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Synthesis and modification of novel thiazole-fused
quinoxalines as new insecticidal agents against the

cotton leafworm Spodoptera litura: design,
characterization, in vivo bio-evaluation,
toxicological effectiveness, and study their mode of

actiont

Doaa M. Elsisi,® Moustafa S. Abusaif,*> Eman El-Said,*® Enayat M. Elgady,®
Mohamed A. Salem,® Yousry A. Ammar® and Ahmed Ragab @ *°¢

Herein, novel thiazolo[4,5-blquinoxalin-2-ones 2—6 and thiazolo[4,5-b]lquinoxalin-2(3H)-imines 7-9 were
synthesized and characterized using elemental analysis, IR spectroscopy, and *H/**C NMR to confirm their
structures. The efficacy of the newly designed thiazolo-quinoxalines 2, 3, 4, 5, 7, 8, and 9 against the cotton
leafworm S. litura (2nd and 4th instar larvae) was evaluated, and results revealed insecticidal activity with

variable and good mortality percentages. A SAR study was also discussed. Additionally, compound 3
exhibited the highest insecticidal activity, with mortality?% values ranging from 86% + 7.21% to 97% +
1.52% and from 66.00% + 6.24% to 86.33% + 6.90% at concentrations of 625-2500 mg L™ against the
2nd and 4th instar larvae, respectively. The probit analysis revealed that the thiazolo[4,5-b]lquinoxalin-
2(3H)-one derivative 3, after 5 days of treatment, exhibited LCsq values of 141.02 and 366.73 mg L™ for
the 2nd and 4th instar larvae, respectively. The LTsq values ranged from 0.52 to 1.92 days for the 2nd

larval instar and from 1.95 to 2.47 days for the 4th larval instar. The corresponding toxicity index (TI)
values were 86.21% for the 2nd instar and 78.47% for the 4th instar larvae. The mode of action of
compound 3 was assessed through physiological, histological, and SEM analyses on the 4th larval instar.
The physiological biocassay revealed a significant increase in total carbohydrate and protein levels

compared to the control group. However, the enzymatic study showed a significant decrease (P < 0.05)
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in the levels of aspartate aminotransferase (AST/GOT), alanine aminotransferase (ALT/GPT), and alkaline

phosphatase (AlP), while acetylcholinesterase (AChE) levels significantly increased. SEM analysis revealed
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1. Introduction

Spodoptera litura, commonly known as the tobacco cutworm or
cotton leafworm, is a highly significant pest for plants." This
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malformations in the external body, while histological examination demonstrated severe damage to the
gut epithelium and regenerative cells in the midgut tissues.

agricultural pest is distributed across various regions worldwide
and has an extensive host range, affecting crops such as cotton,
tobacco, soybeans, tomatoes, and corn.” Additionally, S. litura is
a major destructive pest that poses a significant threat to
numerous field crops and vegetables in Egypt, as well as in other
countries across the Middle East and North Africa.* Cotton
farming, a vital economic resource for Egypt, is particularly
vulnerable to this pest.* Moreover, S. litura is considered one of
the most harmful pests of over 60 other economically important
crops, ornamentals, and vegetables.>® Additionally, one of the
major issues caused by S. litura is defoliation. The larvae of this
insect feed extensively on plant leaves, leading to extensive
damage to the foliage. This damage impairs photosynthesis,
which in turn negatively affects plant growth and overall
productivity.” Another significant issue associated with S. litura
is its ability to develop resistance to insecticides. Over time, the
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repeated application of certain chemical treatments can drive
the evolution of resistant strains of this pest. This situation
presents a significant challenge to farmers, necessitating the
implementation of integrated pest management strategies to
effectively control S. litura populations.® Moreover, the feeding
activity of S. litura larvae can open up pathways for secondary
infections by fungal or bacterial pathogens. These opportunistic
pathogens exploit the weakened plant tissues, thereby exacer-
bating the damage caused by the insect.®

Thiazole derivatives have been extensively studied in
medicinal chemistry owing to their pharmacological activities
and potential therapeutic applications, such as antimicrobial,
anticancer,'”" antimicrobial,**** antidiabetics,'* antioxidant,"
anti-inflammatory,'® analgesic,"”” and anticonvulsant™ effects.
These properties have expanded the potential applications of
thiazole-based compounds in diverse therapeutic fields. More-
over, thiazole derivatives have gained notable importance in the
fields of agrochemistry and medicine owing to their diverse
range of activities and potential applications. As agrochemicals,
they exhibit fungicidal®® and herbicidal®® activities, making
them valuable tools for crop protection. Several studies have
investigated the insecticidal properties of thiazole derivatives
against various insect pests, including mosquitoes,* flies,** and
moths.”® These compounds have shown promising results in
terms of controlling insect populations and minimizing the
harm they cause to crops, livestock, and humans. Thiazole
derivatives are utilized in numerous insecticides, such as thia-
methoxam (I), which effectively combats a range of agricultural
pests, including aphids, leathoppers, whiteflies, and beetles.**
Another example is thiacloprid (II), which is used to control
chewing and sucking insect pests in a wide range of crops,
including fruits, vegetables, and ornamental plants® (Fig. 1).

Furthermore, quinoxalines are versatile heterocyclic
compounds that have garnered considerable interest in the
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fields of medicinal and agrochemistry. This is primarily due to
their wide range of biological activities, including antimicro-
bial,** anti-inflammatory,> anticancer,”®?® antioxidant,* anti-
diabetic,®* antiviral,®* and insecticidal®® properties. Among
these compounds, chlorquinox (III) is a broad-spectrum insec-
ticide belonging to the quinoxaline family. It is commonly used
to control unwanted pests, such as insects, acaricides, nema-
todes, and phytopathogenic fungi.** Oxythioquinox (chinome-
thionat) (IV) was first approved for use in the United States in
1968 as a multipurpose agent against insects, mites, and fungal
diseases. Moreover, both quizalofop-methyl (V) and quizalofop-
p-tefuryl (VI) contain a quinoxaline core that serves as herbicide
safeners®~ (Fig. 1).

Based on the aforementioned findings related to the
discovery of new bioactive agents used as insecticides against S.
litura and our experience in modifying new heterocyclic moie-
ties to overcome the mutation and resistance of cells and
microbial strains,*®*** this study designs a new thiazole fused
with a quinoxaline ring. This led to one hybrid molecule known
as thiazolo[4,5-b]quinoxaline derivatives 2-9, hoping to
enhance insecticidal efficacy in combating S. [litura. The
designed derivatives were evaluated by calculating the mortality
percentage at concentrations of 2500, 1250, and 625 mg L™ "
after 3, 5, and 7 days of treatments, respectively, compared with
lufenuron as the positive control. Toxicological effectiveness
(LCso and LTs, estimates) was also checked for the 2nd and 4th
larval instars. Moreover, the mode of action of the most active
derivative 3 was assessed through physiological, histological,
and SEM analyses of the 4th larval stage.

2. Results and discussion
2.1. Chemistry

The synthetic routes of the thiazolo[4,5-b]quinoxaline deriva-
tives are displayed in Schemes 1 and 2 using 2,3-
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Fig. 1 Structures of some insecticidal agents containing thiazole and quinoxaline cores.
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Scheme 1 |llustration of the synthesis of bioactive thiazolo[4,5-b]quinoxalin-2(3H)-one derivatives 2-5.
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Scheme 2 Illustration of the synthesis of bioactive thiazolo-quinoxaline compounds 7-9.
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dichloroquinoxaline 1 (ref. 43 and 44) as a starting material,
which contains two electrophilic active centers (2C-Cl func-
tions) that can react with bi-nucleophile reagents through
nucleophilic substitution reactions. As shown in Scheme 1,
starting material 1 was allowed to react with acetone thio-
semicarbazone, such as a bi-nucleophile reagent, to yield non-
isolable intermediate 3-(propan-2-ylideneamino)thiazolo[4,5-b]
quinoxalin-2(3H)-imine, followed by the elimination of the
acetone molecule as the leaving group; then, the imine function
(C=NH) was hydrolyzed under the reaction conditions to afford
the final product 3-aminothiazolo[4,5-b]quinoxalin-2(3H)-one 2.
The structure was approved using spectral and analytical data.
The IR spectrum of compound 2 showed two characteristic
absorption bands for amino and carbonyl functions at » 3246,
3133, and 1659 cm . The "H NMR spectral data showed sharp
singlet signals at 6 7.32 ppm assignable to the N-amino proton
function besides the quinoxaline aromatic protons, which
appeared as two triplet signals at 6 7.61 and 7.70 ppm with the
coupling constant (H, / = 8.0 Hz) equivalent to two protons, and
one doublet signal at 6 7.89 ppm with the coupling constant (H,
J = 8.0 Hz) equivalent to two protons. Besides, the "*C NMR
spectral revealed specific signals in the downfield region at
6 140.01, 144.59, and 155.15 ppm corresponding to two C=N
and carbonyl functions. Besides, signals are in the range of
0 125.42-137.05 ppm due to six aromatic carbons.
Furthermore, Scheme 1 displays the chemical structure of
the target three active compounds 3, 4, and 5, which can be
prepared and confirmed chemically using two different
methods. The first method involved the reaction of starting
material 1 with thiosemicarbazone derivatives, namely, 2-(4-

methylbenzylidene)hydrazine-1-carbothioamide, 2-(4-
chlorobenzylidene)hydrazine-1-carbothioamide, —and  2-(3-
nitrobenzylidene)hydrazine-1-carbothioamide respectively,

refluxed in acetonitrile as a solvent. The second method
involved the reaction 3-aminothiazolo[4,5-b]quinoxalin-2(3H)-
one 2 via N-amino function with different aromatic aldehydes
specified, p-tolualdehyde, 4-chlorobenzaldehyde, and 3-nitro-
benzaldehyde, respectively, which were heated under reflux in
the presence of acetonitrile (CH3CN) as a solvent. In addition,
the chemical structure of the target three bioactive 3-amino-
thiazolo[4,5-b]quinoxalin-2(3H)-one  derivatives  3-5
confirmed based on analytical and spectral data.

For example, the IR spectrum of compound 3 showed three
absorption bands for sp*>-CH, carbonyl, and CH=N at » 2972,
1654, and 1602 ppm, respectively. The 'H NMR spectral of the
same compound confirmed the presence of methyl protons as
a singlet signal at 6 2.06 ppm, a singlet signal in the down-field
region at ¢ 8.45 ppm related to methylinic-H protons, and the
aromatic protons appearing as two triplet and three doublet
signals with a mean coupling constant (/ = 7.2 Hz) ranging from
0 7.47 to 7.68 ppm. The *C NMR spectral exhibited specific
signals at 6 22.08, 136.67, 151.86, and 162.32 ppm related to
methyl carbon, CH=N, C=N, and C=O0 functions, respectively,
in addition to ten aromatic carbon signals ranging from
0 120.42 ppm to 136.23 ppm corresponding to fourteen carbons.

Subsequently, refluxing 2,3-dichloroquinoxaline 1 in aceto-
nitrile solution with substituted thiosemicarbazone derivatives

was
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6a-c afforded the corresponding N-(substituted-phenyl)thiazolo
[4,5-b]quinoxalin-2(3H)-imine derivatives 7-9 through nucleo-
philic addition of the mercapto group into the C-Cl at C2 of 2,3-
dichloro-quinoxaline 1, followed by intramolecular cyclization
via hydrogen chloride elimination by the second nucleophilic
addition of the NH function into another C-Cl at C3 position in
compound 1 to yield the final products 7-9 (see Scheme 2). The
suggested mechanism is illustrated in the ESI (Scheme SIt). The
IR spectrum of quinoxaline derivative 7 displayed two charac-
teristic absorption bands at » 3061, 3035, and 1620 cm !,
related to sp>-C and C=N functions, respectively. Similarly, the
'"H NMR displayed only a singlet signal for methylinic-H at
0 8.27 ppm besides the aromatic protons at ¢ 7.14-7.96 ppm
assignable to fourteen protons. Additionally, the ">C NMR of the
same compounds revealed significant signals at ¢ 147.93 and
154.36 ppm due to the two C=N groups, respectively, besides
the aromatic carbons ranging from ¢ 120.24 to 139.59 ppm,
which were equivalent to twenty aromatic carbons.

Finally, compound 9 was isolated as a deep-red powder with
a melting point (M. p.) of 277-279 °C with an acceptable yield.
The "H NMR exhibited new methylinic-H as a singlet signal at
0 8.46 ppm and the aromatic protons in the range of 6 7.00-
7.78 ppm. Moreover, its ">C NMR spectrum showed two singlet
signals in the down-field region at ¢ 144.15 and 153.95 ppm
assigned to C=N and C=N functions, and aromatic carbons
related to 20 carbons appeared from ¢ 119.43 ppm to
141.11 ppm.

2.2. Insecticidal activity

2.2.1. In vivo insecticidal efficiency screening derivatives
on 2nd and 4th larval instars of cotton leafworm S. litura. The
insecticidal screening of the designed thiazolo[4,5-b]
quinoxalin-2-one 2-6 and thiazolo[4,5-b]quinoxalin-2(3H)-
imine 7-9 against the most feeding stages of S. litura (2nd and
4th larvae) was evaluated by calculating the mortality
percentage at conc. 2500, 1250, and 625 mg L' after 3, 5,and 7
days of treatments, respectively, (Table 1) compared with the
recommended insecticide (lufenuron). The results revealed that
all the tested thiazolo[4,5-b]quinoxaline derivatives 2, 3, 4, 5, 7,
8, and 9 have insecticidal activity with variable and good
mortality percentages. Statistical analysis indicated a signifi-
cant difference between treatments based on the analysis of
variance (ANOVA). Tukey's Honest Significant Difference (HSD)
test at p < 0.05 was performed on 42 treatments of the designed
quinoxaline derivatives against S. litura 2nd and 4th instar
larvae. Generally, the mortality percentage exhibited higher
values on the 2nd larval instars compared to the 4th larval
instars at the same concentration.

For the second larval instars of S. litura, the 3-((4-methyl-
benzylidene)amino) thiazolo[4,5-b]quinoxalin-2(3H)-one (3)
exhibited the most active member with the highest mortality
percentage values in the range of 86 + 7.21-97 + 1.52% over
concentrations ranging from 625 to 2500 mg L™ *. Moreover, for
the other 2-oxo-thiazolo[4,5-b]quinoxaline derivatives 2, 4, and
5, a slight difference was observed in the mortality percentage,
which was attributed to the different substituents on the 3-

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Corrected mortality% of 2nd and 4th larval instars of S. litura treated with the designed quinoxaline derivatives 2-5 and 7-9¢

Total mean mortality%* on 3, 5, and 7 days £ S. E.

2nd larval instar

4th larval instar

de. no. 2500 1250 625 2500 1250 625

2 73.33 £13.01 63.00 £ 13.05 48.33 £ 10.7 50.00 £ 7.50 32.33 £ 6.33 24.00 £+ 4.72
3 97.00 £ 1.52 95.00 £ 2.51 86.00 £+ 7.21 86.33 £ 6.90 76.67 £+ 6.89 66.00 £+ 6.24
4 75.67 £+ 10.68 63.33 £ 7.12 49.33 £ 5.60 59.33 + 12.44 42.67 £+ 9.06 27.67 £+ 9.02
5 76.67 £+ 8.11 62.67 + 8.11 50.33 £+ 12.09 65.67 + 10.98 50.33 + 12.44 37.33 £ 14.09
7 74.33 £ 8.51 64.33 £+ 12.38 48.33 £ 7.53 70.33 £ 2.90 53.66 + 3.84 37.00 £ 5.29
8 94.33 + 2.02 67.33 £ 3.17 46.00 £+ 5.29 78.33 £+ 4.09 53.00 + 3.21 32.33 £ 6.17
9 69.66 £+ 12.25 59.66 + 8.29 42.66 £+ 4.80 56.33 £ 4.05 44.66 £+ 4.05 35.00 + 4.72
*P. C. 98.00 + 1.73 96.33 £ 3.21 90.00 + 8.67 94.00 + 4.58 88.33 £ 7.26 80.00 + 10.41
Control 0.00 £+ 0.00 0.00 £+ 0.00 0.00 £+ 0.00 0.00 £ 0.00 0.00 + 0.00 0.00 £ 0.00
Fag(23,45) value 4,98%** 7.23%**

P-value <0.001 <0.001

L.S.R. £ SE 44.27 + 11.49 41.51 £+ 10.78

“ Fag(a7,05) = 6.94*** and p < 0.001; *P. C. = positive control (lufenuron) df (degrees of freedom). Tukey HSD test as post Hoc. L. S. R. least significant

range.

(benzylidene)amino group with different electronic character-
istics. The mortality percentage of 2-oxo-thiazolo[4,5-b]qui-
noxaline derivatives 2, 4, and 5 demonstrated values ranging
from (73.33 £ 13.01 to 76.67 + 8.11), (62.67 + 8.11 to 63.33 +
7.12), and (48.33 + 10.7 to 50.33 £ 12.09%), at concentrations of
2500, 1250, and 625 mg L', respectively, indicating that the
hydrophobic moiety at the azomethine group is important in
the activity. Additionally, the 2,3-disubstituted-thiazolo[4,5-5]
quinoxaline derivatives 7-9 displayed good to moderate
mortality values. Moreover, introducing the two halogenated
atoms in the two hydrophobic benzene rings at positions two
and three in the thiazole nucleus, as shown in compound 8,
causes an increase in the mortality percentage to 94.33 + 2.02,
67.33 + 3.17, and 46.00 + 5.29% for concentrations of 2500,
1250, and 625 mg L™, respectively.

For the old instars (4th larval), it was found that higher
mortality was observed with high progressive doses. In

addition, the highest mortality percentage was observed with 2-
oxo-thiazolo[4,5-b|quinoxaline derivative 3, followed by thiazolo
[4,5-b]quinoxaline derivative 8 with mortality percentage values
of (86.33 + 6.90, 76.33 + 6.89, and 66.00 + 6.24%) and (78.33 +
4.09, 53.00 £ 3.21, and 32.33 + 6.17%) at concentrations of
2500, 1250, and 625 mg L', respectively. Additionally, the
minimum mortality percentage was exhibited by thiazolo[4,5-5]
quinoxaline derivative 9 with mortality percentages of 56.33 £
4.05, 44.66 + 4.05, and 35.00 + 4.72% at concentrations of 2500,
1250, and 625 mg L, respectively, with nearly 1.23-, 1.33- and
1.21-fold higher activity than the corresponding second larval at
the same concentrations.

2.2.2. Toxicological effectiveness against S. litura larvae
with structural-activity relationship studies. A toxicological
evaluation for the designed quinoxaline derivatives 2-5 and 7-9
after treatment with S. litura larvae in the 2nd and 4th instars
was performed after five days. The represented data in Tables 2,

Table 2 Lethal concentration (LCsg) and lethal time (LTsp) of newly tested thiazolo[4,5-blquinoxaline derivatives on 2nd instar larvae of S. litura®

95% of

confidence

limit for conc.

Mg L™! 95% confidence limits for days LTs, (upper-lower)
Cpd. no. LG5,  Lower Upper Slope +£S.E. X*(Sig.) TI  R*(R.E.) 625 1250 2500
2 798.78 480.42 1048.51 1.28 4 0.31  0.50 (0.48) 15.23 0.974 (j = —4.06 + 1.42x) 4.92 (4.28-5.71)  3.61 nil 3.09 (2.63-3.46)
3 141.02  6.67 309.24 1.46 + 0.45 0.38 (0.54) 86.21 86.21 (j = —3.06 + 143x) 1.92 (nil) 0.73 (nil) 0.52 (nil)
4 740.44 427.28 751.38 1.29 4+ 0.31  0.16 (0.69) 16.42 0.992 (j = —4.06 + 1.43x) 4.87 (3.38-7.57)  2.91 (1.45-3.69) 2.76 (2.14-3.19)
5 505.85 145.04 763.11 1.06 + 0.31  0.32 (0.57) 24.03 0.975 (jj = —2.6 + 1x) 4.73 (4.91-5.34)  3.22 (2.15-3.88) 2.33 (1.41-2.92)
7 820.13 342.85 1167.61 0.94 & 0.30 0.50 (0.48) 14.82 0.953 (J = —2.41 + 0.86x) 4.99 (4.07-6.41)  3.38 (nil) 2.37 (nil)
8 754.59 617.52 875.09 2.68 + 0.36 2.24 (0.13) 16.11 0.970 (j = —7.14 + 2.57x) 5.74 (4.32-14.48) 1.31 (nil) 0.49 (0.00-1.43)
9 1148.52 682.21 1735.13 0.93 & 0.29  0.42 (0.52) 10.58 0.950 (j = —2.61 + 0.86x) 7.07 (5.15-231.76) 3.42 (nil) 3.05 (nil)
P.C. 121.75  3.08 285.58 1.51 4+ 0.49 0.52 (0.47) 100 0.939 (j = —2.86 + 1.43x) 1.14 (nil) 0.57 (nil) 0.23 (nil)

@ X* = (Sig. significance level) chi square Pearson goodness-of-fit test for probit linear analysis at p < 0.05. TI = toxicity index compared with positive
control on 2nd larval instar of S. litura. R* = regression coefficients (regression equation (R. E.) j = a + 8x) for tested compounds. P. C. = positive

control (lufenuron).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Lethal concentration (LCs) and lethal time (LTso) of newly tested thiazolo[4,5-b]quinoxaline derivatives on 4th instar larvae of S. litura®

95% of
confidence
limits for conc.
Mg L ! 95% confidence limits for days LTs, (lower-upper)
Cpd.
no. LCs, Lower Upper Slope+S.E. X*(Sig.) TI  R*(R.E.) 625 1250 2500
2 2562.72 1783.53 6892.92 1.07 + 0.31 0.054  11.23 0.996 (j = —3.4 + 1x) 14.59 (8.90-261.45) 9.01 (6.78-23.62) 4.72 (3.78-5.88)
(0.82)
3 366.73 108.15 573.09 1.29 + 0.33 0.48  78.47 0.972 (j = 3.66 + 1.43x)  2.47 (0.73-3.35) 1.96 (0.75-2.71) 1.95 (1.16-2.49)
(0.49)
4 1333.59 1071.78 1691.24 1.60 = 0.31 0.003 21.58 0.998 (y = —5.23 + 1.71x) 8.08 (6.78-11.44) 5.79 (4.97-7.39) 3.89 (3.33-4.36)
(0.96)
5 820.05 341.02 1168.48 0.94 = 0.30 0.08  35.09 0.992 (j = —2.9 + 1x) 5.94 (5.42-6.71) 4.71 (4.17-5.29) 3.32 (2.66-3.80)
(0.77)
7 1123.89 871.50 1401.86 1.56 + 0.31 0.05  25.60 0.998 (j = —4.26 + 1.42x) 8.72 (6.25-67.00)  3.68 (nil) 0.97 (nil)
(0.83)
8 1136.75 948.65 1341.89 2.09 + 0.31 0.13 25.31 0.997 (j = —6.0 + 2x) 9.42 (6.89-31.84) 3.71 (nil) 1.09 (0.001-2.17)
(0.72)
9 1705.56 1233.04 3167.24 1.02 = 0.30 0.02 16.87 0.999 (y = —3.2 + 1x) 10.38 (6.82-1030.67) 6.56 (nil) 3.21 (0.00-4.53)
(0.90)
*P, C. 287.76 108.39 434.98 2.09 & 0.47 0.006 100 0.998 (j = —4.8 + 2x) 2.50 (nil) 2.13 (nil) 1.83 (0.99-2.31)
(0.99)

¢ X* (Sig.) = chi square Pearson goodness-of-fit test at p < 0.05. TI = toxicity index compared with positive control on 4th larval instar of S. litura. R*
= regression coefficients (regression equation (R. E.) y = a + bx) for tested compounds. *P. C. = positive control (lufenuron).

3 and Fig. SI1,T 2 show the lethal concentration (LCs), toxicity
index, slope, coefficients and equations of regression of the
tested compounds on 2nd and 4th larval instar of S. litura for 5
days of treatment. The simple linear regression showed that the
regression coefficients R* were very close to 1, indicating that
residual values were very small between the expected and
observed responses in the probit analysis. Additionally, the
regression equation showed a positive correlation between
concentrations x and mortality% y for 2nd and 4th S. litura
larvae.

2.2.2.1. Toxicological effectiveness (LCs, and LTs, estimates)
checking for 2nd larval instar. The probit analysis for the
synthesized thiazolo[4,5-b]quinoxaline derivatives indicated
that 3-((4-methyl benzylidene)amino)thiazolo[4,5-b]quinoxalin-
2(3H)-one (3) was the most effective compound with LCs, =
141.02 mg L', followed by quinoxaline derivatives 5, 4, 8, 2,
and 7 with the LCs, values of 505.85, 740.44, 754.59, 798.78,
820.13 and 1148.52 mg L™, respectively. Moreover, the slope
values revealed that 2,3-disubstituted thiazolo[4,5-b]quinoxalin-
2(3H)-imine derivative 8 had the highest value of 1.06 + 0.31,
while the other quinoxaline derivatives 3, 4, 2, 5, 7 and 9
compounds had slope values of 1.46 + 0.45,1.29 + 0.31, 1.28 &+
0.31, 1.06 £ 0.31, 0.94 £ 0.30, and 0.93 £ 0.29, respectively.
Additionally, the data revealed that 2-oxo-thiazolo[4,5-b]qui-
noxaline derivative 3 demonstrated the toxicity index (TI) at
LCso = 141.02 mg L', which was 86.21%, while the other
derivatives recorded 24.03%, 16.42%, 16.11%, 15.23%, 14.82%
and 10.58% for quinoxaline derivatives 5, 4, 8, 2, 7 and 9,
respectively, compared to recommended insecticide (lufenuron)
(Table 2).

According to the lethal time (LTs,) values of the tested
thiazolo[4,5-b]quinoxaline derivatives 2-5 and 7-9, it was found
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that compound 3 had the lowest time with 0.52, 0.73, and 1.92
days overall concentrations (2500, 1250, and 625 mg L™,
respectively), compared to lufenuron. Additionally, comparing
the structures of quinoxaline derivatives 4 and 8, we found that
replacing the carbonyl group at C2 of 2-oxo-thiazolo[4,5-b]qui-
noxaline derivative 3 with N-(4-bromophenyl) caused a slight
decrease in the toxicological activity of nearly 14.15 mg L™,
indicating that the hydrophobic moiety with (4-bromophenyl)
did not enhance insecticidal activity. In the same way, replacing
the position of chlorine with the meta position and replacing
the two aryl groups, as shown in quinoxaline derivatives 7 (LCs
=820.13 mg L™ ") and 9 (LCso = 1148.52 mg L"), revealed that
the presence of chlorine in the para position at N-(4-chlor-
ophenyl)thiazolo[4,5-b]quinoxaline 9 enhanced insecticidal
activity.

However, the highest lethal time (LTs,) values were intro-
duced by 2,3-disubstituted thiazolo[4,5-b]quinoxalin-2(3H)-
imine derivatives 7, 8, and 9 at low concentrations (625 mg L™ ")
with LTs, values of 4.99, 5.74, and 7.07 days, respectively, fol-
lowed by 2-oxo-thiazolo[4,5-b]quinoxalines 2-5. Surprisingly,
the 2,3-(halogenated aryl)thiazolo[4,5-b]quinoxalin-2(3H)-imine
derivatives 8 demonstrated the lowest LTs, = 0.49 day, indi-
cating that the activity may be due to the chlorine and bromine
atoms at the two aryl groups attached at C2 and C3 of thiazolo
[4,5-b]quinoxalin-2(3H)-imine derivative 8. In addition, at a high
concentration (2500 mg L"), the order of lethal time changed
to 8 (0.49) > 3 (0.52) > 5 (2.33) > 7 (2.37) > 4 (2.76) > 9 (3.05) > 2
(3.09) (Table 2). Previous results proved that all tested qui-
noxaline derivatives exhibited good toxicity effects and
compound 3 was the most effective, whereas quinoxaline
derivative 9 was the least effective.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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2.2.2.2. Toxicological effectiveness (LCso and LTs, estimates)
checking for 4th larval instar. In general, as described in Table 3,
the thiazolo[4,5-b]quinoxaline derivatives 2-5 and 7-9 with
different substituents on positions two and three at the thiazole
nucleus exhibited bioefficiency results with LCs, values ranging
from 366.73 to 2562 mg L~'. The 3-((4-methylbenzylidene)
amino)thiazolo[4,5-b]quinoxalin-2(3H)-one (3) was the most
active member on 4th larvae with the lowest LCs, value of
366.73 mg L' with a lower concentration value of
108.15 mg L' and an upper concentration value of
573.09 mg L. The toxicity index revealed that compound 3 had
a highly indexed 78.47%, followed by 5, 7, 8, 4, 9, and 2 with
35.09, 25.60, 25.09, 21.58, 16.87, and 11.2%, respectively,
compared to the positive control. The low toxicity slope value
was recorded for 3-((3-nitrobenzylidene)amino)thiazolo[4,5-b]
quinoxaline 5 at 0.94 + 0.30, while N-(4-bromophenyl)-3-((4-
chlorobenzylidene)amino)thiazolo[4,5-b]quinoxaline derivative
8 had the highest value at 2.09 + 0.31.

Furthermore, the structure activity relationship (SAR) dis-
played that grafting an electron donating group as the methyl
group to the aryl moiety of azomethane fragment (-C=N-Ar)
improved the toxicological activity nearly 6.98-fold compared to
the native 3-aminothiazolo[4,5-b]quinoxalin-2(3H)-one (2).
Moreover, introducing the nitro group at the meta position at
the 3-(benzylidene)amino fragment at C3 of thiazole increases
the bio-efficiency result to be LCs, = 820.05 mg L™ ", which may
be attributed to the nature of the nitro group that has an elec-
tron withdrawing nature by resonance and inductive effects.
However, the presence of the chloro group at the meta position
in the 3-(benzylidene)amino fragment showed moderate insec-
ticidal potency, which may be attributed to the chloro atom
pulling the electron (electron withdrawing natural) out to the
thiazolo[4,5-b]quinoxaline nucleus based on the inductive effect
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(—1), but it could also donate electrons by resonance effect (+R),
for +R > —I. In the same way, the 2,3-disubstituted thiazolo
[4,5-b]quinoxaline-2(3H)-imine derivatives 7-9 showed LCs,
values in the range of 1123.89-1705.56 mg L™ ", and their toxic
action was assigned due to the different substituents in the two
aryl groups at positions two and three on the thiazole ring. The
order of toxicological activity for this series is arranged in the
order of 7 (1123.89 mg L") > 8 (1136.75 mg L") > 9
(1705.56 mg L™ ). For the activity on the 4th larvae, it was found
that the presence of an electron withdrawing group at position
two of thiazole in thiazolo[4,5-b]quinoxaline-2(3H)-imine
derivatives 7-9 decreased the activity while introducing the
phenyl ring at C2 of 2-oxo-thiazole improved insecticidal
activity. In addition, introducing two halogenated atoms on two
aryl groups at C2 and C3 of thiazole exhibited moderate activity.

The data of the lethal time (LTs, = days) revealed that
compound 3 killed the fourth larva in a short time at three
concentrations (625, 1250, and 2500 mg L™") with LTs, values of
2.47,1.96, and 1.95 days, respectively. In addition, the LC5, data
in Table 3 and as described in Fig. 1 and 2 showed that the
tested derivatives exhibited more sensitivity on the 2nd larval
instar than the 4th larva. Moreover, at a low concentration of
625 mg L', the order of lethal time by days was displayed as 3
(2.47) > 5 (5.94) > 4 (8.08) > 7 (8.72) > 8 (9.42) > 9 (10.38) > 2
(14.59), indicating that the formation of the azomethane group
at C2 of thiazole revealed higher activity than 2,3-disubstituted
on thiazole moiety or 3-amino-thiazole-2-one nucleus. However,
the order of lethal time at a high concentration by days was 7 > 8
>3>9>5>4>2,

Finally, it can be concluded that the tested thiazolo[4,5-b]
quinoxaline derivatives 2-5 and 7-9 showed good to moderate
toxicological activity against the 2nd and 4th larval and these

=3 2nd larva
BE= 4th larva

.Jdddd

9 Lufenuron
] 1 ]

A new series of thiazolo[4,5-b]quinoxaline derivatives

| B 1
Positive control

Fig. 2 LCso (mg L) values of the tested compounds against the 2nd and 4th larval instars of S. litura.
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Fig.3 Effect of the most active thiazolo[4,5-b]quinoxalin-2(3H)-one derivative 3 on the components of the 4th larval instar of S. litura. Error bars
represent the standard error of the mean. t value = (A) = —6.99** p = 0.002, (B) = —18.07*** p < 0.001.

Table 4 Total carbohydrates, total protein and enzyme activities of larvae treated with the most active thiazolo[4,5-b]quinoxalin-2(3H)-one
derivative 3 compared with untreated larvae. Values are expressed as (mean + S. E)¢

Transaminases enzymes

(UL Detoxification enzyme
Total carbohydrate Total protein AlP (pg phosphate AChE (pg AchBr
Sample (mg per g body wt) (mg body wt) GPT GOT per min per mL) per min per g Body wt)
Control 1.22 +0.23 10.22 £ 0.41 68.12 £ 0.64 58.49 £ 0.63 383.76 £ 21.54 0.64 £+ 0.02
Treatment 2.82 + 0.013 19.25 £ 0.29 62.97 + 0.767 17.43 £ 0.04 50.22 £ 0.35 0.97 + 0.007
t-Statistic —6.99 —18.07 +5.17 +65.16 +15.49 —14.08
p—Valueb 0.002 <0.001 0.007 <0.001 <0.001 0.004

“ An increase in control (+) and treatment (). ? The significance level is at <0.05.

derivatives exhibited more sensitivity on the 2nd larval instar
instead of the 4th larva.

2.2.3. Mode of action of the most effective thiazolo[4,5-b]
quinoxalin-2(3H)-one derivative. The LCs, of the most active 3-
((4-methylbenzylidene)amino)thiazolo[4,5-b]quinoxalin-2(3H)-
one 3 was used for physiological, histological, and scanning
electron microscopy SEM against 4th larval instar for five days.

2.2.3.1. Physiological studies

2.2.3.1.1. Total carbohydrates and proteins. As described in
Fig. 3, it was found that the treatment of the most active 3-((4-
methylbenzylidene)amino)thiazolo[4,5-b]quinoxalin-2(3H)-one
3 against 4th larval instar of S. litura revealed a significant
increase in the carbohydrate content (2.82 + 0.013 mg per g
body wt) and protein levels (19.25 £ 0.29 mg per g body wt)
compared to the control group (1.22 £ 0.23 and 10.22 =+ 0.41 mg
per g body wt), respectively (Table 4).

2.2.3.1.2. Enzyme activity. The study investigated the impact
of enzymatic activity, specifically the transaminase enzymes
(alanine aminotransferase (GPT) and aspartate aminotransferase
(GOT)), as well as the detoxification enzymes (acetylcholines-
terase AChE and alkaline phosphatase AIP), on the most potent

1398 | RSC Adv, 2025, 15, 1391-1406

derivatives against the S. litura 4th larvae after 5 days of exposure.
The results are presented in Fig. 4, 5 and Table 4.

In terms of statistical analysis, the calculated t-statistic indi-
cated a significant decrease (P =< 0.05) in the levels of alanine

80+ A B mm Control
I_I =3 Treatment
E
60
5 40
4
204
L
0 —_
ALT(GPT) AST(GOT)

Fig. 4 ALT(GPT) and AST(GOT) activity in S. litura larvae after being
treated with the most active thiazolol4,5-blquinoxalin-2(3H)-one
derivative 3. Error bars represent the standard error of the mean. t
value = (A) +5.162** and p = 0.007 (B) +65.15*** and p < 0.001.
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Fig. 5 (A) Alkaline phosphatase AlP. (B) Acetylcholinesterase AChE activity in S. litura larvae after being treated with the most active thiazolo[4,5-
blquinoxalin-2(3H)-one derivative 3. Error bars represent the standard error of the mean. Independent samples t test, where t value (A) +15.49%%**

and p < 0.001 (B) —14.08** and p = 0.004.

aminotransferase (62.97 + 0.767), aspartate aminotransferase
(17.43 £ 0.04), and alkaline phosphatase (50.22 + 0.35) compared
with untreated larvae (68.12 + 0.64), (58.49 + 0.63), and (383.76 +
21.54), respectively. However, the most active derivatives exhibited

a significant increase in acetylcholinesterase (0.97 + 0.009)
(P = 0.05) compared with untreated larvae (0.64 + 0.02) Fig. 4, 5
and Table 4.

Fig. 6 SEM analysis: (a) normal larvae abdominal segments with prolegs; (b) larvae treated with LCsq of the most active thiazolo[4,5-blqui-
noxalin-2(3H)-one derivative 3, as shown in swelling of the space between prolegs. (c) Ventral prothorax of the normal larva; (d) larvae treated
with LCsq of the most active thiazolo[4,5-b]quinoxalin-2(3H)-one derivative 3, as shown in the prominent deep bulge and swelling of the ventral

prothorax.
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The present study is consistent with that of Assar et al., who
showed that all tested insecticides induced a significant
inhibitory effect on alanine aminotransferase (ALT) and aspar-
tate aminotransferase (AST) activity, except for teflubenzuron,*
while Rashwan and his group reported that spinetoram
moderately increases the activity of acetylcholinesterase.*®
Moreover, El-Mageed et al. demonstrated that the tested
compound decreased (GOT/AST) and (GPT/ALT) activities in the
hemolymph of S. litura 4th-instar larvae.*” Abd El-Aswad et al.
revealed that profenofos, chlorpyrifos, carbaryl, thiodicarb,
fenpropathrin, and beta-cyfluthrin reduced ALT in the field and
laboratory strains of S. litura in variable ways.*® Finally, it can be
concluded that our results agree with previous studies, such as
Ibrahim et al., who found a reduction in acetylcholinesterase
from teflubenzuron,* and Kasmara et al., who described that
ALK activity was increased after the treatment of 4th and 6th
instar larvae of S. litura with pyriproxyfen, flufenoxuron, and
teflubenzuron.*
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2.2.3.2. Morphological study using a scanning electron
microscope (SEM). The morphological characteristics of S. litura
larvae were detected through SEM analysis, as described in
Fig. 6 and 7. Normal larvae treated with LCs, of the most active
thiazolo[4,5-b]quinoxalin-2(3H)-one derivative 3 demonstrated
abdominal segments with prolegs, which are differentiated in
the normal (untreated) larvae. Inflammation and swelling of the
space between prolegs were recorded, preventing the movement
of the larvae (Fig. 6a and b). Moreover, in abnormal larvae, the
deformations changed as prominent deep bulges and swelling
from the ventral prothorax hindered the movement of the larva
and another change (Fig. 6¢c and d).

Furthermore, the treated larvae exhibited changes in the
diameters of their spiracles. This increase can be attributed to
water loss from inside the body, leading to the dehydration of
the larva compared to the untreated ones (Fig. 7a and b).
Moreover, deformations and swelling were observed between the
anal prolegs compared to those of the normal larva (Fig. 7c and d).

i\ 8990900

Fig.7 SEM analysis: (a) normal diameter of spiracles; (b) larvae treated with LCsq of most active thiazolo[4,5-b]quinoxalin-2(3H)-one derivative 3
showed an increase in the diameter of the spiracles; (c) normal larvae showed anal prolegs; and (d) larvae treated with LCsp of the most active
thiazolo[4,5-b]quinoxalin-2(3H)-one derivative 3, as shown in deformations and swelling between anal prolegs.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Our results agreed with previous literature observations that the
treated larvae of S. litura were smaller than their control counter-
parts® and had several deformities in head size and body length.>*

2.2.3.3. Histological bioassay. This study was extended to
evaluate the effect of histological examination of the midgut
region using LCs, for most active derivative 3 against the 4th larval
instar of five days. One reason S. litura larvae die is histolysis of
the gut mucosa caused by toxic effects. The longitudinal frag-
ments of the fourth larval instar in the midgut were studied. Tall
columnar cells with large nuclei in the middle of the apical area
make up the typical midgut epithelium. These cells are dispersed
basally with regenerative (stem) cells and apically with goblet
cells. The columnar cells are towards the lumen and have a finely
brushed border. As observed in Fig. 8a, several vesicles were
released into an additional peritrophic area of the lumen. More-
over, many alterations can be observed in the mid intestine of the
treated larvae. Several alterations become visible after five days of
exposure. A few columnar cells rupture and release into the gut
lumen, and cell borders vanish and split from the basement wall
in the majority of the mid-gut epithelial cells. Increased vacuo-
lation, partial cell lysis, the formation of specific vacuoles, and the
removal of the peritrophic membrane are also observed. More
detrimental consequences are noted, with the midgut epithelium
destroyed and the gut lumen filled with dissolving cells (Fig. 8b).
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These outcomes are in good agreement with the results obtained
by Dahi et al, who observed that the epithelial cells were
destroyed and removed from the basement membrane following
pyridal therapy.®> Additionally, Abdel-Aal et al. found that the
midgut has histological consequences, such as swelling of the
midgut epithelium and loss of the muscle layer's compact look.
The entire peritrophic membrane was broken.*

The midgut plays a critical role in insect metabolic processes,
as it serves as the primary site for digestion and absorption.>* Our
study's histological examination of the midgut tissues exhibited
adverse effects on regenerative cells and gut epithelium.
Furthermore, according to the literature, one of the key strategies
for insect control involves the inhibition of gut protease activity.>

The epidermis is the only cellular layer in a typical integu-
ment. The other two layers, the inner foundation membrane
(Fig. 9a and b) and the layer of the outer cuticle above the
epidermis, are non-cellular. When the investigated chemicals
were applied to the larvae of S. litura, significant damage to the
integument was observed, resulting in total breakdown in all
three layers. The molting process had various effects on the
muscles, ranging from minor tissue degradation with the
appearance of fissures to complete tissue loss. These findings
support those of Ngegba et al., who noted that the hypodermal
cells displayed fissures and that the separation of the hypodermal

<!,

{

Fig. 8

(a) Anterior midgut healthy cross-section illustrating the midgut's columnar epithelial cells (cc), peritrophic membrane (pm) surrounding

the gut lumen (1), basement membrane (bm) at the base of the gut epithelium, and regenerative cells (rc) beneath the fat body (fb) at the
haemocoel. (b) Obliteration of the midgut epithelium after five days of exposure, with some vacuoles remaining (va) and the gut lumen filled with
decayed cells (lysis of cells) (lY), along with vacuoles (va) and formation in the columnar cells (cc).
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Fig. 9

(@) Normal integument cross-section, en: endocuticle ep: epicuticle g: cytoplasmic granules hy: hypodermis mu: muscles. (b) After five

days of exposure, displaying destroyed cells and total integument damage (lysis of cells LY).

cells from the endocuticle was evident in the sixth larval instar of
S. litura treated with LCs, of methoxyfenozide during the fourth
larval instar.”® Besides, distortion of the endocuticle was
observed. This deformation revealed the breakdown of the cuticle
layers, fractures in the endocuticle, and abnormal distribution of
the hypodermal cells, which indicated the blocking of its crea-
tion. These elements are required for the development of the
cuticle, and their absence can result in aberrant endocuticular
deposition and premature molting. These outcomes are consis-
tent with those of Hassan et al.’”

2.3. In silico toxicity prediction

Pesticides can harm humans, pets, livestock, beneficial organ-
isms, and the natural environment. It is important to ensure
that pesticides are used safely to minimize the risk to applica-
tors, the general public, and the environment. Therefore, we
conducted an evaluation of the toxicity of the newly designed,
highly potent quinoxaline compound in humans.* This evalu-
ation involved the use of multiple toxicity assessments and the
ProTox 3.0 web tool, as previously described.**-**

In terms of organ and endpoint toxicity, the prediction results
revealed that compound 3 displayed inactive properties for
nephrotoxicity (P ~ 0.65), cardiotoxicity (P ~ 0.87), immunotox-
icity (P ~ 0.99), cytotoxicity (P ~ 0.86), clinical toxicity (P ~ 0.52),
and nutritional toxicity (P ~ 0.69). Additionally, compound 3
showed an LDs, of nearly 1000 mg kg~ with a predicted toxicity
class of four. Moreover, this compound exhibited active proper-
ties for hepatotoxicity, neurotoxicity, carcinogenicity, and eco-
toxicity, with low probability values ranging from 0.52 to 0.62.
Furthermore, when predicting the toxicity of the most active
quinoxaline derivative 3 with the ADMETlab 2.0 web tool,** it was
found that this compound showed inactivity for skin sensitiza-
tion, non-corrosiveness and non-irritation to the eyes, non-
respiratory toxicity, and low toxicity for oral acute toxicity in rats.

3. Conclusion

In this study, novel thiazolo[4,5-b]quinoxaline derivatives 2-9
were synthesized and screened against the 2nd and 4th larval
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instars of the cotton leafworm S. litura to assess their insecti-
cidal efficacy. The in vivo insecticidal efficiency (mortality%)
was higher in the 2nd larval instars than in the 4th larval instars
at the same concentration. These results demonstrate that the
tested derivatives are toxic to S. litura caterpillars, affecting their
feeding, respiration, and locomotion patterns. These findings
could potentially be used to eliminate or control the spread of
this harmful insect pest in various plant species. Because the
use of conventional pesticides has led to the development of
resistance in this insect, there is a continuous need for new
control agents. To validate the function and behavior of the
insects in relation to the response of proteins that induce
disruption of essential enzymes delaying the development of S.
litura larvae, a physiological investigation is required. The levels
of acetylcholinesterase (AChE), alkaline phosphatase (AlP),
alanine aminotransferase (GPT), and aspartate aminotrans-
ferase AST (GOT) were considerably affected according to the
findings of the enzymatic study. A study of morphological
characteristics using a scanning electron microscope (SEM)
reveals that proleg-induced damage to the cuticle and head
capsule hinders the mobility of larvae. Consequently, these
compounds represent effective pest management strategies.
These results greatly aid the practical application of these
chemicals in Integrated Pest Management (IPM) programs to
reduce the phenomena of resistance in this insect pest. Finally,
this research proposes a methodology for scientists to explore
novel quinoxaline derivatives to control the cotton leafworm S.
litura.

4. Experimental

4.1. Chemistry

All details about the chemicals and instruments used to
complete the characterization are included in the ESIT file. The
starting material 2,3-dichloroquinoxaline 1 was synthesized
according to previous studies with a sharp melting point M. p. =
148-150 °C.*»*

4.1.1. Synthesis of 3-aminothiazolo[4,5-b]quinoxalin-
2(3H)-one (2). A suspension of dioxane solution containing
dichloro-quinoxaline derivatives 1 (equimolar) and the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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corresponding 2-(propan-2-ylidene)hydrazine-1-
carbothioamide (equimolar) was stirred at 110 °C for 2 h
(monitoring by TLC) until precipitation occurred. The suspen-
sion solution was filtered out, washed with commercial ethanol
to remove the unreacted reagent, dried and recrystallized from
acetonitrile to afford the pure target compound as yellow crys-
tals with M. p.: 240-242 °C, and yield: 76%; IR (KBr, cm ):
3246, 3133 (NH,), 3053 (sp>-CH), 1659 (C=0), 1611 (C=N); 'H
NMR (400 MHz, DMSO-dg) & (ppm) 7.32 (s, NH,, D,O
exchangeable), 7.61 (t, 1H, quinoxaline-H, J = 8.0 Hz), 7.70 (t,
1H, quinoxaline-H, J = 8.0 Hz), 7.89 (d, 2H, quinoxaline-H; g, ] =
8.0 Hz); >*C NMR (101 MHz, DMSO-d,) 6 (ppm): 125.42, 127.64,
130.29, 131.77, 135.48, 137.05 (6 Ar. Cs), 140.01(C=N), 144.59
(C=N), 155.15 (C=0); anal. caled. for CoHgN,OS (218.23): C,
49.53; H, 2.77; N, 25.67; found: C, 50.15; H, 2.35; N, 25.03.

4.1.2. Synthesis of 3-((substituted-benzylidene)amino)
thiazolo[4,5-b]quinoxalin-2(3H)-one (3-5)

4.1.2.1. Method I To a solution of 1,2-dichloro-quinoxaline
2 (equimolar) and the appropriate thiosemicarbazone deriva-
tives (equimolar), namely, 2-(2-chlorobenzylidene)hydrazine-1-
carbothioamide, 2-(4-chlorobenzylidene)hydrazine-1-
carbothioamide, = and  2-(3-nitrobenzylidene)hydrazine-1-
carbothioamide, was prepared in acetonitrile (10 mL) as the
solvent. The solution mixture was stirred for 2-5 h at 100 °C
(monitored by TLC). The solution was cooled to room temper-
ature, and the precipitate was collected by filtration and crys-
tallized from acetonitrile.

4.1.2.2. Method II. A suspension of N-amino thiazole deriv-
atives 2 (equimolar) and different aldehyde derivatives, namely,
o-chlorobenzaldehyde, p-chlorobenzaldehyde, and m-nitro-
benzaldehyde, was prepared in acetonitrile (10 mL) as the
solvent and catalyzed with 1 mL of acetic acid. The solution
mixture was stirred under reflux conditions for 2-3 h at 100 °C
(monitored by TLC). The solution was cooled to room temper-
ature, and the precipitate was collected by filtration and crys-
tallized from the acetonitrile.

4.1.3. 3-((4-Methylbenzylidene)amino)thiazolo[4,5-b]qui-
noxalin-2(3H)-one (3). Orange powder; M. p.: 163-165 °C; yield
(66%); IR (KBr, cm™'): 3073, 3038 (sp>-CH), 2972 (sp>-CH),
1654(C=0), 1602 (CH=N); 'H NMR (400 MHz, DMSO-d)
6 (ppm): 2.06 (s, 3H, CH3), 7.47 (d, 2H, Ar-Hj; 5, ] = 6.8 Hz), 7.52
(t, 1H, quinoxaline-H, J = 7.6 Hz), 7.57 (t, 1H, quinoxaline-H, J =
8.0 Hz), 7.62 (d, 2H, Ar-H, 4, ] = 6.8 Hz), 7.68 (d, 2H, quinoxa-
line-Hs g, J = 7.2 Hz), 8.45 (s, 1H, methylinic-H); ">*C NMR (101
MHz, DMSO-dg) 6 (ppm): 22.08 (CH,), 120.42, 123.98, 124.29,
127.66, 128.36, 130.18, 131.20, 132.52, 135.11, 136.23 (14 Ar.
Cs), 136.67 (CH=N), 151.86 (C=N), 162.32 (C=0); MS (m/z, %):
91.01 (100.00%) and 320.04 (M', 17.39%); anal. caled. for
C,,H,N40S (320.37): C, 63.73; H, 3.78; N, 17.48; found: C,
63.55; H, 3.91; N, 17.23.

4.1.4. 3-((4-Chlorobenzylidene)amino)thiazolo[4,5-b]qui-
noxalin-2(3H)-one (4). Brown powder; M. p.: 190-192 °C; yield
(81%); IR (KBr, cm ™ '); 3039 (sp>C), 1681 (C=0), 1597 (CH=N);
'H NMR (400 MHz, DMSO-d) 6 (ppm): 7.26 (d, 2H, Ar-Hj 5, ] =
8.0 Hz), 7.74 (t, 2H, quinoxaline-H, J = 8.6 Hz), 7.80 (d, 2H, Ar-
H,,J = 6.8 Hz), 7.93 (d, 2H, quinoxaline-H; 5, ] = 7.6 Hz), 8.66
(s, 1H, methylinic-H); "*C NMR (101 MHz, DMSO-de) 6 (ppm):

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

124.72, 127.87, 128.30, 130.12, 131.34, 132.25, 136.99, 139.11,
140.63, (14 Ar. Cs), 144.99 (CH=N), 146.69 (C=N), 164.02 (C=
0); MS (m/z, %): 95.44 (100.00%) and 340.49 (M*, 62.00%); anal.
caled. for C;4HoCIN,OS (340.79): C, 56.39; H, 2.66; N, 16.44;
found: C, 56.43; H, 2.57; N, 16.53.

4.1.5. 3-((3-Nitrobenzylidene)amino)thiazolo[4,5-b]quinox-
alin-2(3H)-one (5). Yellowish-brown powder; M. p.: 181-183 °C;
yield (85%); IR (KBr, cm '): 3051 (sp>-C), 1667 (C=0), 1615
(CH=N); 'H NMR (400 MHz, DMSO-d) 6 (ppm) 7.39 (d, 1H, Ar-
Hs, J = 7.6 Hz), 7.69 (t, 1H, quinoxaline-H, J = 7.6 Hz), 7.78 (t,
1H, quinoxaline-H, J = 8.0 Hz), 8.16 (d, 2H, quinoxaline-Hs g, ] =
9.2 Hz), 8.28-8.31 (m, 2H, Ar-H, ), 8.53 (s, 1H, methylinic-H),
8.77 (s, 1H, Ar-H;); MS (m/z, %): 113.74 (100.00%) and 351.34
(M, 39.83%); anal. caled. for C;4HoN5O3S (351.34): C, 54.70; H,
2.58; N, 19.93; found: C, 55.01; H, 2.33; N, 19.15.

4.1.6. Synthesis of 3-((substituted-benzylidene)amino)-N-
substituted-phenylthiazolo[4,5-b]quinoxalin-2(3H)-imine (7-8).
A suspension of 1,2-dichloro-quinoxaline 1 (equivalent molar)
and the appropriate thiosemicarbazone derivatives 6 (equi-
molar) was prepared in acetonitrile (10 mL) as the solvent. The
solution mixture was stirred for 3-5 h at 120 °C (monitored by
TLC). The solution was cooled to room temperature, and the
precipitate was collected by filtration and crystallized from the
acetonitrile.

4.1.7. 3-(((E)-Benzylidene)amino)-N-(2-chlorophenyl)thia-
zolo[4,5-b]quinoxalin-2(3H)-imine (7). Deep-orange powder; M.
p.: 256-258 °C; yield (74%); IR (KBr, cm™'): 3061 (sp*-C), 1620
(CH=N); "H NMR (400 MHz, DMSO-d;) 6 (ppm); 7.14 (d, 2H, Ar-
H,J] = 8.0 Hz), 7.24 (d, 1H, Ar-H, ] = 7.6 Hz), 7.48 (t, 2H, Ar-H, |
=7.8Hz),7.57 (t, 3H, Ar-H, ] = 5.6 Hz), 7.68 (t, 2H, quinoxaline-
H,J = 6.8 Hz), 7.75 (d, 1H, Ar-H, J = 8.8 Hz), 7.96 (d, 2H, qui-
noxaline-Hs g, / = 8.4 Hz), 8.27 (s, 1H, methylinic-H); ">*C NMR
(101 MHz, DMSO-dg) & (ppm): 120.24, 121.66, 123.39, 124.01,
124.39, 125.52, 126.10, 126.44, 127.11, 127.71, 128.29, 128.97,
130.84, 131.30, 132.34, 136.54, 137.61, 139.59 (20 Ar. Cs), 147.93
(CH=N), 154.36 (C=N); MS (m/z, %): 71.20 (100.00%) and
415.29 (M, 15.63%); anal. caled. C,,H,,4CIN;S (415.90): C, 63.54;
H, 3.39; N, 16.84; found: C, 63.44; H, 3.43; N, 16.81.

4.1.8. 3-(((E)-4-Bromobenzylidene)amino)-N-(4-chlor-
ophenyl)thiazolo[4,5-b]quinoxalin-2(3H)-imine (8). Red
powder; M. p.: 266-268 °C; yield (71%); IR (KBr, cm™'): 3040
(sp>-C), 1639, 1599 (C=N); 'H NMR (400 MHz, DMSO-d)
6 (ppm): 7.09 (d, 2H, Ar-H, J = 8.4 Hz), 7.56 (d, 2H, Ar-H, ] = 6.8
Hz), 7.61-7.63 (m, 2H, quinoxaline-H), 7.68 (d, 2H, Ar-H, ] = 8.4
Hz), 7.83 (d, 2H, Ar-H, ] = 8.4 Hz), 7.97 (d, 1H, quinoxaline-H, J
= 8.4 Hz), 8.04 (d, 1H, quinoxaline-H, J = 8.4 Hz), 8.46 (s, 1H,
methylinic-H); *C NMR (101 MHz, DMSO-d,) 6 (ppm): 122.76,
123.75, 124.96, 125.49, 126.88, 127.15, 127.64, 128.31, 128.59,
129.10, 130.29, 131.77, 135.93, 137.05, 138.59, 140.01 (20 Ar.
Cs), 144.59 (CH=N), 155.15 (C=N); MS (m/z, %): 101.68
(100.00%) and 494.08 (M", 44.01%); anal. caled. for Cp,Hys-
BrCIN;S (494.80): C, 53.40; H, 2.65; N, 14.15; found: C, 53.34; H,
2.73; N, 14.44.

4.1.9. 3-(((E)-4-Chlorobenzylidene)amino)-N-phenyl-
thiazolo[4,5-b]quinoxalin-2(3H)-imine (9). Deep-red powder; M.
p.: 277-279 °C; yield (81%); IR (KBr, cm™'): 3086 (sp>-C), 1649
(CH=N); 'H NMR (400 MHz, DMSO-d;) & (ppm) 7.00-7.26 (m,
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4H, Ar-H), 7.48 (t, 1H, Ar-H, ] = 6.4 Hz), 7.67 (t, 2H, Ar-H, ] =
7.2 Hz), 7.69-7.71 (m, 2H, quinoxaline-H), 7.75 (d, 2H,
quinoxaline-H, J = 9.6 Hz), 7.80 (d, 2H, Ar-H, ] = 6.8 Hz), 8.45 (s,
1H, methylinic-H); "*C NMR (101 MHz, DMSO-d¢) é (ppm):
119.43, 119.85, 120.24, 120.98, 123.58, 125.10, 127.18, 127.56,
127.93, 130.33, 131.79, 133.42, 134.38, 135.98, 137.90, 140.06,
141.11 (20 Ar. Cs), 144.15 (CH=N), 153.95 (C=N); MS (m/z, %):
232.11 (100.00%) and 415.57 (M', 24.01%); anal. calcd. for
C1,H4CIN;S (415.90): C, 63.54; H, 3.39; N, 16.84; found: C,
63.44; H, 3.43; N, 16.81.

4.2. Insecticidal activity

4.2.1. Spodoptera litura colony and in vivo bioassay. The
stock culture of S. litura was obtained from the Research Divi-
sion of the cotton leafworm at the Plant Protection Research
Institute, Agricultural Research Centre, Dokki, Giza, Egypt. The
culture is known to be free from insecticide spraying and was
reared under controlled laboratory conditions. These condi-
tions included a temperature of 25 + 5 °C, a relative humidity of
70 £+ 5%, and a photoperiod of 10 h of light, followed by 14 h of
darkness. The culture had been maintained under these
conditions for five generations. Moreover, the S. litura larvae
were placed in a plastic container measuring 5 x 16 x 23 cm,
which was covered with muslin cloth and secured with a stret-
chy band. The larvae were fed fresh castor plant leaves, Ricinus
communis.® The laboratory bioassay utilized 2nd and 4th instar
larvae. All substances were dissolved in dimethyl sulfoxide and
then diluted with distilled water at a ratio of 2:5, which also
contained Tween 80 at a concentration of 0.1% (vol/vol). The
bioassay involved dipping infested castor bean leaves in various
concentrations (2500, 1250, and 625 mg L") under the rearing
conditions to assess the effects of the synthesized thiazolo[4,5-
b]quinoxalin-2(3H)-one derivatives 2, 3, 4, 5, 7, 8, and 9 on the
2nd and 4th larval instars. The experiments were conducted
with ten replicates, each consisting of 10 larvae, and the treat-
ments were administered for 3, 5, and 7 days. As a negative
control, distilled water with DMSO and Tween 80 and distilled
water only were used. lufenuron, a recommended insecticide
for S. litura, was used as a positive control.

4.2.2. Preparation of homogenate samples for biochemical
analysis. Using a centrifuge, the samples were homogenized in
distilled water and then centrifuged for 10 minutes at 6000 rpm
at a temperature of 5 °C (using the BECKMAN GS-6R Centri-
fuge). After centrifugation, small aliquots (0.5 mL) of the
supernatant fluid were taken and stored at —20 °C until the
main components were analyzed. Each biochemical determi-
nation was replicated three times.

(1) The amount of carbohydrates was calculated according to
the reported method® using the anthrone reagent.

(2) Total proteins were estimated by applying the method
proposed by Souto et al.®®* using a standard of bovine serum
albumin.

(3) The activities of aspartate aminotransferase (GOT) and
alanine aminotransferase (ALT) were measured using DiaSys
kits and the diagnostic system, in accordance with the previ-
ously reported method used by Liu et al. and Reitman and
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Frankel et al®** Moreover, the 4-alkaline phosphatase (AlP)
activity was determined using the Powell and Smith method
with some modification.®®®® In addition, the 5-acetylcholines-
terase (AChE) level was ascertained utilizing acetylcholine
bromide (AChBr) as a substrate, in accordance with the method
reported by Simpson et al with some modifications, as
described previously.*””°

4.2.3. Scanning electron microscopy SEM. The Applied
Center for Entomopathogenic nematodes (ACE), a facility
located at the Experimental Research Station at the Faculty of
Agriculture, Cairo University, Giza, Egypt, is where the body of S.
litura larvae was examined using a JEOL GM 5200 microscope.
The most active thiazolo-quinoxaline derivative 3 was prepared
and done in accordance with previously reported methods.”™

4.2.4. Histological investigations of the insect midgut. The
LCs of thiazolo[4,5-b]quinoxalin-2(3H)-one derivative 3 on five-
day-old S. litura larvae was used for histological examination.
After being fixed for a full day, the samples were embedded in
an ethanol-xylene series for dehydration. The third step was to
place the sample in paraffin wax. After being cut into 4y slices,
they underwent deparaffinization, rehydration, and staining
with hematoxylin and eosin for histological evaluation.”

4.2.5. Statistical analysis. The Statistix software (version
9.0), which is compatible with Windows, was used to conduct
a statistical analysis of analysis of variance-ANOVA and inde-
pendent samples T test of the collected data. When a significant
ANOVA analysis was obtained, means were compared using
Tukey's HSD test at p = 0.05. SPSS software (version 20.0) was
used to determine the mortality percentage, sub-lethal
concentration value (LCsq), and sub-lethal time (LTso) with
95% confidence limits. The results were presented with
regression coefficients (R*) and regression equations (j = a +
Bx), where y is the predicted value of the response variable for
a given value of x (concentration), § is the slope, the amount by
which y (mortality%) changes for every one-unit increase in x,
and a is the intercept. The graphs were drawn with GraphPad
Prism (version 9.5.1). Additionally, the toxicity index (T. 1.) was
determined by using the sun's equation (1950)” as follows:

TI — LCsy of the most effective compound

100.
LCsy of the other tested compounds
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