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The current advances in energy storage devices has necessitated the development of functional polymer-
based nanocomposites for supercapacitor applications. Supercapacitors are materials that exhibits
enhanced capacitance, power density, life cycle, stability, durability, and catalytic activity. Hence, the
incorporation of electrochemically active materials, particularly, carbon-based derivatives can
significantly enhances synergistic properties with conducting polymers for advanced applications.

Polymer-based derivates are receiving increasing attention and considerations based on their low cost,
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Accepted 26th February 2025 sustainability, and ease of production in supercapacitor development. Thus, this review highlights the

details of the potentials and applications of polymer based nanocomposites from polyaniline (PANI),
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1. Introduction

One of the key aims of the twenty-first century which is to
achieve an energy-sustainable world has necessitated the
substitution of conventional fossil fuels with clean, renewable,
and green sources."” Fossil fuels, which are currently the
world's primary energy source, are depleting, and growing
concerns about anthropogenic emissions of greenhouse gases
such as CO,, which is hastening global climate change and
ocean acidification are putting pressure on theirs use to meet
our ever-increasing energy needs.*® The hunt for sustainable
energy sources has led to the development of novel and
improved materials for the design of cost-effective, lightweight,
and eco-friendly energy harvesting and storage systems such as
(solar cells, batteries, fuel cells, and supercapacitors, among
other devices).”** In the design of energy storage devices, there
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exist three major electrochemical systems; electrochemical
double-layer capacitor (EDLC), battery, and capacitor.
Compared to conventional capacitors and batteries, electro-
chemical double-layer capacitors which are also referred to as
supercapacitors are of great interest to researchers due to their
excellent performance in generating high energy in the pulse-
power state, fast charge, and discharge rates, and long-life
cycles.””*® Recent study have reported that supercapacitors as
compared with other energy-storage devices such as batteries,
and traditional capacitors each possess robust characteristics
that make them suitable for different applications.”*' The
batteries, such as lithium-ion types, can offer a relatively high
energy density typically ranging from 100 to 265 W h kg™,
making them suitable for long-term energy storage devices in
cases like electric vehicles and mostly portable electronic
devices. In contrast, supercapacitors have relatively lower
energy densities ranging from approximately 5 to 10 W h kg™
for electric double-layer capacitors and up to about 50 W h kg™
for advanced materials making them less suitable for long-term
storage devices are of good excellent for applications requiring
quick energy bursts."?* However, these unique properties make
supercapacitors potential energy storage devices in several
applications such as portable electric devices, industrial and
power systems, hybrid electric vehicles, electronics, and
memory backup systems.>*** However, the challenges of lower
energy density and longer life cycles still need to be
addressed.”®*® Carbon materials, conducting polymers, and
transition metal oxides are the three (3) groups of electrode
materials for supercapacitors.”**' Polymers are macromole-
cules which are molecule commonly created by polymerization
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of smaller subunits made up of one or more chemical compo-
nents (monomers) that occur often along a chain.** “Poly”
means “many” and “mer” means “units” in Greek.**** Polymers
composites are becoming prime choices over conventional
materials even for essential applications, ranging from everyday
household items, electronics, and furniture to high-end appli-
cations such as autos, space, aviation, biomedical, energy, and
surgical devices due to their extensive utility, low weight, cheap
cost, easy processing, and excellent thermal electrical, chem-
ical, mechanical and magnetic properties which can be
controlled through the variation of fillers and contents.***”
Polymer composite technological improvements are keeping
up with these rising demands as they are termed the materials
of the future.*®** Polymer-based composites with inorganic
fillers provide several benefits over single components,
including the ability to tune dielectric properties by using fillers
with precise physical and chemical properties.** Dielectric
polymer nanocomposites, which have the inherent potential to
store energy at the nanoscale level have led to high-performance
structures that have a significant influence on long-term goals
for more energy-efficient technologies.**** For instance,
polymer-based dielectric capacitors are widely employed in
areas of power transmission, electric vehicles, wind energy
generation, radars, and microelectronic systems.**** Conduct-
ing polymers has garnered considerable attention from the
academic and industrial communities since Heeger, MacDiar-
mid, and Shirakawa received the Nobel Prize in Chemistry in
2000 for their groundbreaking work on conducting polymer as
organic polymers having conjugated double bonds are referred
to as conductive polymers.**** Over the years, they have been
widely studied for supercapacitors applications owing to their
significant high pseudo-capacitance attribute.”*® They can
combine the electrically conductive features of metals or
semiconductors with the potentials of typical polymers, such as
cheap cost, structural variety, high flexibility, and durability,
making them suitable for a wide range of applications in elec-
trochemical devices, supercapacitors, batteries, photovoltaic
devices, and sensors.** Polythiophene (PT), poly(3,4-
ethylenedioxythiophene) (PEDOT), poly(para-phenylene), poly(-
phenylenevinylene) (PPV), polyfluorene, and polyaniline (PANI)
are some of the conducting polymers researched over the
years.®** Their composites outperform bulk conducting poly-
mers in terms of energy storage due to their higher conductivity,
increased surface area, enhanced electrochemical activity, and
excellent mechanical qualities.®® Furthermore, conducting
polymer composites offer more benefits resulting from the
combined functionality generated from each component
because they can effectively be mixed with inorganic
materials.®””* Conducting polymers plays a crucial role in
increasing the performance of composites because conducting
polymers may interact effectively with inorganic elements to
produce a conducting backbone, electrical conductivity, and
plastic properties.” Moreover, additive manufacturing tech-
nologies have been progressively used in different energy
sectors to improve material performance and increase energy
efficiency in recent years, and they have been hailed as one of
the next-generation options for energy generation, conversion,
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and storage.®* This review highlights the advancements in
conductive polymer-based nanocomposites, and the versatile
applications in energy storage technologies. It also provides an
overview on the relationship between material composition,
structure, and properties. The studies on conductive polymers
and their composites for supercapacitor applications were
reviewed. Furthermore, the review explores potential future
directions for enhancing dielectric properties, structural
performance, and design flexibility, offering innovative
concepts for the development of next-generation super-
capacitors, batteries, electrodes, and related technologies.

2. Supercapacitors

Supercapacitors also named electrochemical capacitors or
ultracapacitors are devices that store energy with very high
capacity and a lower internal resistance than conventional
capacitors and provide shorter charging times and longer life
cycles than batteries without losing the energy storage capa-
bilities. The mechanism involves the use of energy storage that
adopts a simple charge separation that exists at the interface
between the electrode and the electrolyte.*”>”> They are
potential candidates for alternative energy storage devices such
as batteries and fuel cells due to their high-rate capability,
simplicity in principle, reduced maintenance cost, high
dynamic of charge propagation, and durability.” Despite the
similarity in their cell construction, supercapacitors can store
a significantly higher amount of energy density than conven-
tional capacitors especially when the metal electrodes are
replaced by highly porous electrodes.”® A supercapacitor is
made up of three essential components which include elec-
trodes, electrolyte, and separator as shown in Fig. 1. The sepa-
rator isolates the two electrodes electrically. The electrode is
used in estimating the capacitance, energy density, and power
density of the supercapacitor.”* The electrode is the most
essential component of the supercapacitors and it is usually
made from materials with high surface area. The specific
capacitance can be calculated using eqn (1).

C= v )

Anode Cathode

R N NS

Fig. 1 Major components of a supercapacitor.”*
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Fig. 2 Broad classification of supercapacitors.

where; Q - charged stored on the electrode measured in
coulombs (C); V - operating voltage measured in volts (V); C -
specific capacitance measured in (F g7 ).

Several studies on supercapacitors have focused on fast
charge-discharge rates, high power density, and longer life
cycles.

2.1 Classification of supercapacitors

Supercapacitors are classified into three based on the energy
storage mechanism.”>”® They are classified as;

(i) Electrochemical double-layer capacitor (EDLC).

(ii) Pseudocapacitors.

(iii) Hybrid supercapacitors.

Electric double-layer capacitors (EDLCs) are electrochemical
energy storage devices that store energy electrochemically at the
exterior part of the electrode-electrolyte interface. It involves
a non-faradaic process whereby they store highly reversible
charge through electrostatic interactions to promote physical
adsorption and desorption of ions at the interface between the
electrolyte and electrode with instantaneous forming and
relaxing cycles of about 10° 5.7°7” Moreover, during the charging
and discharging process, the electrode component does not
partake in the chemical reaction. The ion transport, as well as
adsorption and desorption of ions, can take place in a few
seconds thereby giving EDLSs the ability to charge and
discharge faster. They are usually made from electrochemically
stable active carbon-based materials such as CNTs and gra-
phenes which have a high surface area.” However, factors such
as the surface area of the electrode materials, pore structure,
and pore size distribution affect the specific capacitance of
EDLCs.”®

Pseudocapacitors store energy based on a fast and highly
reversible redox reaction (faradaic process) which occurs on the
surface of the electrode or between an electrode and electrolyte.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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The specific capacitance of pseudocapacitors is usually higher
than that of EDLCs made from carbon materials since the
reaction takes place both on the surface and in the bulk of the
electrode materials.” However, the major problem associated
with pseudocapacitors is the expansion and contraction of the
volume of the materials during the charge and discharge
process, and this usually results in reduced cyclic stability.*
Several materials including conducting polymers such as poly-
aniline (PANI), polypyrrole (PPy), and some metal oxides have
been studied as materials for pseudocapacitors. Pseudocapaci-
tors store energy in devices through the combination of both
pseudocapacitance and the electric double-layer capacitance
provided by the surface of the active material.** The hybrid
(symmetric or asymmetric) supercapacitors adopt the use of
a variety of electrode materials with enhanced capacitance,
higher operating voltage, and energy density. They are designed
to mitigate the challenges of reduced capacitance, high resis-
tivity, and yield loss attributed to the poor cyclability of metal
oxide and hydroxides.” Fig. 2 shows the broad classification of
supercapacitors while Table 1 presents the differences between
EDLCs and pseudocapacitors.

Table 1 Difference between EDLCs and pseudocapacitors

EDLC Pseudocapacitors

Non-faradaic does not
involve redox reaction

A double layer is formed
at the interface

Good cyclic stability
Good power performance
No mechanism failure

Faradaic, involves a
redox reaction
No double-layer formation

Higher specific capacitance
Higher energy density

This always depends on
the redox reaction
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3. Functional polymers for
supercapacitors application

Nowadays, the use of polymers for supercapacitor applications
has garnered wide attention due to their unique properties such
as flexibility, lightweight, and stable cycling capabilities. More-
over, redox-active polymers possessing good recyclability and
sustainability are better and safer substitutes for heavy metals in
battery electrodes.®” The gross demand of industries for highly
sustainable future-generation electronics has led to the revolu-
tion of concerted efforts for the designs of cost-effective, light-
weight, eco-friendly, and high-performance supercapacitors and
batteries.* Besides, the current search for sustainable energy has
increasingly become a leading position as one of the most
important global concerns due to the uptrend in the depletion of
fossil fuels.®* Hence, there is a need for research to discover more
suitable and sustainable materials for energy applications glob-
ally in which polymer has been highly considered. Among the
polymers, conducting polymers have been discovered to be
a group of organic polymers capable of conducting electricity due
to the presence of delocalized molecular orbitals in them, and
may also be used as semiconductors. They developed about 20
years ago and gained a lot of interest over the years due to their
economic importance, electrical conductivity, appreciable envi-
ronmental stability, and mechanical, optical, and electronic
properties.®® In general, conducting polymers exhibit different
structures in combination with higher specific capacitance as

M

*@Mf ;

Polyaniline (PANI)

Poly (o-toluidine) (POT)

Poly (p-phenylene vinylene) (PPV)

SOH SOH

SOH  SOH

PEDOT:PSS

Fig. 3 Chemical structures of selected conducting polymers.°t
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shown in Fig. 3 and Table 2 which make them good materials for
the development of new-generation energy storage and
devices.**®” Conducting polymers are broadly classified into
three major groups as;

(i) Ionic conducting polymers.*

(ii) Intrinsically conducting polymers (ICPs).*

(iii) Conducting polymer composites.*®

The mechanisms by which conducting polymers are being
used for supercapacitors in based on the fact that they have a -
conjugated backbone which comprises a regularly alternating
single (C-C) and conjugated (C=C) bonds.”* The generation
and propagation of charger carriers arise from the 7-conjugated
backbone while the charge storage in conducting polymers is
attributed to ionic mobility that occurs under redox processes
over a range of potentials when oxidation takes place, ions are
transported to the polymer backbone, and when reduction
occurs, the ions are released back into the solution, and this
gives room for the achievement of high capacitance ratio.>**
Polymer-based supercapacitors utilize a reversible electro-
chemical doping process for charge storage. A quasi-rectangular
cyclic voltammogram often indicates this process, which may
exhibit reversible redox peaks linked to a battery-like reaction.
During charging and discharging, the polymer undergoes
reduction with cation insertion from the electrolyte (n-doping)
or oxidation with anion insertion (p-doping). This leads to the
formation of delocalized charge carriers along the polymer
chains.”>*

S

Polythiophene (PT)
,{/\/\/r
n

Polyacetylene (PA)

Poly (p-phenylene) (PPP)

KO~

Poly (p-phenylene sulfide)
(PPS)
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Table 2 Conductivities of certain conducting polymers®
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Conducting polymers

Type

Forms of doping Conductivity (S cm ™)

Polyaniline (PANTI)

Polypyrrole (PPy)

Polythiophene (PT)
Poly(3,4-ethylenedioxythiophene) (PEDOT)
Polyacetylene (PT)

Polyparaphenylene (PPP)
Polyparaphenylene sulfide (PPS)
Polyparavinylene (PPV)
Polyisothionaphthene (PITN)

Conductor

Conductor

Conductor

“ Reproduced from ref. 64.

However, the transport and release of charged ions which
causes expansion and contraction of conductive polymers
under the action of ions and charges often leads to the degra-
dation of the cycle stability,”* self-discharging, and poor effi-
ciency in overall capacities.”® To mitigate these problems, the
design of composites comprising conductive polymers and
other materials such as carbon fiber, carbon black, carbon
nanotubes®®” or graphene’*® has been devised as a feasible
remedy. These composites offer more benefits resulting from
the combined functionality generated by each component. The
effective mixing of inorganic materials with conducting poly-
mers plays a crucial role in increasing the performance of
composites because conducting polymers may interact effec-
tively with inorganic elements to produce a conducting back-
bone, electrical conductivity, and plastic properties.®”**'* The
cycle stability of these composites' electrodes can be improved
by enhancing the molecule chain, segment structure, mechan-
ical stability, electroconductibility, and machinability to eradi-
cate the issues associated with mechanical stress.

In this review, polyaniline (PANI), polypyrrole (PPY), poly-
thiophene (PT), and poly(3,4-ethylenedioxythiophene) (PEDOT)
are selected and discussed.

3.1 Polyaniline

Polyaniline (PANI) has gained significant attention among CPs
since it was first synthesized in 1886, due to its excellent elec-
trochemical properties, good conductivity, and its high theo-
retical capacity at various redox states.'” It can be used either as
a conductive agent or used directly as electrode material in
energy storage devices owing to its tailorable pseudocapacitive
performance which is based on its variety of oxidation states.®*
Moreover, its unique properties such as high conductivity,
excellent redox reversibility, environmental stability, unvarying
conduction principles, rapid faradaic reactivity, excellent
resistance to the effects of oxygen and water, and ease of
synthesis via different processing routes make PANI a potential
material for practical applications.**%*%*

Polymer-based nanocomposites, such as polyaniline (PANI),
offer numerous advantages, including high electrical conduc-
tivity,'* easy synthesis,'*® excellent environmental stability,"*”
and tunable properties through doping.'*>'*® They are cost-

© 2025 The Author(s). Published by the Royal Society of Chemistry
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effective and exhibit outstanding mechanical strength when
combined with other materials. Thanks to their unique elec-
trical and chemical properties, PANI-based nanocomposites are
highly versatile and find applications in sensors, anti-corrosion
coatings, energy storage devices, and many other fields.*>1%>-11
Apart from the above mentioned advantages, compared to ther
composites the other advantages of PANI includes lightweight
nature and large surface area which improves performance
applications like adsorption and sensing.'*?

Although PANI-based nanocomposites may not have the
high mechanical strength of carbon fiber composites, they are
more affordable and have better electrical conductivity.'** PANI
composites are also more flexible and lighter than metal-based
composites while yet having superior electrical conductivity."**
Processing difficulties, such as obtaining homogeneous
dispersion of nanoparticles inside the polymer matrix, are
crucial factors to take into account, since they may affect the
final qualities."*® Furthermore, depending on the particular
application, reinforcing fillers may be needed to increase the
mechanical strength of PANI composites.'

Conducting PANI can be produced from the electrodeposi-
tion of aniline monomer either through chemical oxidative
polymerization or direct electrochemical polymerization in the
presence of an oxidizing agent and a doping material."'”"*®
Besides, both synthesis methods adopted and the level of kind
of dopants used have significant effects on the electrochemical
potential and electrical conductivity of PANIL'® Likewise,
interfacial polymerization, electrospinning, seeding polymeri-
zation, and templated polymerization have also played impor-
tant roles in the preparation of PANI.*** Though the theoretical
specific capacitance of PANI is estimated to be around 2000 F
g ', experimental values are much lower since the percentage of
effective PANI depends on the conductivity of PANI and the
diffusion of counter-anions.”'** Synthesized PANI powder
through chemical solution polymerization and carried out gal-
vanostatic charge-discharge (GCD) and cyclic voltammetry tests
to evaluate the electrochemical properties of PANI single elec-
trode in 1 M HCI and 1 M H,SO, electrolyte solutions. It was
found that the specific capacitance of the single PANI electrode
is 302.43 F g~ . More so, interfacial polymerization was adopted
by Sivakkumar et al.**® to synthesize PANI nanofibers and the

RSC Adv, 2025, 15, 7509-7534 | 7513
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developed redox supercapacitor consists of a two-electrode cell
having an initial specific capacitance of 554 F g " at 1.0 Ag™"
but rapidly decreases under continuous cycling. It is regarded as
the cheapest and the most thermally stable intrinsically
conductive polymer and, due to all these merits it offers, the
design of PANI as a pseudocapacitor material has gained a lot of
interest in terms of research for supercapacitors application.”
However, despite its high capacitance value owing to its
multiple redox states which might also lead to a large surface
potential during charging and discharging while transferring
from one oxidation state to another, PANI does swell, shrink, or
even degrade during the long cycle of charging and discharging.
This is caused by the structural damage of the main chain and
results in poor conductivity and stability.>® Effective remedia-
tion to these problems is by incorporating carbon nano-
materials. PANI with ordered nanostructures does possess high
specific surface area, excellent cycle stability, high energy
storage capacity as well as excellent performance rate in
comparison to randomly connected geometries.'****'** Also,
the synergy of designing a composite comprising PANI and
various active materials, especially carbon materials has been at
the forefront of research to enhance the conductivity, stability of
I, and the specific capacitance of PANI towards achieving high
electrochemical performance. Several functional carbon mate-
rials have been incorporated into PANI nanostructured
composite to adequately improve their electrical and mechan-
ical stability to produce a high pseudo-capacitance PANI.

Xu et al.,**® prepared zinc sulfide and reduced graphene
oxide (ZnS/RGO) via hydrothermal technique and doped
conductive polymers (PANI, PPy, PTh, and PEDOT) of the same
mass ratio (70 wt%) using in situ polymerization on the surface
of the ZnS/RGO composite. The experiments show that for
supercapacitor applications, the ZnS/RGO/PANI ternary elec-
trode composite has the best capacitance performance and
cycle stability compared to all other polymer-doped ZnS/RGO
composites in which the three-electrode system, the ZnS/RGO/
PANI has a discharge specific capacitance 1045.3 F g~ ' and
cycle stability of 160% at 1 A g~ ' after 1000 loops. It was
discovered that the composite has a discharge-specific capaci-
tance and cycle stability of 722.0 Fg~ ' and 76.1% at 1 Ag™ ' and

800

#BaMnO,
* PANI

700 # *

Intensity (a.u.)
%T

20 (degree)

Fig. 4
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the greatest energy and power density of 349.7 W h kg™ " and 18
kW kg™' in a two-electrode symmetric system. The authors
concluded that conductive polymers can efficiently enhance the
voltage range of electrode composite for the two-electrode
system, thus making them promising electrode materials for
supercapacitors.

Adopting a viable in situ chemical oxidative polymerization
technique, Devadas and Imae'”” synthesize polymer/carbon dot
composites and investigated the effect of carbon dots on the
specific capacitance of conducting polymers using PANI and
PPy. The polymer/Cdot composites exhibited enhanced specific
capacitance and long-term stabilities due to the combined
effect of polymers and the C-dots. However, the incorporation of
the Cdots into the composites doubled the capacitance of the
original polymers. The specific capacitances of the composites
were estimated to be 676 and 529 F g~ for PPy/Cdots and PANT/
Cdots, respectively at a current density of 1 A g~ " and the work
reports excellent capacitance retention and satisfactory dura-
bility reinforcement of pseudocapacitors by the simple addition
of less-conductive carbon material.

Shanmugavadivel et al'*® synthesized an electro-active
inorganic-organic nanohybrid PANI-composite via surfactant-
assisted chemical polymerization reaction of aniline with
nanocrystalline BaMnO;. The results of the electrochemical
studies carried out using cyclic voltammetry and galvanostatic
charge-discharge measurements as shown in Fig. 4 showed that
the improvement in the properties of the electrode emanates
from the synergistic influence of PANI and BaMnO;. Fig. 4a
reveals the XRD patterns of PANI/BaMnO; nanohybrid in which
the sharp and intense peaks indicate the high degree of crys-
tallinity of polyaniline through the addition of nanocrystalline
BaMnO;. A reduction in the intensity of diffraction peaks was
noticed in the PANI-BaMnO; hybrid nanocomposite compared
to pure BaMnOj3, which indicates that the amorphous nature of
PANI has changed into crystalline form due to the presence of
the hexagonal BaMnO; incorporated in the PANI matrix while
Fig. 4b. FT-IR spectrum of PANI-BaMnO; affirm that the spec-
trum formed contains contributions from PANI and BaMnOs.
The hybrid composites exhibited a high specific capacitance,
energy density, and power density of 560.5 F g !,

100 +

(b)

’
3196

1190 1606

404 086

1111

v T v

T T T T T T
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(@) XRD patterns of PANI-BaMnOz nanocomposite and (b) FT-IR spectrum of PANI-BaMnO3z nanocomposite 2®
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32.01 W h kg™, and 400 kW kg ' respectively, and also have
excellent stability and cycling performance with less than 5%
loss in capacity over under 500 cycles.

Lee et al'® produced chemically activated multiwalled
carbon nanotubes polyaniline composites (PANI/A-MWCNT)
using the ultrasonic polymerization technique and investi-
gated the composites as suitable electrode materials for super-
capacitors. The comparison of this composite to pristine
MWCNTs shows that the effect of pore structures developed due
to the polymerization process could adequately foster the
homogenous dispersion of aniline and invariably result in
excellent cycling performance. More so, the authors concluded
that the interaction between the conjugated structure of carbon
and the PANI quinoid ring resulted in the charge transfer
enhancement. Kathalingam et al.**® studied the structural and
electrochemical attributes of PANI-incorporated ZnCO,0,@N-
GO hybrid nanocomposite developed by thermal reduction.
The ZnCO,0,@N-GO/PANI nanocomposite possesses enhanced
porosity and electrochemical properties. Moreover, the SEM
and TEM analysis of the composites shows that ZnCO,0,@N-
GO and ZnCO,0,@N-GO/PANI have spherical and plate-
shaped particulates, respectively affirming the effects of PANI
in forming flakey shapes. The PANI-reinforced electrode shows
excellent electrochemical properties, enhanced porosity,
conductivity, and catalytic performance with good cyclic
stability (specific capacitance of about 720 F g~' and 96.4%
retention after 10 000 cycles in 3 M KOH) which is significantly
superior to ZnCO,0,@N-GO composite. Hence, the developed
PANI-incorporated composite is recommended as a promising
catalytic material for supercapacitor applications. Having
identified that slow redox reaction rate and poor conductivity
have limited the applications of manganese oxide despite its
low cost and high specific capacitance, Zhuang et al.,"** devel-
oped a novel composite in which nanoparticle Mn;0, is doped
on activated carbon through a thin conductive polyaniline layer
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as a coupling agent. This PANI layer having crosslinked
networks exhibits good electrical conductivity and the interface
is highly compatible with anchoring the nanoparticle Mn;O,
which also has an interconnected porous structure with enough
ion migration channels and a large surface area. The novel
composites exhibit a high specific capacitance of 325 F g~ * at
0.5 A g~ ' and excellent performance rate of 248 Fg~ ' at 20 Ag ™"
and remarkable cycle stability of 90% retention after 10 000
cycles. The authors concluded that the developed asymmetric
supercapacitor exhibiting a high energy density of
33.8 W h kg™ ! has a good prospect of finding application in the
electrochemical energy storage fields. In another work, Rajku-
mar et al.*** synthesized FeCo,0,/PANI via in situ polymeriza-
tion techniques and characterized it wusing various
physicochemical methods to ascertain its applicability as an
electrode in supercapacitors. The characterization of the as-
prepared FeCo,0,/PANI composites possesses a high specific
capacitance of 940 F ¢~ " at the current density of 1 A g~ . The
enhanced capacitance is attributed to the porous nanorod-like
structure with a relatively high number of active sites as
shown in Fig. 5. This significantly resulted in good ion and
electron transport and makes the produced composites
a potential material for electrode materials in advanced energy
storage devices, thereby combining the cost-effectiveness, eco-
friendliness, abundance, and rich redox reaction advantages
of both iron and cobalt cations.

Ma et al.**® prepared short cluster shape graphene oxide/
polyaniline/metal hydroxide (GO/PANI/metal hydroxide) nano-
composite via one-step in situ polymerization and added nickel
and cobalt ions. The content of Ni*" and Co®" in the nano-
composite was easily tuned by altering the mass ratio of the
metal salts in the reactions. The electrochemical analysis
revealed that GO/PANI/metal hydroxide doped with only Ni**
had the highest specific capacitance of 743 F g~ ' compared to
the other that was doped with Co** and the value was stable

Fig. 5 FESEM image of (A) FeCo0,04 (B) PANI and (C) FeCo,0,4/PANI.*32
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with a capacitance reduction of 15.6% after 2000 cycles. The
experimental results also affirmed that the shape tunable GO/
PANI/Ni(OH), nanocomposites will be an excellent electrode
material in supercapacitors. In another study, Srinivasan
et al.,"** adopted various physicochemical techniques in con-
firming the formation of as-synthesized BiVO,/PANI prepared
by in situ polymerization technique. The authors studied the
electrochemical performance of the BiVO,/PANI composite as
a potential electrode material for electrochemical energy
storage applications using cyclic voltammetry (CV), galvano-
static charge-discharge (GCD), and electrochemical impedance
spectroscopic (EIS) techniques. It was observed that the specific
capacitance of the BiVO,/PANI composite was estimated to be
701 F g~ " at the current density of 1 A g~ and exhibited 95.4%
retention of the original capacitance after 5000 cycles. Palsaniya
et al.** adopted the in situ polymerization technique in fabri-
cating symmetric tandem supercapacitors (STC) using PANI/
RGO/ZnO nanocomposite. The polymerization method helps
to ensure the formation of a homogenously mixed nano-
composite. The author reported that the morphological analysis
of the nanocomposites shows that the PANI/RGO/ZnO with
a ratio of 2:1 (PANI:ZnO) has a higher surface area which
invariably contributes to excellent ionic diffusion and resulted
in a high specific capacitance of 40 F ¢~ at a current density of
0.05 A g~ '. The as-prepared symmetric supercapacitor device
shows excellent electrochemical performance and high capaci-
tance retention of 86% after 5000 cycles and exhibited specific
energy of 561 W h kg ' and specific power of about
403 W h kg™ . These unique properties can be attributed to the
synergic influence of ZnO, PANI, and RGO in the 2:1 nano-
composite. The potential and importance of graphene oxide in
the development of high-performance energy storage systems
which are based on polyaniline were demonstrated by Mitchell
et al.**® when the authors deposited multilayer films of PANI

(A)

Hydrochloric Tetrabutyl
acid titanate

I Hydrothermal
reactor

150 °C

Fig. 6
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and graphene oxide on indium tin oxide (ITO) electrodes. They
reported from the study that the multilayer film has an
enhanced specific capacitance compared to virgin polyaniline
film. Specific capacitances of 201 F g~ * and 429 F g " were
achieved for PANI and PANI/GO multilayer electrodes, respec-
tively. These improvements in the electrochemical perfor-
mances of the multilayered PANI/GO electrode were explained
to be due to the increase in the number of active sites for the
deposition of polyaniline provided by the large surface area of
the graphene oxide sheets and the combined effect of the pol-
yaniline and graphene oxide. Also, the beneficial role of protic
ionic liquid PIL in synthesizing PANI and PANI/GO nano-
composites with excellent supercapacitance performance was
demonstrated by Al-Zohbi et al. (2021).”*” In this study, the
oxidative polymerization technique was used in synthesizing
PANI in a mixture of water and pyrrolidinium hydrogen sulfate
[Pyrr][HSO,]. A comparison of the PANI/PIL with convectional
PANI shows that the addition of PIL to the polymerization
medium causes the change in the morphology to fiber-like
instead of spherical-like morphology. More so, the PANI/PIL
shows improvements in charge transfer kinetic and storage
capability. The addition of 16 wt% GO to the PANI/PIL opti-
mized the weight ratio of the nanocomposite and resulted in
a material that exhibited the best performance and stability of
223Fg 'at10Ag 1, 49Whkg 'and 3700 Wkg *at10Ag .
Fig. 6 displays the schematic diagram of the preparation of the
route of the tetragonal prism array of TiO, deposited on
fluorine-doped tin oxide (FTO) prepared by hydrothermal
reaction before depositing PANI coating on it. This was proven
to be an efficient electrode material for supercapacitors as the
electrode consisting of PANI/TiO,/FTO composite exhibited
a specific capacitance of 78 F g~ " at a current density of 1 A g™
by Chen et al*® This is similar to Ur Rahman and his co-
7 work where they surface-modified fluorine-doped tin

workers,

HCI

+
ANI+(NH,)S,0,

Room temperature

(A) Synthesis of tetragonal prism array of TiO, deposited on fluorine-doped tin oxide (FTO) and followed by PANI coating, (B) synthesis of

TiO; array via hydrolysis process, and (C) optical images of TiO,/FTO and PANI/TiO,/FTO.138
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oxide (FTO) with sodium phytate-doped PANI in the absence of
binder and to examine its suitability as a novel current collector
in symmetric supercapacitor devices. The authors constructed
a symmetrical cell configuration with binder-free electrodes.
The device exhibited excellent electrochemical performance
with high specific capacities of 550 Fg ' at1Ag™ %, 355 Fg " at
40 A g, and excellent cycling stability of 90% retention of the
initial capacity over 1000 charge/discharge cycles. Furthermore,
the supercapacitor has a remarkably high power density of
73.8 W h kg~ " at 500 W kg~ ',

A schematic of the synthesis procedure of rGO/TiO,/PANI
nanocomposite is shown in Fig. 7. The nanocomposite was
synthesized using varying initial feed ratios of rGO; TiO, aniline
monomer in the ratioof 1:5:1,1:5:2,1:5:3,1:5:4,1:5:5.
The result of the electrochemical performance analysis of the
rGO/TiO,/PANI nanocomposite confirm that the nano-
composite exhibited better performance than individual
constituents in terms of specific capacitance, energy density,

(a) rGO/TIO2 solution (b)
m Shaking in 10 ml HC|
180 W, 10 min. .
© First solution 3.2 mmol ANI Second solution
0.18 g APS monomer

Shaking in 10 ml HCI Stirring for 30 min.

+ spBs >

@ Third solution

e 3 ¢

First solution Second solution

Third solution

Sonication Drop by dro|

i e Shaking for 3 h

rGO/TiO2/PANI

Fig. 7 Schematic showing the synthesis of rGO/TiO,/PANI nano-
composite via in situ emulsion polymerization: (a) preparation of rGO/
TiO, suspension, (b) addition of 3.2 mmol ANI monomer, (c) addition
of 0.18 g APS and SDBS with stirring and (d) sonication drop-by-drop
addition of APS solution with shaking for 3 hours.**

=y dto\\\e““a\

180°C | 36h
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power density and stability retention with the rGO : TiO, : PANI
in ratio 1: 5:4 having the highest specific capacitance of 692.87
F g '. Also, using a novel real circuit model, the developed
device was able to power a LED lamp (1.8 V) for 180 seconds
which implies the rGO/TiO,/PANI nanocomposite may be used
as a potential material for cost-effective and eco-friendly energy
storage systems."**

Another ternary composite comprising PTP/PANI/TiO, was
synthesized by Thakur et al.*** The work involves the mixing of
two polymers; polyaniline and polythiophene, followed by
adding TiO, particles which is transition metal oxide with
variable oxidation state to the blended polymer matrix. The
PTP/PANI/TiO, ternary composite shows improved capacitive
performance (specific capacitance of 265 F g~ and energy
density of 9.09 W h kg~ " at 1 A g~ ') compared to its components
in pristine form. Chen et al.**' improved the cyclic stability of
PANI by adding urchin-like molybdenum disulfide (MoS,) to
PANI as a hybrid electrode material through in situ oxidative
polymerization as shown in Fig. 8. From Fig. 9, it can be
observed from the SEM that, the pure MoS, in Fig. 9a a had
a flower-like morphology consisting of a sheet-like petal which
provides more active sites for the countless branches of the
dendritic polyaniline macromolecular chain as shown in Fig. 9b
while Fig. 9c—g show the changes in the morphology of the
MoS,/PANI composite with an increase the loading fraction of
MosS, which is why Fig. 9¢ exhibits a combination of dendritic
structures and PANI and flower-like spheres of MoS,. Thus,
a sea urchin structure was observed in the hybrid composite
with an increase in MoS, content while the dendritic structure
of the PANI disappears gradually in Fig. 9d-g. The electrostatic
bond and hydrogen bond relationship between MoS, and PANI
causes improvement in the structural integrity and specific
surface area of the hybrid electrode materials. Especially the
MoS,/PANI reinforced with 25 wt% of MoS, (PM,5) has the best
combination of properties as it exhibits a maximum capaci-
tance of 645 F g~ " at 0.5 A g~ ' with excellent cycling stability of
89% capacitance retention after 2000 cycles at a current density

Fig. 8 An illustration of the synthesis process of MoS,/PANI hybrids through in situ oxidative polymerization.***

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 SEM images of (a) pure MoS,, (b) pure PANI; (c) PMys; (d) PMyg; (e) and (f) PM,s; (g) PMs3; and (h) XRD patterns of PANI, MoS,, and PM,s.14*

of 10 A g~'. In comparison to virgin PANI (335 F g~ '), the
enhancement in the electrochemical properties affirms that
urchin-like MoS,/PANI hybrid electrode materials with stable
and unique morphology are promising materials for hybrid
supercapacitors applications.

Interdigitated and sandwich electrodes based on reduced
graphene/polyaniline nanocomposite were prepared using
a simple, eco-friendly, degradable and sizeable approach as
shown in Fig. 10. The nanocomposite was fabricated using
a hydrothermal method and drop-casted directly on the poly(-
ethylene terephthalate) (PET) substrate to form supercapacitor
electrodes. No mechanical press was used in the process as
active materials have excellent adhesion to the substrate. The
capacitance of the developed supercapacitor was estimated to
be 99 F g ! at a 0.5 mA current and exhibited good capacitance
retention above 98.3% after 1000 cycles. The as-prepared
sandwich supercapacitors have a low charge transfer resis-
tance of 1.75 ohms and obtained capacitance retention of 83%
even when the current density varied from 0.25 to 5.0 Ag™". This
shows the potential of the developed nanocomposites for high-
tech supercapacitor applications in future electronic devices."**

Hosseini et al.,"*® prepared Fe;0, nanoparticles on chitosan-
graphene oxide multiwalled CNTs before grafting PANI on it
using in situ chemical polymerization. The investigation of the
capacitive properties of the as-prepared electrode in a three-
electrode configuration in 0.5 M Na,O, electrolyte through
several electrochemical techniques shows that the specific

7518 | RSC Adv, 2025, 15, 7509-7534

capacitance of the CS/GM/Fe;0,/PANI electrode is estimated to
be 1513.4 F g " at 4 A g~ " which is about 1.9 times greater than
that of CS/GM/Fe;0,. More so, the electrode has a life cycle of
99.8% specific capacitance retention at 100 A g '. The
combined influence of chitosan/graphene oxide multiwalled
CNTs coupled with the excellent properties of PANI has made
the nanocomposite a potential material for supercapacitor
applications. In another work, a new PANI/Co;0, super-
capacitor electrode with great potential for high-performance
energy storage devices was prepared by hydrothermal and in
situ polymerization techniques using foamed nickel as
substrate. The evaluation of the PANI/Co;0, by XRD, SEM, TEM,
and XPS reveals that the Co;0,4 nanorods were uniformly coated
with PANI. However, the electrochemical investigation shows
that the specific capacitance of the PANI/Co;0, nanocomposite
is 3105.46 at 1 A g~ ' which is about 14.7 times greater than that
of Co30,. It was also discovered that the composite has satis-
factory capacity retention of 74.81% after 3000 cycles and a very
high energy density of 58.84 W h kg™" at 0.16 kW kg~ ".** Yu
et al." also prepared PANI/G-MS composite using sheet-like
polyaniline and graphene oxide as starting material and adop-
ted spray-drying and chemical reduction processes in the
preparation. They confirmed that uniformly coated PANI on the
surface of graphene tends to provide high conductive networks
which fasten electronic transport in the composite for super-
capacitors. Additionally, the composite form many channels
within the spherical particles during the random stacking of the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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and supercapacitor electrodes.**?

sheet-like PANI/GO composite through the spry-drying process.
The emergence of a unique structure enhances the electro-
chemical capacitance of the as-prepared PANI/G-MS composite
t0596.2Fg 'at0.5Ag ', 447.5F g 'at20Ag ', and retained
83.7% of the initial capacitance after 1500 cycles. Carbon nano-
onions (CNO) were successfully integrated into PANI by
Majumder et al.'*® via in situ oxidative polymerization of the
aniline monomer. This invariably led to the overall improve-
ment in the electrochemical properties of PANI. The PANI/CNO
composite with hybrid heterostructure shows good specific
capacitance of 196 F g~ " at the current density of 1 A g~ and
enhances energy and power densities. CNO improves the elec-
tronic conductivity, reduces the PANI fiber agglomeration rate,
and initiates a larger active surface for the existence of elec-
trolytic ion interactions. Concurrently, the combined effect of
CNO and the PANI causes the co-existence of both electric
double layer and pseudocapacitive specific capacitance in the
nanocomposite while the mesoporous morphology gives room
for ultrafast ion diffusion route for both electrolytic ions and the
electrons. Ji et al'® developed a bio-inspired micro-nano-
hierarchical rGO/BPANI composite via photolithography,
colloidal lithography, and soft-template techniques. The
surface area of the electrode/electrolyte interface of the PANI
electrode was increased due to the bio-inspired micro/nano
artificial structure, thus improving the ion-electrolyte trans-
port. Moreover, the addition of rGO enhanced the total EDLC
and PC performance of the bioinspired PANI composite and
thereby, caused enhanced electrochemical conductivity,
reduced internal resistance, and increased life cycle. The
capacitance properties increased to 614 F g ' at 1.0 A ¢ and

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Image showing the simple and ecofriendly synthesis and development procedures for rGO/PANI nanocomposites as active materials

satisfactory stability of 85% after 10 000 cycles at 5.0 A g~ . This
fabricated bio-inspired template exhibited excellent flexibility
and mechanical attributes and showed stable performance
under cycling for 2000 cycles at 5 mV s~ with no defect in the
electrochemical performance. Hence, this novel bio-inspired
micro/nanoarchitecture was affirmed to possess special prop-
erties for electrochemical energy storage in flexible devices.
Heydari et al.**” studied the electrochemical behavior of ternary
PANI/MoS,-MnO, for supercapacitor applications. In this work,
bulk MoS, was exfoliated into layered nanosheets with a unique
solvent. Thereafter, MoS,-MnO, composite was prepared by
hydrothermal technique and hybrid PANI/MoS,-MnO,
composite was synthesized via electro-polymerization method.
The processes involved in the synthesis of this ternary hybrid
composite are shown in Fig. 11. Each of the components serves
specific purposes, MoS, provides sub-layer supports and MnO,
enhances the electrochemical performance while PANI
improves the electric conductivity of the hybrid composite.
Analysis of the hybrid composite using various techniques
shows that the maximum specific capacitance of PANI, MoS,-
MnO,, and PANI/MoS,-MnO, measured at a scan rate of 5 mV
s was 333, 358, and 479 F g, respectively. Likewise, the
designed two-electrode device made from the composition of
PANI/Mo0S,-MnO, with a larger porous structure exhibits
a specific capacitance of 259 F g~ ' at a current densityof 1A g™,
specific energy density of 35.97 W h kg™ at a specific power of
500 W kg~ " and satisfactory cycling stability of 94.1% after 4000
cycles at 16 A g~ . Table 3 presents the electrochemical perfor-
mance of various supercapacitors fabricated based on polyani-
line electroactive materials.
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3.2 Polypyrrole

Polypyrrole (PPy) is another widely researched -electron
conjugated conducting polymer due to its good electrical
conductivity, good environmental stability in ambient condi-
tions, and fewer toxicological problems. Among the various CPs,
PPy has been extensively studied because of its ease of pro-
cessing, stable oxide form, excellent oxidation, and reduction
properties, high conductivity, cost-effective and available
monomers, as well as good electrical and optical proper-
ties."'®14915° PPy js made up of alternate single and double-
bounded macromolecular chain structures and derived its
excellent performance from its structure. It is widely considered
a potential electroactive material for supercapacitors due to its
unique attributes such as higher theoretical capacitance (620 F
g™"), improved electrical conductivity, fast charge/discharge
capability, and high specific energy."*®

PPy are very adaptable for a variety of applications and have
several benefits over other kinds of composites. Because of its
intrinsic conductivity,"* which allows for effective electrical
signal transmission, and its high level of biocompatibility,***
PPy can be used in biomedical applications such tissue engi-
neering scaffolds and implanted electrodes. It may be created
using a variety of techniques, including chemical polymeriza-
tion and electrochemical deposition, and has cost-effective
production route. It is also ecologically stable. Furthermore,
by modifying the synthesis conditions and adding dopants, the
mechanical and electrical conductivity of PPy may be custom-
ized, enabling optimization in applications like as biomedical
devices, sensors, and energy storage devices.'>*** The distinct

7520 | RSC Adv, 2025, 15, 7509-7534

Synthesis route for ternary PANI/MoS,-MnO, hybrid nanocomposite **

characteristics of PPy-based nanocomposites set them apart
from other composites. They are perfect for situations where
weight is a crucial consideration since they are more flexible
and lighter than metal-based composites while yet having
adequate electrical conductivity."** Because PPy is a polymer, it
can be processed into complicated forms more easily than
ceramic-based composites, providing more design freedom.**®

However, drawbacks such as poor capacitance and cycling
stability have limited its usage in high-performance super-
capacitors.”” Other obstacles to overcome include processing
issues when creating intricate structures for particular uses and
limited mechanical strength that can call for reinforcement
with other materials. PPy nanocomposites continue to be an
affordable, highly adaptable material for cutting-edge tech-
nology in spite of these difficulties.

Also, as a conjugated conducting polymer, the brittleness of
PPy limits its practical uses. The processability and mechanical
properties of this material can be improved either by blending
PPy with some polymers or by forming copolymers of PPy. It is
a fact that biodegradable polymers are preferred to non-
biodegradable polymers in recent times, hence, some of the
biodegradable polymers that are being used as supercapacitors
are; chitosan (CS), PVA, and glycerol.*** On the other hand, gum
arabic (GA) in the composite form can be used to alleviate the
pure PPy problems. The insertion of GA into the PPy matrix can
be a promising choice due to its high contact area, chemical,
thermal, and mechanical stabilities as well as its high energy
storage capabilities at the electrode/electrolyte interface.'’
Thus, PPy-based composites may provide the fibers or fabrics

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 12 Molecular structure of polypyrrole.**®

with electrical properties similar to metals or semiconductors.
Fig. 12 reveals how PPy is prepared by an oxidative polymeri-
zation process. It can be made either chemically through solu-
tion processing or electrochemically through polymer
deposition at an electrode and both processes involve electron
transfer. The polymerization proceeds via the radical cation of
the monomer that reacts with a second radical cation to give
a dimer by the elimination of two protons. Dimers and higher
oligomers are also oxidized and react further with the radical
cations to build up the PPy chain.

Polypyrrole is an example of a heterocyclic conductive poly-
mer. Electrochemical synthesis of polypyrrole in sulfuric acid
yielded a black conducting film that is stable under ambient
conditions and even at temperatures above 200 °C. The elec-
trical and mechanical properties of the electropolymerized
polypyrrole film depend heavily on the counter-ion used. Using
perchlorate instead of oxalate can increase its conductivity by 10
times. Commercially available polypyrrole films with tosylate
counter-ions are highly conductive (15 S em™') and are very
stable under ambient conditions (conductivity only decreased
by 15% after 1 year). To increase the processability of poly-
pyrrole, soluble forms were synthesized by adding flexible side
chains along the ring. The addition of various functionalities at
the nitrogen can also improve its solubility; however, the
conductivity of the resulting film can be reduced drastically
because of the strong steric interactions of the substituent at
the nitrogen and the hydrogens at the 3- and 4-positions of the
adjacent pyrrole rings. The adjacent rings are forced out of the
plane which results in loss of conjugation and ultimately drastic
reduction of its conductivity. Although polypyrrole is the most
intensively studied representative of m-conjugated conducting
polymers, many important questions on how to create its
properties for a variety of specific applications remain open or
await improvement. A theoretical study on the competition
between polarons and bipolarons in nondegenerate conjugated
polymers revealed that charge carriers at low doping concen-
trations are most likely polarons. The model predicted the
transition from a polaron lattice to a bipolaron lattice with an
increasing doping level. The calculations were consistent with
former ESR results on polypyrrole doped with monoanionic. Ion
transport in polypyrrole electrodes undergoing a reversible-
redox process mostly focused on single-charged counterions.

The structure and reactivity of conducting polymers are
influenced by multi-charged redox inert counterions. Despite
the large collection of data concerning the effects of electrolyte
anions and cations on the electrodeposition and performance
of polypyrrole electrodes, the data for multicharged inorganic
counterions were scarce and dominated by sulfates. It was
suggested that sulfates, which were called “unfavorable” ions,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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may strongly associate with the positive sites of polypyrrole
chains which can result in electrostatic cross-linking, thus,
leading to a compact film structure and the low mobility of
charge carriers.

PPy is readily polymerized in an aqueous solution by a wide
variety of oxidizing agents like FeCls, (NH,),S,0g, and CuCl,.
The reaction speed is higher in the case of (NH,4),S,05 (a few
minutes) and is slower for FeCl; (e.g. 6 hours) with different
kinds of dopants being used. Dopant concentration has the
same effect on the reaction speed as oxidants; an increase in
dopant concentration slows down the polymerization reaction.
It has been demonstrated that additives like anion surfactants
can increase the conductivity of chemically synthesized PPy.
The addition of sodium bis(2-ethyl)sulfosuccinate (AOT) into
the polymerization solution including Fe,(SO,); as an oxidant
improved the conductivity of PPy by several orders of magnitude
depending on the PPy/AOT ratio. The chemical oxidative poly-
merization method for PPy synthesis is recommended if a large
amount of polymer is needed. By applying this method PPy can
be deposited both onto conducting and non-conducting
substrates like metals, glass, plastic, textile, etc. In the case of
an electrochemical preparation typically PPy films are galvani-
cally deposited on a platinum electrode surface using a one-
compartment cell containing an aqueous solution of pyrrole
and oxidizing agent.

Ullah et al.*” synthesized PPy by using a pyrrole monomer via
inverse emulsion polymerization as shown in Fig. 13. The
procedure was carried out in a three-necked round bottom flask
holding 35 mL toluene and 10 mL 2-propanol that was stirred for
15 min. After that, 200 pL of pyrrole was added and stirred for
another 15 min, followed by the dropwise addition of 0.5 mL of
DBSA and 0.303 g of benzoyl peroxide (dissolved in 5 mL of

35 mL Toluene 10 mL 2-Propanol

View Article Online
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water) to the reaction mixture. To get the precipitate, the mixture
was vigorously stirred for 24 h. The precipitate was washed three
times with distilled water and 50 mL of acetone to separate the
pure product that was dried in an oven at 50 °C for 24 h.

Another method of preparing pyrrole and also thiophene
polymers is plasma polymerization. The usual procedure, in
this case, is that the monomer is first plasma polymerized in the
form of a thin film on top of the substrate. Then the specimens
are exposed to the vapors of the doping agent (e.g. iodine) to
introduce charge carriers into the plasma-polymerized struc-
tures. The resulting polymer structures have proven to have
a higher degree of cross-linking and branching. The
morphology of those films is smoother and more uniform than
chemically polymerized analogs but electrical conductivity (in
the order of 10’-10° Q" mm™") and environmental stability are
poor. Although PPy is prepared in its oxidized conducting state,
the resulting polymer can be subsequently reduced to give the
insulating form. Reversible electrochemical switching between
the conducting and insulated state causes a color change from
blue-black to yellow-green.

Designs of PPy electroactuators encompass a monolithic,
bilayered, or trilayered structure. Monolithic and bilayered
implementations are primarily used in applications involving
a supporting liquid electrolyte (either aqueous or organic) while
trilayered ones are employed with an ionic gel electrolyte
sandwiched between two PPy films for operation in air. Due to
longitudinal voltage attenuation along a semiconducting CP
strip, a monolithic electroactuator tail usually generates
a smaller strain than its upper section resulting in a notable
strain gradient along the strip.*®

Barazandeh and Kazemi,'® introduce a simple and facile
process to prepare a dandelion-like NiCo,S,/PPy nanomaterial

/

0.2mL Pyrrole monomers

mL DBSA

10 mL. BPO solution

Washing with water

Fig. 13 Synthesis route for polypyrrole.**”

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 14 Schematic representation of NiCo,S4@PPy nanomaterial fabrication.t¢°

for supercapacitor application. In the method, NiCo,S,@PPy
was directly deposited on a nickel foam substrate. The combi-
nation of NiCo,S, and polypyrrole, and direct deposition of this
material on nickel foam (NF) resulted in excellent capacitive
performance such as high capacitance, good cycle life stability,
and significant conductivity. Moreover, an asymmetric device
based on NiCo,S,@PPy/NF and rGO/NF electrodes was assem-
bled. It exhibited a specific capacitance of almost 98.9 F g~*
with an energy density of 35.17 W h kg™ at a power density of
1472 W kg *. These results indicate that NiCo,S,@PPy/NF is
a promising electrode for supercapacitor application. The
fabrication steps of a NiCo,S,;@PPy composite electrode are
shown in Fig. 14. In the first step, NiCo,S, was prepared via the
hydrothermal process which ended with a calcination treat-
ment. Simultaneously, polypyrrole (PPy) was prepared by the
chemical oxidative polymerization method. Then, the NiCo,-
S,@PPy nanomaterial was deposited on the Ni foam substrate
through a facile hydrothermal method.

In the study carried out by Bashid et al.,>® nanocomposite
comprising polypyrrole and reduced graphene oxide was elec-
trodeposited onto a carbon bundle fiber (CBF) through a two-

step approach (CBF/PPy-rGO-2) as shown in (Fig. 15). The
CBF/PPy-rGO-2 had a highly porous structure compared to
a nanocomposite of polypyrrole and reduced graphene oxide
that was electrodeposited onto a CBF in a one-step approach
(CBF/PPy-rGO), as observed through a field emission scanning
electron microscope. An X-ray photoelectron spectroscopic
analysis revealed the presence of a hydrogen bond between the
oxide functional groups of rGO and the amine groups of PPy in
the PPy-rGO-2 nanocomposite. The fabricated CBF/PPy-rGO-2
nanocomposite material was used as electrode material in
a symmetrical solid-state supercapacitor, and the device yielded
a specific capacitance, energy density, and power density of
96.16 F g~ ', 13.35 W h kg~ " and of 322.85 W kg™ ', respectively.
Moreover, the CBF/PPy-rGO-2 showed capacitance retention of
71% after 500 consecutive charge/discharge cycles at a current
density of 1 A g~ ". The existence of a high degree of porosity in
CBF/PPy-rGO-2 significantly improved the conductivity and
facilitated penetration. The CBF/PPy-rGO-2-based
symmetrical solid-state supercapacitor device demonstrated
outstanding pliability because the cyclic voltammetric curves
remained the same upon bending at various angles.

ionic

2 3
Fe* "Fe" Ff\ ;e
‘ N\ l” |
—~ — T
Stirring — Electrodepositon
A e 4
U (7 —— ! }E

Pyrrole ¢ Polypyrrole  wm Graphene oxide (GO) amy Reduced graphene oxide (:GO) uCarbon bundle fibre (CBF)

Fig. 15 Schematic diagram of the synthesis process of CBF/PPy-rGO-2.58
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Fig. 16 Electrode fabrication towards electrochemical properties.*™”

In this research that was carried out by Ullah et al.* an elec-
trode for a supercapacitor based on PPy/GA composites was
fabricated by inverse emulsion polymerization as shown in
Fig. 16. The electrochemical characteristics, cyclic voltammetry
(CV), electrochemical impedance spectroscopy (EIS), and galva-
nometric charging-discharging (GCD) properties of the fabricated
PPy/GA composites-based supercapacitor devices were investi-
gated. The synthesized material shows good electrochemical
properties in terms of using cyclic voltammetry, galvanostatic
charging-discharging, and EIS tests. PPy has the lowest specific
capacitance, energy density, and power density, with values of
168.6 F g ', 33.698 W h kg ™', and 599.37 W kg™ " respectively.
With a 0.125 wt% loading of gum arabic in polypyrrole, these
values were enhanced to 368.57 F g ', 73.667 W h kg ', and
599.609 W kg™, at a current density of 1 A g ",

3.3 Poly(3,4-ethylene dioxythiophene)

Poly(3,4-ethylene dioxythiophene) commonly referred to as
PEDOT is a conjugated polymer that carries positive charges
upon doping. PEDOT belongs to the polythiophene family and
has emerged as a promising candidate for pseudocapacitor
electrodes owing to its fast electrochemical kinetics and excel-
lent intrinsic conductivity.'*'** It can be synthesized chemi-
cally or electrochemically. It is typically used as a transparent

© 2025 The Author(s). Published by the Royal Society of Chemistry

and conducive polymer with high ductility in various applica-
tions. It has wide applications in energy conversion and storage
devices. PEDOT is a chemically stable, conjugated polymer that
is of considerable interest for a variety of applications in organic
solar cells, dye-sensitized solar cells, supercapacitors, fuel cells,
thermoelectric devices, and stretchable devices. Among con-
ducting polymers, PEDOT is significantly important due to its
small band gap, high conductivity, and high stability.'** PEDOT
has a small band gap structure as shown in Fig. 17 that allows it
to be utilized in several applications such as organic light-

—_— 1

Fig. 17 Chemical structure of conjugated conductive polymer
poly(3,4-ethylene dioxythiophene).
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emitting diodes, photovoltaics electroluminescent devices,
antistatic coatings, and capacitors.***'%

The overall performance of chemosensors is determined by
several factors such as sensing material's chemical and physical
properties, device geometry, and signal transduction.
Improvement of the sensor performance demands a synergistic
optimisation of the abovementioned factors. In terms of
sensing materials, diverse conductive materials such as con-
ducting polymers, polymer/carbon composites, graphene, and
metal or semiconductor nanocrystals show great promise.
Especially, conducting polymers such as poly(3,4-
ethylenedioxythiophene) (PEDOT), polypyrrole (PPy), and poly-
aniline (PANI) are among the highest attractive sensing mate-
rials owing to their intriguing features such as their all-organic
nature with good designability, intrinsic electrical conductivity,
high signal transduction, dimensional durability, mechanical
flexibility and chemical stability."*® The syntheses of the poly-
mers, usually via convenient chemical or electrochemical poly-
merization methods are simple and cost-effective.**”'*® The
polymers thus synthesized can retain their electrical conduc-
tivity and chemical/physical stability when used in chemo-
sensors. Such durability is crucial for chemosensors, for which
sensing repeatability is one of the most important factors
affecting the real application of sensor devices.'*

Several elements, including the device's geometry, signal
transduction, and the chemical and physical characteristics of
the sensing material influence chemosensor performance. The
above-mentioned elements must be optimized synergistically to
improve sensor performance. Diverse conductive materials,
including conducting polymers, polymer/carbon composites,
graphene, and metal or semiconductor nanocrystals, hold
considerable potential as sensing materials. Conducting poly-
mers in particular, like poly(3,4-ethylenedioxythiophene)
(PEDOT), polypyrrole (PPy), and polyaniline (PANI), are among
the most alluring sensing materials due to their intriguing
characteristics, including their all-organic nature with good
designability, intrinsic electrical conductivity, high signal
transduction, dimensional durability, mechanical flexibility,
and chemical stability. Polymers are usually created cheaply

PLGA/PCL fibers EDOT
with EDOT Ipolymeriza{ion
dd FeCl,
wmmal)
0] O o o)

FeCly
2/ \; CHCla, RT, 24h m
S S n

Polymerized
——
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and easily using convenient chemical or electrochemical poly-
merization processes.’**'’® Fig. 18 illustrates the methods for
preparing aligned PEDOT nanofibres and PEDOT nanotubes by
oxidative polymerization of EDOT monomer incorporated in
oriented assemblies of electrospun PLGA/PCL nanotubes.'®

However, pristine PEDOT electrodes are unstable upon
repetitive cycling, and their capacitance is lower compared to
other pseudocapacitive materials.'”* Various strategies have
been explored in the past decade, mainly in the synthesis of
PEDOT composites with carbon nanomaterials and metal
oxides. One interesting approach to take advantage of the
characteristics of EDLC-type systems and pseudocapacitors
consists of the addition of carbon particles into the polymer
matrix of CPs to obtain a composite material. An electrode
made of poly(3,4-ethylenedioxythiophene) (PEDOT)-carbon
composite exhibited high specific capacitance values and
number of cycles due to the semiregular, macroporous nature of
the electrode film.”>'”® These advances give way to many other
combinations of carbon-conducting polymer composites for
energy storage and other applications.

Gonzalez et al.'* developed a composite material of poly(3,4-
ethylenedioxythiophene) (PEDOT)/activated carbon (AC) by in
situ polymerization and subsequently deposited by spray-coating
onto a flexible electrolyte as shown in Fig. 19. Two activated
carbons were tested: a commercial activated carbon and a lab-
made activated carbon from Brewer's spent grain (BSG). The
porous and spongy structure of the composite increased the
specific surface area, which helps to enhance the energy storage
density. This procedure to develop conductive composite mate-
rials using AC prepared from biowaste has the potential to be
implemented for the preparation of polymer-based conductive
inks for further applications as electrodes in pseudocapacitors.

In the last years, alternative carbon materials such as carbon
nanotubes or graphene have been proposed as electrode
materials for supercapacitors.'” Very recently, Khasim et al.'”®
have developed a high-performance and flexible supercapacitor
using a conductive composite material composed of reduced
graphene oxide (rGO) and PEDOT-PSS. A doped PEDOT-
PSS:ethylene  glycol/rGO composite film demonstrated

PEDOT PLGA/PCL PEDOT Tubes

fibers

Template
removed
—

’
7

v

===> Quter PEDOT shell

“~> Inner PLGA/PCLand
left over EDOT core

Fig. 18 Schematic illustration of methods for preparing aligned PEDOT nanofibres and PEDOT nanotubes by oxidative polymerization of EDOT
monomer incorporated in oriented assemblies of electrospun PLGA/PCL nanotubes.*¢*
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Fig. 19 Preparation of flexible electrode—electrolyte system.”*

Table 4 Conductivity and resistance of different PEDOT/PLGA
fibers'e®

Conductivity
Sample Resistance (kQ) (mS em™)
8 um fibers polymerized 2.2 2.2
by 60 wt% FeCl,
4 pm fibers polymerized 4 2.3
by 60 wt% FeCl;
2 pm fibers polymerized 7.8 2.5
by 60 wt% FeCl;
8 um fibers polymerized 13 0.75
by 50 wt% FeCl;
8 um fibers polymerized 50 0.2

by 30 wt% FeCl;

improved electrochemical performances with a specific capac-
itance of 174 F g~ ' and energy density of 810 W h kg™
However, the relatively high price of graphene and the
agglomeration of these particles have limited its scalability and
application in commercial supercapacitors.

Yang et al.®® combined structural design and 3D printing
techniques to produce additive-free stretchable electrodes with
varying negative Poisson's ratio (NPR) structures based on
PEDOT:PSS ink. Tensile and finite element analyses (FEA)
revealed that the stretchable electrode has a well-designed arc
shape NPR structure which can effectively minimize the peak
strain and result in excellent flexibility of 180° and maximum
stretchability of 150%. Moreover, further incorporation of CNTs
into the 3D printed hybrid polymer/CNT electrode enhanced the
electrochemical performance of the electrode, exhibiting a high
area capacitance of 999 mF cm 2. These developed quasi-solid
state symmetric supercapacitors not only obtain an excellent
energy density and satisfactory capacitance retention of 74.7%

© 2025 The Author(s). Published by the Royal Society of Chemistry
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after 14 000 cycles but also demonstrated good mechanical
properties by maintaining stable power output even when
extremely deformed, thus providing a promising step towards
the fabrication of stretchable conducting polymer electrodes
with excellent mechanical and electrochemical performance for
various applications in flexible electronic devices. Table 4
presents the conductivity of different PEDOT/PLGA fibers (8 pm
fibers were spun from a sample with an EDOT/PLGA ratio of 1:
10, 4 um fibers were spun from the sample with an EDOT/PLGA
ratio of 3:10, and 2 pum fibers were spun from the sample with
EDOT/PLGA ratio of 5:10) (Jinghang, 2011 *%%).

4. Outlook into applications of
functional polymers in EDLCs,
pseudocapacitors and hybrid
capacitors

Polymers have become central to the evolution of super-
capacitors, including electric double-layer capacitors (EDLCs),
pseudocapacitors, and hybrid designs. Thanks to their adapt-
able properties such as flexibility, lightweight construction, and
customizable conductivity. These functional polymers have
significantly enhanced the functionality and versatility of these
energy storage devices. By combining polymers with other
innovative materials, researchers have achieved breakthroughs
in energy and power density, device durability, and creative
design possibilities for various applications.””*7®

In the realm of EDLCs, energy storage is achieved through
electrostatic charge separation at the electrode-electrolyte
interface. Polymers play a vital role here by improving the effi-
ciency of this interface. For instance, conducting polymers like
polyaniline (PANI), polypyrrole (PPy), and PEDOT (poly(3,4-
ethylenedioxythiophene)) are often blended with carbon-based

RSC Adv, 2025, 15, 7509-7534 | 7527
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materials such as activated carbon, graphene, and carbon
nanotubes (CNTs)."”® These combinations enhance electrical
conductivity and structural strength while maximizing the
surface area available for energy storage. Additionally, poly-
meric binders such as polyvinylidene fluoride (PVDF) and
Nafion are used to maintain the structural integrity of elec-
trodes during use. The synergy between polymers and nano-
structured carbons improves capacitance, reduces internal
resistance, and enables the creation of flexible, high-
performance devices. As a result, polymer-enhanced EDLCs
have found applications in areas like portable electronics,
regenerative braking systems, and uninterruptible power
supplies, where rapid energy delivery and durability are
paramount'®’

Pseudocapacitors, which store energy through reversible
faradaic reactions on electrode surfaces, also benefit from the
unique properties of polymers. These devices rely heavily on
conducting polymers like PANI, PPy, and PEDOT due to their
ability to support high-speed electron transfer and ion diffu-
sion. PANI is particularly valued for its high capacitance and
ease of synthesis, while PPy's flexibility and conductivity make it
a versatile choice for various configurations. PEDOT, with its
excellent mechanical properties and stability, is another
standout material."®>*®> However, challenges such as structural
degradation from repeated swelling and shrinking during
charge cycles remain. By creating polymer composites that
incorporate carbon-based materials or metal oxides, these
issues can be mitigated, leading to improved longevity and
reliability.'**'®* Pseudocapacitors, with their higher energy
densities compared to EDLCs, are particularly suited for appli-
cations demanding robust storage capabilities, such as energy
grids and advanced portable technologies.'*

Hybrid supercapacitors merge the best features of EDLCs
and pseudocapacitors, offering both high power density and
increased energy storage. Polymers play a dual role in these
systems, both as active materials and as components in hybrid
electrodes. Conducting polymers like PANI, PPy, and PEDOT are
frequently integrated with materials like manganese dioxide
(MnO,), ruthenium oxide (RuO,), or graphene to enable
simultaneous electrostatic and faradaic charge storage.'®**”
Conducting polymers can be modified with dopants to optimize
performance for particular applications, while composite
designs enable advanced functionalities like self-repair and
thermal regulation. Furthermore, the use of eco-friendly
synthesis methods and scalable production techniques
ensures that polymer-based supercapacitors are not only high-
performing but also environmentally responsible.’””'*® Efforts
to develop more durable polymer composites continue to
address challenges such as cycling stability and conductivity
retention, driving the creation of lightweight, long-lasting, and
efficient energy storage solutions. The integration of polymers
into supercapacitors represents a transformative leap forward
in energy storage technology. By combining their inherent
properties with cutting-edge material science, polymers have
enabled the development of supercapacitors that meet the
demands of modern applications, from renewable energy
systems to wearable technology and beyond. As research
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progresses, the future of polymer-based supercapacitors looks
promising, paving the way for innovative and sustainable
energy solutions.

5. Applications and impact of
polymer nanocomposites

Polymer nanocomposites are increasingly used in flexible
packaging due to their ability to enhance barrier properties
against gases like oxygen and moisture, improve mechanical
strength, and provide functionalities such as UV protection.
These characteristics make it possible to develop thinner, more
effective packaging materials that prolong shelf life, lower
material consumption, and maintain product quality. Nano-
composites enhance durability, and environmental sustain-
ability through the integration of cutting-edge features.'®*'%*
Polymer nanocomposites play a crucial role in flexible pack-
aging by offering enhanced performance through key applica-
tions. The incorporation of nanofillers like clays, silica, or metal
oxides significantly improves barrier properties, reducing gas
permeability.’®® Nanoparticles also enhance tensile strength
and tear resistance. Additionally, they improve heat-sealing
capabilities, ensuring secure closures to minimize contamina-
tion risks. UV-absorbing nanoparticles provide added protec-
tion by preventing product degradation caused by ultraviolet
light exposure.'

Notably, PANI is a widely used material in flexible wearable
devices due to its high electrical conductivity, good environ-
mental stability, low cost, and ease of processing into flexible
films.**?% Because of these characteristics, PANI is a great
option for wearable electronics that adapt to the human body
while still functioning dependably, flexible sensors,"® and
energy storage devices like supercapacitors.>® By altering its
conductivity in response to external stimuli, PANI demonstrates
excellent sensitivity in flexible sensors, making it possible to
detect factors such as pressure, tension, pH, and biomolecules.
PANI-based electrodes for electrochemical sensors provide real-
time monitoring of body fluids, including perspiration, for
medical diagnostic purposes. Furthermore, PANI's high specific
capacitance facilitates the creation of wearable electronics
supercapacitors, and its incorporation into triboelectric nano-
generators (TENGs) allows devices to be powered by body
motion energy collecting.****> PANI's mechanical flexibility,
which enables it to adapt to curved surfaces without losing
functionality, and its adjustable conductivity, which can be
doped for certain applications, are two benefits of employing it
in wearable technology.?***** PANI can also become biocom-
patible with the right surface modification, which qualifies it for
skin-contact devices. It is even more appealing for scalable
manufacturing because of its low cost.”*>** But issues like
doping stability and environmental deterioration need to be
addressed. Environmental stability can be enhanced by encap-
sulation or protective coatings, and sustained conductivity
levels over time need meticulous design and production
procedures.””” PANI is still a flexible and affordable material for
developing wearable technology in spite of these obstacles.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Similarly, PPy offers superior structural stability in contact
with body fluids, such as sweat, compared to metals. PPy is
valued for its high specific capacitance (480 F g™ '), environ-
mental stability, good conductivity, excellent redox properties,
and ease of synthesis. It is also biocompatible, minimizing
excessive immune responses. While pristine PPy lacks intrinsic
antibacterial properties, nanostructured PPy can regulate
bacterial viability, such as through PPy nanosuckers that
enhance bioelectricity generation in microbial fuel cells.
Furthermore, PPy can be tailored into various morphologies,
including nanowires, nanospheres, and nanosheets, by modi-
fying polymerization conditions.>*®

Finally, PEDOT:PSS-based electrochromic devices (ECDs) are
gaining prominence in flexible electronics due to their high
optical contrast, low energy consumption, bistability, and simple
structure. These devices exhibit color changes under voltage,
making them ideal for applications like information displays,
anti-counterfeiting, and wearable health monitoring. For
example, PEDOT:PSS has been used to create recyclable, biode-
gradable, and eco-friendly ECDs with enhanced optical trans-
mittance, coloration efficiency, and durability, offering
significant advantages over conventional materials like PET.>***°

In wearable health monitoring, PEDOT:PSS-based ECDs
provide real-time visualization of vital signs, such as glucose or
lactate concentrations in sweat, through reversible color
changes. These devices are lightweight, compact, and stretch-
able, enabling efficient, non-invasive health monitoring. Addi-
tionally, PEDOT:PSS plays a vital role in flexible energy storage
systems, combining energy storage with electrochromic func-
tions for real-time power monitoring and efficient operation.
Advances in material design, such as the integration of nano-
particles and conducting polymers, also pave the way for self-
powered photovoltaic-electrochromic devices, offering sustain-
able and maintenance-free solutions for next-generation wear-
able electronics.>****°

6. Challenges, future demands and
expectations

In the modern era, an integral part of human life is smart
technology. Accordingly, advanced technologies are always
searching for smart and well-fabricated materials to satisfy the
growing demand.*>*>”*'** As the progress of the trend, the
development of novel materials with improved electrochemical
performance is required to address the critical issue of pollu-
tion. There is a growing need for sustainable and renewable
energy storage solutions in hybrid automobiles and portable
electronic devices necessitating the development of innovative
materials with better electrochemical capabilities, such as
electrochemical capacitors or supercapacitors.”** The applica-
tion of functional polymers in e-textiles and other related
biomedical fields has shown that energy is needed to perform
all necessary operations both in living and non-living things for
the attainment of human comfort. Hence, the quest for
improved, readily available, eco-friendly, and cost-effective
sources of energy will be on the increase to avert an energy
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crisis. Polymer-based materials, nanotechnology, and
composite materials development have been the main sources
of progress made in the modern days.*® However, the develop-
ment of functional polymers as supercapacitors still faces
several significant challenges that must be overcome to enable
their widespread use. One of the primary obstacles is the inef-
ficiency of current production processes, such as photolithog-
raphy and electroplating. These methods involve multiple
phases and strict requirements, which limit their applicability
in creating flexible supercapacitors. Simplifying these processes
is crucial to improving performance and expanding the use of
supercapacitors in various electrical systems. Additionally, the
materials used for the electrodes in supercapacitors present
limitations. A key challenge lies in developing materials with
optimal porosity and increased surface area to enhance energy
storage. While materials like metal-organic frameworks (MOFs)
and MXenes show promise due to their high surface areas and
electrical conductivity, they still require further refinement to
fully meet the demands of supercapacitor applications. The lack
of systematic methods for designing electrode architectures
that effectively address porosity, interlayer spacing, and crys-
talline structure also restricts the optimization of electro-
chemical performance.”**** Improving the electrochemical
properties of the polymer materials. Ion doping, including p-
type and n-type doping, can enhance the conductivity and
performance of electrode materials, but precise doping tech-
niques combined with effective post-heat-treatment processes
are necessary to achieve these improvements. Furthermore,
other important properties such as thermal stability, machining
capacity, and mechanical strength must be considered to
ensure that the supercapacitors are not only efficient but also
durable and practical for real-world applications. Beyond elec-
trochemical and material concerns, additional features like
transparency, self-healing, and photosensitivity need to be
explored further to enhance the overall performance of super-
capacitors. Incorporating these properties places additional
demands on research and development, making the process
more complex. Moreover, flexible supercapacitors must be
capable of functioning in dynamic environments, such as those
subjected to bending. This raises concerns about bending cycle
performance and electrolyte leakage, both of which need to be
addressed to ensure long-term reliability.

Industrial barriers also impede the large-scale application of
supercapacitors with excellent performance. High production
costs, technological limitations, and the absence of standard-
ized industry practices make it difficult for high-performance
supercapacitors to be manufactured and implemented on
a large scale. These barriers must be overcome to enable the
broader use of supercapacitors in various industries.

Looking to the future, several research directions hold
promise for advancing the field of functional polymers as
supercapacitors. One key area of focus is the development of
advanced materials with enhanced surface area and conduc-
tivity. Continued exploration of materials like MOFs and
MXenes could lead to significant improvements in super-
capacitor performance. Additionally, as the demand for wear-
able electronics and smart textiles grows, the development of
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fiber-based supercapacitors with foldable, stretchable, and
bendable properties will become increasingly important. The
integration of these flexible devices with multifunctional capa-
bilities is expected to be a major research trend.

However, there is a need for more technological advance-
ment toward natural resources that will be void of harmful side
effects which are the bane of present-day technological devel-
opments. Aside from this, many technological limitations of the
present times in most developing nations need to be overcome
to have a safe global community. This can only be achieved with
more intense research and development in electrical and elec-
tronic systems-based materials that will aid more transmission
of data, resources, information, and many more even from
remote areas.

7. Conclusion

The application of polymers as conductive materials has aided
the development of many modern materials and products for
human comfort due to their ease of production and modifica-
tions. The inherent polymer properties made it the best mate-
rial among the three fundamental materials for most
applications; hence, it is readily available to suit most areas of
need. The work considers the effectiveness of polymers as
conductive materials and their suitability for the production of
supercapacitors for electronic applications. From the review, it
was discovered that PANI, PPy, and PEDOT are the most widely
used conductive polymers based on their ease of production,
all-organic nature with good dimensional durability, mechan-
ical flexibility, and chemical stability in addition to their
excellent intrinsic electrical conductivity and high signal
transduction. More efforts are to still be focused on polymers
through their modifications as this will further provide more
easily accessible suitable functional products. This is necessary
because the combination of polymer properties and modifica-
tions cost is always cost-effective compared to metal and
ceramics.
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