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ence tomography study of
a photoactive Pt(IV) prodrug in oesophageal tissue†

Huayun Shi, *abc Muktesh Mohan, de Kanwarpal Singh *def

and Peter J. Sadler *a

Photoactive diazido Pt(IV) complexes display in vivo anticancer efficacy towards oesophageal tumours,

a worldwide common cancer. Here we explore the use of optical coherence tomography (OCT) as

a new method for detecting tissue penetration and damage produced by the photoactivatable

anticancer complex trans,trans,trans-[Pt(pyridine)2(N3)2(OH)2] (FM190). Dehydration of the sample and

a change in refractive index were observed for swine oesophageal tissue treated with FM190 and blue

laser light (445 nm) using an OCT system. In contrast, tissues treated with FM190 or laser light alone

showed no apparent damage.
Oesophageal cancer is the ninth most common cancer and the
sixth leading cause of cancer deaths worldwide.1 Phototherapy
is a highly controllable treatment for cancer spatially and
temporally with minimal invasiveness.2–6 Photofrin-based
photodynamic therapy (PDT) was approved in Japan to treat
oesophageal cancers in 1994.7,8 Compared with surgery, PDT is
less invasive and results in a better quality of life.7 However,
oxygen-dependent mechanism limits the application of PDT in
hypoxic tumours.9 Photoactive diazido Pt(IV) complexes are
emerging anticancer prodrugs with advantages, including high
dark stability and promising photocytotoxicity with visible light
under both normoxia and hypoxia.10,11 Two of seven nude mice
bearing an OE19 oesophageal cancer xenogra treated with
trans,trans,trans-[Pt(pyridine)(NH3)(N3)2(OH)2] at low dose with
short irradiation times (420 nm) survived aer 35 days, while
none of the control mice treated without drug or irradiation
survived.12 Trans,trans,trans-[Pt(pyridine)2(N3)2(OH)2] (FM190,
Fig. 1a) is the current lead compound of photoactive diazido
Pt(IV) prodrugs, which can undergo photosubstitution and
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photoreduction to release azidyl radicals and activated Pt(II) and
Pt(IV) species to kill cancer cells with blue light.13–15

Complexes in this class of Pt(IV) prodrugs are best activated
by blue or green light which travels only ca. 1–3 mm into
tissue.16 This makes them well suited for use in therapy of
surface cancers such as bladder and oesophageal. Although red
light with longer wavelength can penetrate more deeply (ca. 5
mm), this increases the risk of damage to deeper underlying
normal tissue when treating surface cancers.17

We are therefore assessing methods, which can investigate
the effects of these complexes on surface tissues both in the dark
and in the light. The imaging technique of optical coherence
tomography (OCT) uses short-coherence-length light and inter-
ferometry together with transverse scanning of the light beam to
produce two- and three-dimensional images from light reected
from within biological tissues. Since its rst use in 1991, it has
become widely used for medical diagnosis, especially in
Fig. 1 (a) Chemical structure of FM190; (b) UV-vis spectral changes for
FM190 in water exposed to blue laser light (445 nm) at 298 K, time
intervals are 1 min. The decrease in intensity of the ligand (azide)-to-
metal (Pt(IV)) charge transfer band at 298 nm is indicative of the
breaking of Pt–N3 bonds and reduction of the relatively inert octa-
hedral Pt(IV) complex to more reactive square-planar Pt(II) species.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Steps involved in attenuation coefficient calculation. Coefficients for curve-fitted values were divided by the round-trip distance covered
by imaging light. Scale bars in B-scan: 500 mm.
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ophthalmology for monitoring retinal, optic nerve and corneal
diseases.18 It can rapidly achieve subsurface imaging at depths of
1–2 mm with simple sample preparation, and high-resolution
subcellular micrometre resolution at low-cost.19–21

Lasers with high power output and easy connection to
optical bres and endoscopes can provide precise light delivery
to tumours.17 The FM190 used in this work was synthesized and
characterized as previously reported,13 and had a purity of
>99%. The photoactivation of FM190 in aqueous solution with
445 nm laser light was very rapid due to the high intensity of
light (250 mW cm−2), and was complete within 10 min (Fig. 1b).

The effect of FM190 on swine oesophageal tissue in the
presence and absence of laser light exposure was determined
using OCT. A phosphate-buffered saline (PBS) solution (200 mL)
of FM190 with different concentrations (0, 100, 500 and 1000
mM) was dropped onto the mucosa of a piece of swine oeso-
phageal tissue (ca. 1 × 1 cm2), which was then incubated at 310
K in the dark for 2 h. The tissue was scanned by the OCT system
Fig. 3 (a) Morphology, and (b) attenuation coefficient values of swine oes
with blue laser light (445 nm, 10 min). NC = negative control. Scale bars

© 2025 The Author(s). Published by the Royal Society of Chemistry
to obtain the morphology in the dark. Aer 10 min irradiation
with blue laser light (445 nm), the same area of this tissue was
scanned again to determine the morphology aer light
exposure.

The attenuation coefficient is a crucial parameter in OCT
signal analysis. It is a measure of the decay of light intensity
within the sample due to absorption and scattering, and can be
calculated with the aid of the Beer–Lambert law, which can be
expressed as eqn (1).22,23

I = I0 e
−2(ms + ma)z (1)

where I is the intensity of light represented by the A-scan prole,
I0 is the peak intensity at the surface of the sample, ms is scat-
tering coefficient, ma is the absorption coefficient, and z is the
imaging depth multiplied by 2 for the round-trip journey of the
imaging light beam. Attenuation coefficient mA is the sum of the
scattering and absorption coefficients (eqn (2)).
ophageal tissue treated with FM190 in the dark (2 h) and then irradiated
in (a): 500 mm.
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mA = ms + ma (2)

To evaluate the attenuation coefficient, we extracted the
optical characteristics of the incident light beam at any spot
over the tissue surface, which involved extracting the optical
characteristics of the incident light beam.

During OCT data acquisition, a coherence beam of light is
scanned over the sample surface to extract the depth informa-
tion. Backscattered light preserves the tissue characteristics
within it. OCT volumetry data are a collection of A-scans, also
known as depth-resolved interferometry signals arranged over
the scan surface (Fig. 2). A schematic diagram of the OCT
system used in shown in Fig. S1 (ESI†). To evaluate the atten-
uation coefficient, we extracted an average of 10 A-scans from
the B-scan (cross-sectional OCT image) to reduce noise. Part of
the A-scan signal consists of tissue characteristic information,
which was then exponentially tted. The coefficient values are
equated to the corresponding depth information (see eqn (1)).
The attenuation coefficient value was calculated over the whole
scanning length of the tissue, and statistical analysis was per-
formed for every sample.

Aer 2 h incubation of swine oesophageal tissue with FM190
in the dark at 310 K, all tissues remained intact and smooth.
FM190 acts as a high scattering media for imaging beams of
light and thus enhances the contrast of the internal structure
(Fig. 3). The enhanced contrast shows that it was absorbed very
well deeply into the tissue. When FM190 was activated with
a pump laser and interacts with the tissue, this resulted in
dehydration of the sample and a change in refractive index. The
combined effect changes the morphological structure, as can be
observed from comparative images. From the internal micro-
structures, the eld of view becomes restricted due to an
increased refractive index, which results in higher attenuation
coefficient values. In contrast, the negative control treated with
light alone exhibits no apparent changes in morphology and
a similar attenuation coefficient compared with the dark
control. These results conrm the low dark cytotoxicity of
FM190 and damage to the mucosa of swine oesophagus
induced by the combination of FM190 and blue laser light. The
rapid observation of damage is consistent with the release and
formation of reactive azidyl radicals, oxygen species (ROS), as
well as photosubtituted Pt(IV) and reduced Pt(III) and Pt(II)
species.13,14 These ndings conrm the potential application of
FM190 in the treatment of oesophageal cancers as a photoactive
prodrug with a new mechanism of action and low side effects.

This is the rst exploration of the effect of the photo-
activatable Pt(IV) prodrug FM190 on oesophageal tissue in the
absence and presence of light using an OCT system. The
signicant changes in the mucosa of swine oesophagus before
and aer irradiation suggest the low dark cytotoxicity and
promising photocytotoxicity of FM190, which is a promising
property of this candidate photoactive anticancer prodrug. The
application of OCT technology in the visualisation of the
internal structure of biological tissues allows the exploration of
drug and light penetration in phototherapy, which can guide
the design of new photoactive prodrugs.
3170 | RSC Adv., 2025, 15, 3168–3171
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