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tertiary amines with sodium sulfinic acid salt, a reaction that is mediated by silver acetate. The choice of

solvent determines whether sulfonyl enamines or dienamines are obtained. The overall atom economy
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Introduction

Organic synthesis has undergone rapid development over the
last few decades, leading to the creation of new procedures for
the preparation of amines,* ethers,” heterocyclic compounds,?
and both tetrasubstituted* and trisubstituted® alkenes. In
addition to the above-mentioned substances, vinyl sulfones
represent an important class of compounds that are the subject
of intense study in terms of their synthesis and application. For
example, rigosertib® and other vinyl sulfones exhibit significant
antitumor activity,” neuroprotective effects against Parkinson's
disease,® cysteine protease inhibition,” and antiparasitic
activity.’ Moreover, significant attention has been paid to
sulfonyl enamines due to their medicinal applications. In this
regard, cyclic sulfonyl enamines form the key structural motif of
Xestoadociaminals A and B, compounds that have been isolated
from the Indonesian marine sponge Xestospongia sp. (Fig. 1)."*
Some cyclic sulfonyl enamines are formed during the micro-
somal metabolism of artemisone.” Furthermore, the artificially
synthesized sulfonyl enamines A and B have been characterized
based on their antimicrobial activity"® and their role as activa-
tors of nuclear factor erythroid 2-related factor 2 (Nrf2).**

The practical significance of both vinyl sulfones and sulfonyl
enamines is closely tied to the development of efficient methods
for their preparation. Traditional methods for the preparation
of sulfonyl enamines include the conjugate addition of amines
to sulfonylacetylenes*® and the C-H sulfonylation of enam-
ides." However, a distinct approach to the formation of sulfonyl
enamines involves the oxidative sulfonylation of cyclic
amines,"” formal C-H activation with the insertion of sulfur
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of this multicomponent reaction was further improved by isolating the resulting elemental silver and

dioxide,"® and the direct reaction of tertial amines with sulfonyl
chlorides® or sulfonyl hydrazides.*

From a practical perspective, it is advantageous to perform
the synthesis of sulfonyl enamines using the method described
by Gui et al., who developed the tetrabutylammonium iodide-
catalyzed synthesis of sulfonyl enamines in the presence of
stoichiometric amounts of tert-butyl hydroperoxide (TBHP)
(Scheme 1a).>* By contrast, Yuan observed the significant effect
of solvents on the course of the reaction between sodium sul-
finates and tertiary amines. In this respect, water favored the
formation of sulfonamides, while dimethyl sulfoxide (DMSO)
favored the formation of sulfonyl enamines (Scheme 1b).>* In
both cases, the iminium salt Im1 and enamine Im2 were
proposed as intermediates during the preparation of sulfonyl
enamines.”»* Our research interest in the synthesis of
alkenes,” along with the predicted formation of the iminium
salt Im1 and the significant effect of N-substitution on the
stability of iminium salts,* led us to propose a new multi-
component synthesis procedure of f-sulfonyl enamines

Xestoadociaminal A (163-OH)
Xestoadociaminal B (16a-OH)

9367° on

NMe,

Fig. 1 Structures of some biologically relevant sulfonyl enamines.
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Scheme 1 Concept of our work.

(Scheme 1, this work). In this new multicomponent reaction, we
expected the formation of the more stable iminium salt Im4 by
means of transimination from iminium salt Im3.

Table 1 Optimization of reaction conditions
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Result and discussion

In terms of the proposed multicomponent reaction, we aimed to
optimize the reaction conditions. We quickly discovered that
most oxidants, including Cul, I,/TBHP, I,, FeCl;, and MnO,,
when used in either stoichiometric or catalytic amounts, were
ineffective, meaning that the desired product 4aaa was not
formed (see the ESIT for further details). However, using three
equivalents of silver acetate in dimethylformamide (DMF) or
dimethylsulfoxide (DMSO) yielded the enamine 4aaa, albeit in
a lowyield (Table 1, entries 1 and 2). Through solvent variation,
we found that the most effective transformation occurred in
tetrahydrofuran (THF) with six equivalents of silver acetate
(Table 1, entries 3-6). It is important to note that lithium ben-
zenesulfinate (1a"') and potassium benzenesulfinate (1a%) yiel-
ded the enamine 4aaa in a lower yield (Table 1, entries 7 and 8).
Further solvent variation revealed that significant amounts of
diene 5aaa were formed in acetonitrile and ethanol, respectively
(Table 1, entries 9-11). Ultimately, a mixture of ethanol and
acetonitrile produced only diene 5aaa, although in a moderate
isolated yield (Table 1, entry 12). The effect of the solvent on the
formation of enamine 4aaa and dienamine 5aaa remains
unclear and will be explored in future studies.

After identifying the optimal reaction conditions, we evalu-
ated their scope (Scheme 2). Both the cyclic and acyclic aliphatic
secondary amines reacted as expected, forming enamines 4aaa-
4aae. Similar reactivity was observed with N-methylallylamine
(2f) and N-methyl(benzyl)amine (2g). Additionally, the
secondary amines with bulky cyclohexyl and isopropyl

o
1 . PhSO,
P> oNa . HC™ ONPr Agos'zfvéenc:uw) 4aaa
(e(:jiv) (e:jiv) 607, 18h ' ﬁo
W phsoy” S N \—)
/
5aaa
3a
(1.0 equiv)
Entry 1a (equiv.) 2a (equiv.) AgOAc (equiv.) Solvent 4aaa/5aaa“ (%)
1 1.2 1.2 3 DMF 14/—
2 1.2 1.2 3 DMSO 14/3
3 1.2 1.2 3 Toluene 22/4
4 1.2 1.2 3 CpOMe 11/—
5 1.2 1.2 3 THF 63/—
6 2.4 2.4 6 THF 90 (67°)/—
7 2.4¢ 2.4 6 THF —(46")/—
8 2.44 2.4 6 THF —(55%)/—
9 1.2 2.2 3 MeCN 15/25
10 1.2 2.2 3 EtOH 0/30
11 1.2 4.2 3 MeCN/EtOH* 0/53 (229)
12 2.4 4.2 6 MeCN/EtOH? 0/— (35%)

“ TH NMR yields. ? Isolated yield. © PhSO,Li (1a") was used instead of 1a. ¢ PhSO,K (1a¥) was used instead of 1a. ° A mixture of MeCN and EtOH in

1:3 v/v was used.
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Scheme 2 Scope of the developed conditions for enamine and dienamine synthesis.

substituents yielded the corresponding enamines 4aah, 4aai
and 4aaj in satisfactory yields. For selected secondary amines,
we also obtained dienamines 5aaa, 5aac, 5aaf, 5aag, and 5aaj,
albeit in lower isolated yields, which is consistent with the

o}
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Scheme 3 Reaction of benzenesulfinic acid sodium salt with tert-
amines.
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optimization experiments. The primary amines and certain
secondary amines did not yield the expected products. More-
over, no reactivity was observed for N-ethylaniline and indole.

The optimized reaction conditions are not limited to the
preparation of disubstituted alkenes. Notably, in the case of
more complex tertiary amines, we successfully prepared
trisubstituted alkenes (Scheme 3). Excellent reactivity was
observed for amines with aliphatic substituents, yielding
enamines 4aba, 4aca and 4ada. In contrast, a tertiary amine
containing the homobenzyl group 2f yielded a mixture of the
diisopropylamine 4afj and the morpholine derivative 4afa.
Substituting morpholine (3a) with diisopropylamine (3j) resul-
ted in the exclusive formation of amine 4afj in a 27% isolated
yield, while the tertial amine 2e containing a three-carbon
spacer resulted in the clean formation of transimination
product 4aea. These results suggest that the exchange of the
N'Pr, for the morpholine moiety occurs significantly slower
than in other cases. In addition, the tertial amine 2g bearing a 2-
thienyl group did not react at all.

The structure of the sulfinic acid sodium salt also plays
a significant role in the course of the multicomponent reaction
(Scheme 4). Sodium salts derived from substituted benzene-
sulfinic acids reacted satisfactorily, yielding alkenes 4baa, 4caa,
and 4daa. Similar isolated yields of the enamines 4eaa and 4faa
were obtained for even 1-naphthyl- and 1-pyrenylsulfinic acid
sodium salts. However, n-butylsulfinic acid sodium salt
produced the enamine 4gaa in only a 9% yield. The reactivity of
the styrenyl and heterocyclic sulfinic acid sodium salts differed
markedly. Here, 3-pyridylsulfinic acid sodium salt did not react

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Scheme 4 Scope of the sulfinic acid sodium salts in the developed
enamine synthesis.

at all, whereas 2-thienylsulfinic acid sodium salt yielded
a mixture of sulfonamide 6 and enamine 4iaa, with no observed
transimination. Styrenylsulfinic acid sodium salt only produced
sulfone 7 in a low isolated yield.

To further expand the portfolio of trisubstituted alkenes, we
performed the gram-scale synthesis of alkene 4aaa, achieving
a 70% isolated yield (Scheme 5). In addition to the target alkene
4aaa, elemental silver was recovered and converted back into
silver acetate using nitric acid and sodium acetate. The recycled
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Scheme 5 (a) Gram-scale synthesis of alkene 4aaa, (b) late-stage
modification of enamine 4aaa and (c) attempted conversion of 4aaj to
4aaa.
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silver acetate provided the alkene 4aaa with a 57% yield on
a 0.5 mmol scale, thereby improving the overall atom economy
of the developed multicomponent reaction. In addition, the
prepared alkene 4aaa was lithiated to the alkene 4aaa™ using n-
butyllithium, and the subsequent reactions with organohalides
produced the trisubstituted enamines 4aha, 4aea, and 4aia in
high yields. This approach successfully expanded the scope of
the trisubstituted enamines available wvia novel three-
component synthesis, starting from the readily available
disubstituted enamine 4aaa. The mechanism of this novel
multicomponent reaction will be further explored; however, we
hypothesize that the key step involves the transimination of the
iminium salt from Im3 to Im4 (Scheme 1, this work). Experi-
mental evidence suggests that enamines 4 are not generated
through nucleophilic substitution of the N'Pr, group by
a secondary amine, as demonstrated by the reaction of the
enamine 4aaj with morpholine under typical reaction condi-
tions, which did not yield the anticipated product 4aaa
(Scheme 5c).

Conclusions

In conclusion, we developed a new multicomponent reaction
for the preparation of di- and trisubstituted sulfonyl enamines.
The optimized reaction conditions involve reacting tertiary and
secondary amines with the sodium salt of arylsulfinic acid in
the presence of silver acetate in THF at 60 °C. Substituting THF
with an ethanol-acetonitrile mixture can yield the correspond-
ing dienamines. These optimized conditions allow for the gram-
scale synthesis of enamines. The overall atom economy of the
multicomponent reaction is improved by isolating the silver by-
product and reconverting it into silver acetate. Late-stage
modification of disubstituted enamines further expands the
portfolio of prepared trisubstituted enamines.
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