to the uncorrected model, with the cor-
rected models exhibiting reduced prediction errors and
improved adaptability to varying moisture conditions. Among
the correction approaches, the DOP method achieved the
highest performance, yielding a validation set R, of 0.90 and an
RMSEP of 2.22%. This underscores the superior moisture
content correction ability of the DOP method relative to the
Global, OSC, and GLSW methods.

The key advantage of the DOP method lies in its ability to
eliminate non-target variations in spectral modeling caused by
physical factors, chemical properties, and environmental
interferences. Once applied, this method requires only a small
set of reference measurements under new physical, chemical, or
environmental conditions to recalibrate the model, without the
need for extensive additional standard measurements. This
flexibility makes the DOP method particularly valuable in
practical applications, especially when dealing with variable
factors such as moisture, temperature, external lighting condi-
tions, or changes in sample state. The key advantage of the DOP
method lies in its ability to eliminate non-target variations in
spectral modeling caused by physical factors, chemical prop-
erties, and environmental interferences. Once applied, this
method requires only a small set of reference measurements
under new physical, chemical, or environmental conditions to
recalibrate the model, without the need for extensive additional
standard measurements. This flexibility makes the DOP
method particularly valuable in practical applications, espe-
cially when dealing with variable factors such as moisture,
temperature, external lighting conditions, or changes in sample

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Prediction results of the PLSR model for cut tobacco blending proportion using different moisture content correction methods

Calibration Prediction
RMSEP
Method Parameters R RMSECV (%) R, (%)
Single moisture content LVs =9 0.94 1.78 0.39 5.50
Global LVs =38 0.93 1.89 0.90 2.18
OSsC LVs =6 0.85 2.83 0.67 4.05
GLSW LVs=5,a=1 0.86 3.34 0.40 5.40
DOP LVs =5, K =20 0.93 1.89 0.90 2.22

state. Therefore, future studies could explore the application of
the DOP method to recalibrate new datasets for other critical
tobacco quality indicators under these varying conditions,
thereby further enhancing the robustness and applicability of
the models. The validation scope can also be extended to
multiple brands and different processing environments to
further evaluate the universality of the calibration method.

4. Conclusions

In this study, we established a blending proportion prediction
model for cut tobacco and analyzed the impact of moisture
content on both the tobacco spectrum and the model's accu-
racy. The results revealed that moisture content significantly
influences tobacco spectra, leading to decreased model
prediction accuracy and limited model applicability across
varying moisture conditions. To enhance the robustness of the
PLSR model against variations in sample moisture content, we
implemented moisture content correction methods, including
DOP, GLSW, OSC, and global correction. Among these, the DOP
method yielded the best outcomes, with the model achieving an
RMSEP of 2.22% and an R, of 0.90. The effectiveness of the DOP
method in correcting for moisture content is evident. These
findings have practical implications for the application of NIR
in predicting tobacco quality in industrial settings.
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