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alization models learn to
comprehensively detect volatile organic
compounds associated with foodborne pathogens
via Raman spectroscopy†

Bohong Zhang, *a Anand K. Nambisan,a Abhishek Prakash Hungund,a

Xavier Jones,b Qingbo Yang*b and Jie Huang *a

Ensuring food safety requires continuous innovation, especially in the detection of foodborne pathogens

and chemical contaminants. In this study, we present a system that combines Raman spectroscopy with

machine learning (ML) algorithms for the precise detection and analysis of VOCs linked to foodborne

pathogens in complex liquid mixtures. A remote fiber-optic Raman probe was developed to collect

spectral data from 42 distinct VOC mixtures, representing contamination scenarios with dilution levels

ranging from undiluted to highly diluted states. A dataset comprising 1445 Raman spectra was analyzed

using classification and regression ML models, including multi-layer perceptron (MLP), random forest,

and extreme gradient boosting decision trees (XGBDT). The optimized ML models achieved over 90%

classification accuracy for pure VOCs and demonstrated robust performance in identifying mixtures

containing up to six VOCs at concentrations as low as 0.25% (400-fold dilution). Additionally, regression

analysis effectively predicted VOC concentrations at levels as low as 1% (100-fold dilution), with the best

model achieving an R2 value exceeding 0.82. This approach demonstrates the potential for rapid and

real-time food safety monitoring, effectively overcoming the limitations of traditional methods such as

culture-based or qPCR techniques, while its ability to reliably classify complex VOC mixtures makes it

a valuable tool for on-site food safety assessments and quality control applications across various industries.
Introduction

The global demand for fresh, organic, and minimally processed
foods has steadily increased in recent years, driven by
advancements in agricultural technology and consumer pref-
erence for healthier, preservative-free options. While this trend
offers signicant health benets, it also introduces greater risks
of contamination by foodborne pathogens due to the reduced
use of chemical preservatives and the complex logistics involved
in the production, transportation, and retailing of these prod-
ucts. Organic and fresh foods, particularly those that rely on
minimal processing, are highly susceptible to contamination by
pathogens such as Listeria monocytogenes, Salmonella spp., and
Escherichia coli during various stages of the supply chain. The
complexity of food production, coupled with compromised
cold-chain management and the inherent vulnerability of fresh
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products, has resulted in increased incidents of foodborne
disease outbreaks which underscore the urgent need for more
efficient and reliable detection methods in the food industry.

Traditional detection methods, such as agar plate cultures,
quantitative polymerase chain reaction (qPCR), and enzyme-
linked immunosorbent assay (ELISA) kits, remain the gold stan-
dard for pathogen identication in food. These methods are
widely used by regulatory agencies such as the USDA and FDA to
ensure food safety compliance. However, these techniques
present several challenges when applied to large-scale food
production. For example, agar plate cultures require extended
incubation times, oen taking days to produce results, making
them unsuitable for real-time monitoring in fast-paced food
production environments.1 Similarly, qPCR and ELISA-based
methods, while more rapid, still require specialized laboratory
equipment, skilled technicians, and substantial sample prepara-
tion, limiting their feasibility for on-site detection and their
scalability across large sample volumes.2,3 Moreover, these
conventional methods struggle with detecting low levels of path-
ogens, particularly in cases where the pathogens enter a viable but
non-culturable (VBNC) state due to environmental stressors.4 In
such conditions, bacteria can evade detection by traditional
culturing methods despite remaining viability and pathogenic
RSC Adv., 2025, 15, 4847–4860 | 4847
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potential, thus posing an undetected threat to public health.5

Additionally, the complexity of modern food matrices where
multiple types of foods and contaminants co-exist further
complicating the detection process. Current methods are oen
limited in their ability to analyze complex, mixed samples, which
may contain multiple VOCs and various interfering substances
that mask the presence of pathogens.6 Recent technological
advancements, such as electronic nose (E-nose) devices, offer new
possibilities for pathogen detection in food.7 These devices
measure the conductivity or permittivity changes in the air
surrounding food products to detect spoilage or contamination by
monitoring VOCs. However, while E-nose technology shows
promise for providing general information on food quality, it
lacks the ability needed to identify specic compounds in
a complex VOC mixture. E-nose devices also struggle with
detecting pathogens in low concentrations and have yet to achieve
the sensitivity required for widespread use in the food industry.
Early-stage spoiled food emits VOCs at 5–100 ppm, with levels
increasing exponentially as spoilage progresses. Under refrigera-
tion, VOC release is inhibited, even in highly contaminated
samples. For instance, indole—a VOC linked to E. coli—can reach
20–40 ppm in refrigerated seafood but oen requires heating to
100 °C for GC-MS detection.8

Given these limitations, there is a critical need for the devel-
opment of new detection systems that are faster, more sensitive,
and capable of processing complex food samples in real-time.
One promising solution is the application of Raman spectros-
copy. Raman spectroscopy is a non-destructive optical technique
that detects molecular vibrations, providing detailed informa-
tion about a sample's chemical composition.9–11 It has shown
signicant potential for identifying pathogen-specic VOCs in
food, offering high sensitivity and selectivity at a relatively low
cost.12–14 However, while Raman spectroscopy has been applied
successfully in simple sample matrices, its use in complex food
systems has been limited by challenges in interpreting the
resulting spectra. To overcome these challenges, integrating
Raman spectroscopy with ML algorithms offers a powerful
approach. ML algorithms, including classication and regres-
sion models, can analyze the vast amounts of spectral data
generated by Raman systems and detect subtle differences in
VOC proles, even within complex mixtures. By automating the
analysis process, ML can enhance the precision and speed of
VOC detection, allowing for the real-time identication of food-
borne pathogens in diverse food matrices.13,15 However, the
benchtop Raman system is limited by the need for complex
sample preparation and its inability to support remote or on-site
monitoring. To overcome these challenges, this study introduces
a system that integrates Raman spectroscopy with advanced ML
algorithms, utilizing a ber-optic-based Raman probe for real-
time, high-throughput detection and classication of pathogen-
specic VOC signatures in food samples. Building on our
previous study,14 this work advances the methodology by opti-
mizing ML algorithms to improve both accuracy and efficiency
for much more complex and mixture samples with low concen-
tration levels. The big number of datasets and the introduction of
regression analysis as an additional layer of data analysis,
enabling more precise quantication of pathogen
4848 | RSC Adv., 2025, 15, 4847–4860
concentrations. By leveraging the power ofmachine learning, the
system efficiently extracts molecular information from Raman
spectra and accurately identies VOCs at varying concentrations.
Compared to traditional detection systems, this approach offers
signicant advantages, including portability, rapid on-site anal-
ysis, and the ability to process complex samples without exten-
sive preparation. These enhancements hold potential for
transforming food safety monitoring, providing a reliable, cost-
effective, and scalable solution for real-time pathogen detection
in the food industry.
Materials & methods
Chemicals & sample preparation

In this study, we utilized 42 different VOC mixtures as target
analytes, comprising combinations of compounds such as 2-
nonanone, 2-undecanone, 1-dodecanol, 3-methyl-butanoic
acid, acetoin, octanol, methyl-trisulde, and 3-hydroxy-2-
butanone. The VOCs selected—such as indole, benzothiazole,
and 3-methylbutanal—are well-documented as biochemical
markers associated with foodborne pathogens. For example,
indole and benzothiazole are characteristic of E. coli,16,17 while
Listeria monocytogenes produces 3-methylbutanal and dodeca-
nal.18 These compounds act as ngerprints, enabling the iden-
tication and prediction of food spoilage.19,20 To ensure the
accuracy and reliability of the VOC mixtures, a stringent prep-
aration protocol was followed. Pure samples of each selected
VOC, with a purity greater than 99.99%, were initially prepared
in individual 2 mL volumes. These pure VOCs were then
combined in predetermined ratios to create two-, three-, and
four-component mixtures. The mixtures were organized into
distinct classes, with each receiving a class label reecting the
unique chemical combinations involved, as outlined in Fig. 1.
Each VOC mixture was diluted using acetonitrile (ACN) solvent
to create a series of concentrations, ranging from undiluted
(0×, 100%) to progressively lower levels at 5× (20%), 10× (10%),
20× (5%), and 400× (0.25%). These dilutions, which extended
down to parts-per-million (ppm) levels, allowed for a compre-
hensive assessment of the system's sensitivity across a wide
range of concentrations. The corresponding VOC concentra-
tions at each dilution factor, expressed in units per milliliter
(unit/mL), percentage (%), and parts per million (ppm), are
detailed in Table S2 of the ESI.† The wide range of chemical
combinations was designed to reect the complexity of real-
world samples, such as those found in spoiled food products
or pathogen-contaminated environments. To further expand
the dataset for ML algorithms, ve Raman spectra were
collected for each dilution within each class label. This gener-
ated a comprehensive dataset of 42 distinct classes, resulting in
289 data sets and 1445 Raman spectra, ensuring that the model
could robustly learn and predict VOC patterns across different
concentrations and combinations.
Raman spectra analysis of VOC samples

To simulate real-world scenarios of foodborne pathogen
detection, we created a broad dataset by preparing complex VOC
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Hierarchical representation of 42 VOC mixtures used in this study, along with their respective class labels and available dilutions. The
mixtures consist of various combinations of key foodborne pathogen-related VOCs, including 2-nonanone, 2-undecanone, acetoin, octanol, 3-
methyl-butanoic acid, and methyl-trisulfide, among others.
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mixtures at varying dilution levels. Firstly, understanding the
Raman spectra of both pure and mixed VOC samples is essen-
tial for accurate analysis. Fig. 2(a–c) exemplied the Raman
spectra of pure VOCs – 2-nonanone, 2-undecanone where
distinct peaks are clearly observed and linked to specic
molecular vibrations. For instance, the symmetric C–H
stretching bond at 2888 cm−1 and asymmetric C–H stretching
bond at 2921 cm−1 in 2-nonanone;21 the CH2–CH3 stretching
bond at 2879 cm−1 and C–H stretching at 2913 cm−1 and
2966 cm−1 in 3-methyl-1-butanethiol;22 and the CH3 stretching
bond at 2946 cm−1 in acetoin, sharp peaks.23 These pure spectra
provide a baseline for understanding the behavior of individual
VOCs in Raman spectroscopy. As the VOCs are mixed and their
Raman spectra recorded at 5× (20%), 20× (10%), and 100×
(1%) dilution levels in Fig. 2(d–f), notable differences in peak
intensity and spectral clarity emerge. At the 5× (20%) dilution,
characteristic Raman peaks of the pure VOCs are still identi-
able, although some overlap occurs due to the combination of
compounds. The distinct chemical bond features, such as the
symmetric C–H stretching bond, are still visible, albeit at
reduced intensity compared to the undiluted samples. As the
dilution increases to 20× (5%), the VOC-specic peaks become
noticeably weaker in the overlap region. By the time the dilution
reaches 100× (1%), the Raman peaks corresponding to the
VOCs are signicantly diminished or almost absent. Instead,
the spectra are increasingly dominated by the peaks of the
acetonitrile (ACN) solvent, particularly the C–H and C^N
bonds, which become the most prominent features. This shi
presents a signicant challenge for detecting and identifying
© 2025 The Author(s). Published by the Royal Society of Chemistry
VOCs at higher dilutions, as the spectral signatures of the VOCs
are increasingly masked by the solvent's peaks. In particular,
the Raman spectra at the 100× dilution (1%), make it difficult to
pinpoint specic VOCs because the solvent's peaks overwhelm
the already faint signals from the VOCs. To overcome this
challenge, advanced ML techniques are applied to analyze and
deconvolute the complex and overlapping spectra. These opti-
mized models are designed to detect subtle variations in the
Raman signals that are not easily discernible through conven-
tional methods, allowing for more accurate detection and
classication of VOCs even at extreme dilutions. Fig. 3 illus-
trates the workow for Raman spectroscopy-based detection
and analysis of VOCs, covering experimental setup, data
acquisition, and computational analysis. The setup includes
a 3D optical stage for precise alignment of a ber-optic Raman
probe, connected to a laser source and a spectrometer for signal
acquisition. Raman spectra were collected using a 532 nm
excitation beam with a laser power of 100 mW, a focusing lens
with a working distance of 0.8 cm, and a spot size of approxi-
mately 100 micrometers. Each spectrum was acquired over 10
seconds. The spectrometer measured wavenumbers from 0 to
4574 cm−1 with a resolution of about 6 cm−1, while the machine
learning analysis focused on the 2600–3200 cm−1 range, which
encompasses the dominant Raman peaks of the selected VOCs.
This ensures detailed spectral analysis and captures subtle
features inuencing model performance. The acquired spectra
were preprocessed with baseline correction using polynomial
tting, smoothing via a 3rd-order Savitzky–Golay lter, and
normalization to the most prominent peak. These processed
RSC Adv., 2025, 15, 4847–4860 | 4849
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Fig. 2 Impact of ACN solvent on pure VOC mixture between S1 and S4. The Raman spectrum of (a) pure VOC sample S1 i.e. 2-nonanone, (b)
pure VOC sample S4 i.e. 3-methyl-butanoic-acid, and (c) pure acetonitrile (ACN) solvent. Raman spectrumof VOC and ACNmixture with (d) ACN
solvent diluted 5× (20%), (e) ACN solvent diluted 20× (5%), and (f) ACN solvent diluted 100× (1%).

Fig. 3 Schematic diagram of the proposed method for multiplex detection of foodborne pathogens using remote fiber-optic Raman system.
The stochastic generalization model pipeline contains both classifier and regressor models, where the classifier's validation set is used as
additional feature set in the regressor model to improve the dilution prediction.

4850 | RSC Adv., 2025, 15, 4847–4860 © 2025 The Author(s). Published by the Royal Society of Chemistry
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spectra were then analyzed using machine learning models for
classication and regression to predict VOC concentrations and
identify specic compounds in mixtures.
Data processing & ML algorithms
Data preprocessing & feature extraction

The data preprocessing step involves splitting all the Raman
VOC spectral data into train set, test set, and validation set. The
train and hold out test sets are split rst with split ratio 0.2, and
then the remaining train set is split into train and validation
sets again with 0.2 split ratio. Therefore, the validation set size
is calculated based on the train set size aer the test set is split.
Before the data is used for training any ML model, key features
Fig. 4 Feature importance plots for 3 prominent pipeline classifiers. FI plo
rank-2 XGBDT classifier. The plots are tabulated according to the pure
a mixture VOC, the feature importance (or mean of SHAP values) of that
used to obtain themixture. The feature aliases in the x-axis of the bar plot
into the impact of certain features on the model pipeline performance
feature with largest mean SHAP value) starting at the right. Higher mean
with larger bars are more influential in the model's predictions (P. S. mo

© 2025 The Author(s). Published by the Royal Society of Chemistry
need to be extracted from the Raman spectra and pre-processed
before the model training. The features extracted from the
Raman spectra of each VOC type, shown in Fig. 4 are tabulated
in a data frame. A feature extraction algorithm is developed to
extract wavenumber and frequency domain features from each
Raman spectrum and appended to the data frame. Each wave-
number and frequency domain features attempts to capture
different characteristics of the Raman spectrum. A total of 96
features were extracted from each spectrum. The features most
inuential in classication and prediction during training and
testing are highlighted in the feature importance plots shown in
Fig. 4. The selection of features in this study was inspired by
a previous study.24 Feature importance metrics were calculated
using Shapley Additive Explanations (SHAP) values, computed
t for (a) rank-1 MLP classifier, (b) rank-3 random forest classifier, and (c)
VOCs' class labels S1 to S8. When these VOCs are mixed to obtain
mixture will be a derivative of the mean SHAP value of the pure VOCs
s are defined in the Table S1 in the ESI.† These plots give detailed insight
and are plotted right to left with the most important feature (i.e., the
SHAP values suggest a greater impact on the model's output. Features
re detailed and clear information can be found in Fig. S4 of the ESI†).

RSC Adv., 2025, 15, 4847–4860 | 4851

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra08316d


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/1
8/

20
26

 2
:2

5:
46

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
through the Kernel Explainer module in Python. SHAP values
here indicate how much each feature in the dataset contributed
either positively or negatively to the predicted output and it is
computed by using a weighted linear regression method. The
feature importance plots for the other two models can be found
in Fig. S1 in the ESI.†

Features in this context encompass statistical metrics (e.g.,
mean, standard deviation, skewness), spectral peaks (e.g.,
intensity, position, width) derived from the wavenumber
(Raman shi) domain, as well as frequency-domain charac-
teristics (e.g., Fourier transforms, power spectral density). Some
features exhibit potential correlations between the wave-
number and frequency domains. For instance, in the wave-
number (Raman shi) domain, statistical features such as
signal minima, maxima, mean, and median collectively
summarize the central tendency and range of the Raman
signal, providing insights into its overall distribution and
variation. In frequency domain, features such as max frequency
power and max frequency magnitude can be correlated. Even
the histogram features can have correlations depending on the
distribution of the Raman spectra. Having correlations in data
is not necessarily an issue with the exception that between
similar Raman signals, it might lead to multi-collinearity
causing inaccuracies in regression models. This has been
overcome by the implementation of feature selection or
dimensionality reduction techniques such as principal
component analysis (PCA) to remove the redundant features in
the feature extraction algorithm. The PCA resulted in a drop in
the performance, which was rectied by dropping the most
highly correlated features.
Fig. 5 Improved cross-validation algorithm for stacked generalization m
training for VOC classification and concentration prediction. (b) Pipeline
method for stochastic generalizationmodels in ML boosts efficiency by o
by maintaining uniform processes. It is scalable to accommodate large fe
reproducibility across different environments. It also provides a structure
figure of merit shown in eqn (5) is used to determine the best model pipel
the regressor.

4852 | RSC Adv., 2025, 15, 4847–4860
Model training & performance metrics

The improved cross-validation (CV) algorithm shown in Fig. 5,
rst initializes the stratied CV and arrays to store the evalua-
tion metrics for each fold or train/test split. It then loops over
each split provided by the stratied CV and prepares the
training and validation data. The data for the classier is kept
separate from the data for the regressor because they are pre-
dicting different targets. It then constructs a pipeline for the
classier, which includes scaling the features and the classier
itself. Then, grid search is performed on this pipeline, passing
the training data and the classication targets. It uses the best
classier found by the grid search to predict the training and
validation data and adds these predictions as new features to
the regression inputs. It constructs a similar pipeline for the
regressor, which includes the scaler, the classier's predictions
as features, and the regressor itself. It performs grid search on
this pipeline as well, passing the regression inputs and targets.
It uses the best regressor found by the grid search to predict the
validation data. It calculates various performance metrics (f1,
precision, recall, mean squared error, and R2) on the validation
set, where the f1 score is given by:

f1 ¼ P� R

Pþ R
(1)

where (P) and (R) are precision and recall values determined by:

P ¼ TP

TPþ FP
(2)

R ¼ TP

TPþ FN
(3)
odel training to classify VOC and predict its concentration. (a) Model
subroutine to determine best classifier and regressor pair. The pipeline
ptimizing each stage individually and ensures consistent, reliable results
ature datasets that can be trained by complex models, while enhancing
d workflow, making it easier to iterate on models and experiments. The
ine, which depends on both the f1 score of the classifier and R2 value of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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where TP is true positive, FP is false positive, and FN is false
negative. The R2 value for the regressor is calculated as:

R2 ¼ 1�
P ðeresÞ2P

ei
(4)

where eres are the residual errors and ei is the error from each
prediction from the regression model of the pipeline. From
both f1 score and R2, an overall pipeline score (in this case, the
average of the f1 and R2 scores) can be calculated and is termed
as gure of merit (FOM) which is given by:

FOM ¼ f1 þ R2

2
(5)

which checks if this pipeline is better than the best seen so far.
If it is, it stores this pipeline as the new best and records the
metrics values for the split and moves on to the next.

Aer all folds have been processed, it retrains the best
pipeline on the full training set and evaluates this nal model
on the holdout test set, calculates the same performance
metrics as before, and returns these along with the CV metrics
and the best pipeline. The stacked generalization scheme
involves model training for both classication and regression,
where the VOC needs to be classied, and its concentration
needs to be predicted. To optimally decide the combination of
a regressor and classier, a 5-fold cross-validation algorithm is
implemented for this multi-label classication and regression.
Grid search inside each cross-validation (CV) fold is performed
to ensure that the hyperparameters of the model are optimized
separately for each fold. The primary purpose of CV is to esti-
mate how well the trained model generalizes to unseen data.

To make a robust estimate, the model is trained and tested
on different subsets of VOC data multiple times. Grid search CV
is then used to nd the best hyperparameters for the model on
a particular fold. This is done by training multiple versions of
a model on the same data but with different hyperparameters,
then selecting the hyperparameters that produce the best
performance according to f1 score metric. This approach
provides a more robust estimate of the model's performance
because it minimizes data leakage—i.e., information from the
validation set inuencing the model training process. If the
hyperparameters were optimized on the full data before per-
forming CV, information from the validation set would indi-
rectly inuence the training process, leading to an overly
optimistic performance estimate. This approach requires more
computational resources since it needs to perform grid search
CV (which is already computationally intensive) multiple
times—i.e., once for each CV fold. Further, a pipeline system is
dened for both the regression and classication models. An
improved version of CV function is implemented to keep track
of the best pipeline and not just select the best individual
classier and regression models. The ow of the implemented
CV and training algorithm is shown in Fig. 5. This process
ensures that the algorithm not only nds the best combination
of parameters for each model but also the best combination of
models (classier and regressor) for this specic task. This is
achieved by evaluating each pipeline on a validation set that is
kept separate during the grid search. The combination of
© 2025 The Author(s). Published by the Royal Society of Chemistry
stratied CV and grid search allows the algorithm to evaluate
each pipeline fairly and comprehensively. The choice of using
the average of f1 and R2 scores as the selection criterion for FOM
was made since both tasks, classication, and regression, are
equally important for the overall performance of ourmodel. The
f1 score is a commonly used metric for classication problems,
especially in cases where the data may be unbalanced. It
combines precision and recall giving a single measure of the
quality of the classier. On the other hand, the R2 score (coef-
cient of determination) is a statistical measure that represents
the proportion of the variance for the dependent variable that's
explained by the independent variables in a regression model. If
one of the tasks (classication or regression) is more important
depending on the application, a weighted average can be used
that can give more prominence to the metric corresponding to
that task (either f1 or R2). Alternatively, other factors such as
training time, complexity of the model, and interpretability,
could be considered and added to the model selection criterion.
Both f1 and R2 scores are single-value summaries of the
performance of the trained model.

Results & discussion
VOC classication

The MLP rank-1 classication results are shown in Fig. 6.
Classes S1, S2 and S3, correspond to the pure VOCs 2-non-
anone, 2-undecanone, and 1-dodecanol respectively. The
chemical structure of these VOCs shows striking similarity
between each other. All three of them have a zig-zag carbon–
hydrogen chain with an oxygen atom at the end of the chain.
The only difference is the position of the oxygen atom in the
chain and the number of C–H links in the chain. This results in
large similarity with very few minor differences in Raman
spectra of these 3 VOCs. When features are extracted, they end
up having high correlation leading to misclassication. These
misclassications only increase with the mixtures due to the
increase in correlation between features. The detailed expla-
nation can be found in Fig. S2 in the ESI.† The use of recurrent
neural networks (RNN) can alleviate this issue when dealing
with multi-collinear data. This avenue is being pursued as part
of future work.

Next, Random Forest rank-3 classier is tested, and its
classication results are shown in the confusion matrix in Fig. 7
below. When compared to the MLP rank-1 classier in the
previous Fig. 6, there is a drastic improvement in the classi-
cation performance of mixture VOCs classication when the
rank is increased. The S3 class label corresponding to 1-
dodecanol VOC particularly shows a high degree of similarity
with S1 class label corresponding to 2-nonanone VOC due to
their chemical composition being near identical. The blank
spaces along the diagonal of the confusion matrix are due to the
lack of samples for those mixtures as shown (right side) in
Fig. 7(b) and (d). Particularly observing the misclassied
samples in Fig. 7(b), for example, class label S2S4 which
corresponds to a mixture of 2-undecanone and 3-methyl-
butanoic acid, is misclassied as class label S1S4 which corre-
sponds to a mixture of 2-nonanone and 3-methyl-butanoic acid.
RSC Adv., 2025, 15, 4847–4860 | 4853
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Fig. 6 VOC classification results obtained from the MLP rank-1 classifier. MLP rank-1 classifier's confusion matrix (CM) for (a) pure VOCs, (b) 2
VOCmixtures, (c) 3 VOC mixtures, and (d) 4 or more VOC mixtures. The classification of pure VOCs shows the highest accuracy with only a few
instances misclassified. The classification accuracy slightly decreases in case of 2 VOC mixtures due to overlap in features of the Raman spectra
with the Raman spectra of corresponding pure VOCs from which the mixture is obtained. This overlap increases with an increase in the number
of pure VOCs in a mixture. Thus, the classification CM of mixtures with 4 or more pure VOCs shows least accuracy. Further, in the case of pure
VOC classification, there is a noticeable confusion between the classes S1, S2 and S3. This is because of the similarity in the chemical composition
of these 3 VOCs.
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This is notable because it tells the misclassication of the
mixture VOC is due to the pure VOC samples themselves being
misclassied as shown in Fig. 7(a).

In Fig. 8(a), the pure VOCs are classied by the XGBDT R2
classier presents the best classication amongst all the classi-
ers with a weight mean f1 score of 0.90. When compared to the
performance of the previous classiers in Fig. 6 and 7, the
XGBDT rank-2 classier performs much better as the number of
misclassied samples is drastically reduced. Obtaining high
classication accuracy poses a challenge due to the dataset being
imbalanced i.e., the number of samples in each class vary greatly
or there is no equal amount of data for each VOC. This imbalance
4854 | RSC Adv., 2025, 15, 4847–4860
arises due to dropping of highly correlated features. Hence, f1
score presents a better measure of the classication problem in
this case. It is dened as the harmonicmean of the precision and
recall as shown in eqn (1). The performance metrics for all the
classiers trained in the model pipeline are shown in Table 1.
Both macro and weighted averages are computed to be exible
with the data. Initially macro average is calculated to determine
the classier performance by giving equal importance to each
class regardless of the class distribution. Finally, the weighted
average is calculated, where the metrics for each label are
determined independently, and weight is given to those labels
based on the number of samples in the dataset.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 VOC classification results obtained from the rank-3 random forest classifier. Random forest R3 classifier's confusion matrix (CM) for (a)
pure VOCs, (b) 2 VOCmixtures, (c) 3 VOCmixtures, and (d) 4 or more VOCmixtures. In (a), it can be observed that only 2 classes aremisclassified.
Similarly, in (b) only 3 VOCs are misclassified. This classifier gives the best performance in classifying the mixtures of 3 VOCs and further, shows
slight improvement in the classification performance of the mixtures with 4 or more VOCs.
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Regression for dilution prediction

Knowing the dilution levels of VOCs is crucial when detecting
foodborne pathogens because it helps to ensure the accuracy
and sensitivity of detection method employed. VOCs are oen
used as indicators of microbial contamination, and their
concentration can affect the reliability of the results. Proper
dilution ensures that the detection methods are not over-
whelmed by high concentrations of VOCs, which could lead to
false positives or negatives. If the dilution levels are too high,
the concentration of VOCs may fall below the detection
threshold, leading to inaccurate or missed detections. This
precision is essential for early detection and control of food-
borne pathogens, ultimately enhancing food safety and public
health. Themax dilution level for effective detection depends on
© 2025 The Author(s). Published by the Royal Society of Chemistry
several factors, like the sensitivity of detection method, the
specic VOCs being measured, and the type of foodborne
pathogen.

Regression analysis was conducted using ve different
algorithms, with the three that produced the best results shown
in Fig. 9: Random Forest rank-1 regression, Random Forest
rank-3 regression, and XGBDT rank-2 decision tree regression.
The remaining two algorithms are included in Fig. S3 in the
ESI.† In each graph, the shaded red area around the regression
line represents the interquartile range (IQR), where a smaller
IQR indicates more consistent predictions. As the dilution level
increases, the IQR broadens, reecting greater inconsistency in
the predictions. The mean serves as a measure of central
tendency, while the standard deviation indicates the extent of
RSC Adv., 2025, 15, 4847–4860 | 4855
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Fig. 8 VOC classification results obtained from the rank-2 XGBDT classifier. Extreme gradient boosted R2 decision tree classifier's confusion
matrix (CM) for (a) pure VOCs, (b) 2 VOCs mixtures, (c) 3 VOC mixtures, and (d) 4 or more VOC mixtures. In (a), it can be observed that again 2
classes are misclassified, however, the number of misclassified samples are drastically reduced to only 3. Similarly, in (b) only 6 VOCs are
misclassified. Again, only 9 samples in total are misclassified. This classifier gives the best performance in classifying the pure VOCs and further,
shows drastic reduction in the number of misclassified samples, when compared with the RF classifiers.

Table 1 Classification performance metrics. This table provides a comparative analysis of different classifiers in detecting foodborne pathogens
using VOC data

Classier
Macro avg
f1-score

Macro avg
precision

Macro avg
recall

Weighted avg
f1-score

Weighted avg
precision

Weighted avg
recall

XGBDT rank-1 0.92 0.92 0.93 0.90 0.88 0.93
XGBDT rank-2 0.92 0.92 0.93 0.90 0.88 0.93
MLP 0.80 0.82 0.80 0.82 0.82 0.82
RF rank-2 0.79 0.94 0.75 0.88 0.91 0.87
RF rank-3 0.79 0.94 0.75 0.88 0.91 0.87
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variation or dispersion in the data. A lower standard deviation
suggests that the values are clustered more closely around the
mean. The R2 value, also called the coefficient of determination,
4856 | RSC Adv., 2025, 15, 4847–4860
represents the proportion of variance in the dependent variable
that can be explained by the independent variables. Higher R2

values indicate a better model t, making R2 a suitable
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Regression to predict the dilution levels of all the VOCs. VOC dilution level predictions by (a) Random Forest rank-1 regression, (b)
Random Forest rank-3 regression, and (c) XGBDT rank-2 decision tree regression. Each of these are part of the MLP, RF and XGBDT classifiers in
themodel pipelines respectively which form the stacked generalization scheme. At lower dilution levels of the VOCs, the prediction uncertainty is
lower giving an accurate detection result. As the dilution levels increase, there is more spread in the data and the predicted dilution levels are not
precise. However, beyond 20 times all the dilution levels have near consistent or lower IQR indicating a uniform uncertainty of the prediction
accuracy. In (c), it can be observed that the uncertainty even decreases moderately from 20 to 100 times dilution levels. This indicates that the
Raman spectroscopy-based ML methods promise accurate detection at very low VOC concentrations.
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performance metric for evaluating the regressor. Among the
models, the rank-2 XGBDT regression has the highest R2 value,
making it the most effective regressor in the pipeline. The
XGBoost rank-2 regression model stands out as the best overall
model, with the lowest errors across most metrics, making it
highly reliable for predicting VOC dilution levels. In contrast,
the Random Forest models exhibit slightly higher errors, sug-
gesting greater sensitivity to data variations or outliers. Both
XGBDT rank-1 and rank-2 models show lower Mean Squared
Error (MSE), higher R2 values, and greater explained variance,
indicating they provide more accurate predictions compared to
the Random Forest models. Additionally, the Random Forest
rank-1, rank-2, and rank-3 models display progressively higher
MSE, reecting less accurate predictions. The XGBDT models
also have the lowest mean and median absolute errors, further
emphasizing their superior performance. Moreover, all error
metrics are inuenced by increasing dilution levels, which
affect the overall accuracy of predictions (Table 2).
Advancements, limitations, and future directions in Raman
spectroscopy-based foodborne pathogens detection

This study presents a comprehensive integration of Raman
spectroscopy with advanced ML techniques to enable the
detection and quantication of VOCs associated with food-
borne pathogens. Our approach is built on a robust
Table 2 Regression performance metrics. This table showcases the per
dilution levels of VOCs

Regression
model

Mean squared
error (MSE)

Coefficient of
determination (R2)

Expl
varia

XGBDT rank-1 200.36 0.80 0.81
XGBDT rank-2 191.76 0.81 0.82
RF rank-1 252.40 0.75 0.75
RF rank-2 268.37 0.73 0.74
RF rank-3 274 0.73 0.73

© 2025 The Author(s). Published by the Royal Society of Chemistry
methodological foundation, inspired by prior work that
explored the synergistic use of spectroscopy and ML for chem-
ical detection. Recent advancements in Raman spectroscopy,
when combined with machine learning (ML) and articial
intelligence (AI), have shown signicant potential in the rapid
detection and classication of foodborne pathogens. For
instance, researchers have successfully utilized Raman spec-
troscopy and decision tree algorithms to analyze single-cell
spectra, achieving serotype-level discrimination of bacterial
strains with accuracy rates of up to 95.8%.25 However, the
cumbersome culture process and large sample requirements
oen hinder practical applications. To address this, generative
adversarial networks (GANs) and support vector machines
(SVMs) have been employed, demonstrating improved classi-
cation accuracy and reduced sample requirements by gener-
ating synthetic training data.26 Similarly, deep learning and
machine learning approaches, such as one-dimensional con-
volutional neural networks (1D-CNNs) and random forest, have
been integrated with portable Raman devices, enabling detec-
tion of pathogens in contaminated food samples with high
accuracies above 95%.27 Surface-enhanced Raman scattering
(SERS) platforms have further enhanced sensitivity through
nanostructures like hydrophobic Si substrates, which improve
local enrichment and, when paired with ML, achieve 100%
classication accuracy for multiple bacterial species.28 These
formance metrics of five different regression models in predicting the

ained
nce

Maximum
error

Mean absolute
error

Median absolute
error

47.67 10.68 7.61
48.14 10.52 8.03
71.57 11.80 9.35
61.75 12.23 9.4
63.45 12.30 9.57

RSC Adv., 2025, 15, 4847–4860 | 4857
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advancements are complemented by innovative photonics-
based sensing systems, which use ML to process real-time
optical signals, achieving detection accuracies of up to 95% in
fresh produce samples.29 Additionally, convolutional neural
networks (CNNs) and SERS have been leveraged to address
challenges such as weak signals, complex spectra, and limited
datasets, ensuring applicability across diverse environments
and food safety scenarios.30 Drawing from these advancements,
our study employs a stacked generalization pipeline to address
the challenges of spectral overlap, data complexity, and high-
dimensionality inherent in Raman spectroscopy. The
proposed system achieves gures of merit, including a classi-
cation accuracy of 90% for pure VOCs, robust regression results
with R2 values exceeding 0.82, and successful detection of
analytes at concentrations as low as 0.1% for regression tasks
and 0.25% for classication. These results place our approach
ahead of traditional methods such as agar plate cultures,31

qPCR,32 and ELISA,33 which, despite their sensitivity, require
extensive laboratory infrastructure, signicant sample prepa-
ration, and extended processing times, making them unsuitable
for real-time, on-site applications. Similarly, our system
outperforms emerging technologies such as electronic noses (E-
nose),34 which lack the specicity to resolve individual VOCs in
complex mixtures. Our integration of Raman spectroscopy with
ML enables rapid, high-throughput, and non-invasive analysis
with minimal sample preparation, underscoring its potential as
a transformative solution for food safety monitoring.

Despite these strengths, the proposed system faces limita-
tions. The inherently low Raman cross-section of certain ana-
lytes, particularly alkanes, reduces sensitivity at extreme
dilutions. Challenges such as spectral overlap in multiplex
mixtures and dataset imbalances further complicate both clas-
sication and regression tasks. To mitigate these issues, we
incorporated advanced feature extraction, preprocessing tech-
niques like Savitzky–Golay smoothing and baseline correction,
and weighted performance metrics such as f1 scores to improve
model accuracy and generalizability. The VOCs selected for this
study—such as 2-nonanone, acetoin, and methyl-trisulde—
were chosen based on their documented association with
pathogens like Listeria monocytogenes, Escherichia coli, and
Salmonella spp., and their relevance to contamination scenarios
in food supply chains. Importantly, our system's modular
design ensures adaptability; changes in the analyte set would
only require the collection of new spectral data and retraining of
the ML models, demonstrating the exibility and scalability of
the approach.

Future efforts will focus on expanding the library of VOCs to
enhance the system's coverage and relevance across diverse
applications. Additionally, real-world validation under opera-
tional conditions will be conducted to evaluate the system's
performance in dynamic environments. Enhancing the porta-
bility of the hardware will further facilitate its deployment in on-
site settings. By addressing these challenges and building on its
foundational strengths, our future approach is to establish
a scalable, cost-effective, and innovative framework for
advancing pathogen detection and monitoring in food safety
and environmental applications.
4858 | RSC Adv., 2025, 15, 4847–4860
Conclusions

In conclusion, this study highlights the successful integration
of Raman spectroscopy with advanced ML algorithms for the
detection and quantication of VOCs associated with food-
borne pathogens in complex liquid mixtures. Leveraging
a remote ber-optic Raman probe, spectral data were collected
and analyzed from 42 distinct VOC mixtures. The classication
model achieved 90% accuracy in identifying pure VOCs and
demonstrated robust performance in mixtures containing up to
six VOCs, at concentrations as low as 0.25% (400-fold dilution).
Furthermore, regression models effectively predicted VOC
concentrations down to 1% (100-fold dilution), achieving an R2

value of 0.82. Specic VOCs, such as 2-nonanone (Listeria
monocytogenes), acetoin (Escherichia coli), and methyl-trisulde
(Salmonella spp.), were effectively identied, demonstrating
the system's ability to detect pathogen-specic compounds in
complex food matrices. The proposed system addresses the
challenges of traditional methods like culture-based assays and
qPCR, offering faster, non-invasive, and high-throughput
detection without extensive sample preparation. Its integra-
tion of stochastic generalization models enhanced prediction
accuracy by resolving spectral overlaps and accommodating
complex VOC interactions. The methodology demonstrated
scalability in analyzing diverse mixtures, making it a valuable
tool for real-time, on-site food safety monitoring. Future work
will aim to expand the VOC library, enhance model robustness
for unseen mixtures, and validate the system in real-world
scenarios. By integrating the proposed ber-optic Raman
spectroscopy system with ML, this approach provides a prac-
tical, portable, and cost-effective solution to foodborne path-
ogen detection. These advancements have signicant
implications for improving food safety, ensuring supply chain
compliance, and enabling broader applications in environ-
mental monitoring and quality control across various
industries.
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