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cUniversidad Católica de Murcia (UCAM), C

Spain
dCentro Universitario de la Defensa, Ac
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el acetylcholinesterase inhibitors
through AI-powered structure prediction and high-
performance computing-enhanced virtual
screening†

Beatriz Chafer-Dolz, *a José M. Cecilia,*b Baldomero Imbernón,c Estrella Núñez-
Delicado,c Victor Casaña-Giner a and José P. Cerón-Carrasco *d

Virtual screening (VS) methodologies have become key in the drug discovery process but are also applicable

to other fields including catalysis, material design, and, more recently, insecticide solutions. Indeed, the

search for effective pest control agents is a critical industrial objective, driven by the need to meet

stringent regulations and address public health concerns. Cockroaches, known vectors of numerous

diseases, represent a major challenge due to the toxicity of existing control measures to humans. In this

article, we leverage an Artificial Intelligence (AI)-based screening of the Drug Bank (DB) database to

identify novel acetylcholinesterase (AChE) inhibitors, a previously uncharacterized target in the American

cockroach (Periplaneta americana). Our AI-based VS pipeline starts with the deep-learning-based

AlphaFold to predict the previously unknown 3D structure of AChE based on its amino acid sequence.

This first step enables the subsequent ligand–receptor VS of potential inhibitors, the development of

which is performed using a consensus VS protocol based on two different tools: Glide, an industry-

leading solution, and METADOCK 2, a metaheuristic-based tool that takes advantage of GPU

acceleration. The proposed VS pipeline is further refined through rescoring to pinpoint the most

promising biocide compounds against cockroaches. We show the search space explored by different

metaheuristics generated by METADOCK 2 and how this search is more exhaustive, but complementary,

than the one offered by Glide. Finally, we applied Molecular Mechanics Generalized Born Surface Area

(MMGBSA) to list the most promising compounds to inhibit the AChE enzyme.
1 Introduction

Insecticide resistance is a major health issue in those insect
vectors of diseases.1–3 Most of the marked insecticides disrupt
the biological activity of the acetylcholinesterase enzyme
(AChE), a crucial neurotransmission in insects and other major
pests.4 The inhibition of AChE results in nerve signal disrup-
tion, leading to pets elimination without harming non-target
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(ESI) available: (i) Parameters used for
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of modeled cockroach AChE structure
E from different species; (iv) protein
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species. However, a signicant drawback in that pursuit has
been the lack of detailed structural information about the AChE
enzyme in specic species, which is crucial for designing tar-
geted inhibitors.

Recent advancements in articial intelligence (AI), particu-
larly the development of AlphaFold by DeepMind,5,6 have revo-
lutionized the ability to predict protein structures with accuracy
rivaling traditional experimental methods. This breakthrough
has opened new frontiers in bioinformatics and drug discovery,
allowing for the exploration of biological targets that were
previously intractable due to the absence of structural data.7,8

The convergence of high-performance computing (HPC) and AI
has further amplied the potential of such structural predic-
tions. HPC provides the required facilities to process the vast
datasets and complex algorithms essential for training and
running sophisticated AI models, including AlphaFold.9 This
synergy enables the rapid and accurate prediction of protein
structures, accelerating the discovery process by enabling the VS
of vast libraries of compounds against newly characterized
targets, thereby facilitating the assessment of potential ligands
against an expanded array of protein targets.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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VS has been extensively implemented to accelerate the
identication of potential therapeutics by exploring through
extensive libraries of chemical entities, referred to as ligands,
which may exhibit strong affinities to specic biological
macromolecules, including receptors and enzymes.10–12 An array
of computational platforms, including AutoDock,13 Glide,14

BUDE,15 and DOCK,16 has been developed to facilitate the
docking simulations. These platforms typically operate by
positioning a ligand within a predened active site on a target
protein, either by referencing a co-crystallized ligand or the bare
crystallographic structure of the protein. In contrast, alternative
docking tools such as BINDSURF17 and METADOCK18,19 employ
a “blind-docking” approach. This strategy avoids the limitation
of a single binding site, instead conducting a comprehensive
search across the entire protein surface, partitioned into
discrete, independently evaluated regions. This holistic explo-
ration might uncover potential activity sites that may not have
been previously considered. However, it demands greater
computational resources due to the simultaneous simulation of
interactions at all feasible protein surface pockets. The efficacy
of VS is tied to the precision of scoring functions, which are
algorithmic estimations of the binding affinity following dock-
ing. Indeed, these scoring functions are critical for accurately
ranking ligand candidates,20 as they provide a quantiable
measure of the strength of non-covalent interactions between
the ligand and the target protein.21 It should be underlined that
scoring functions are formed by a set of terms that simulate
physical and chemical behaviors present in the molecular
interaction. Four contributions are usually accounted for: (i) the
electrostatic potential, (ii) the Lennard-Jones potential which
mimics van der Waals forces, (iii) the hydrogen bonding
potential and (iv) the desolvation potential. Although other
applications introduce weights on several of these potentials
based on their own experimental studies (i.e. Autodock and
VINA), METADOCK has been coded without assigning weights.
In the continuum of the drug discovery process, only the most
promising leads, as determined by these scoring functions,
progress from in vitro validation to in vivo testing and poten-
tially to clinical trials.10

Indeed, the application of VS, molecular docking, and AI-
driven predictive models such as AlphaFold, have revolution-
ized the identication and optimization of pharmaceuticals.
However, that technology has been less exploited in other elds
such as the development of novel insecticides. The challenges
posed by insect pests, especially those resistant to conventional
treatments, underscore the urgent need for innovative strate-
gies that leverage the power of these methods.22 They could
enhance the specicity and efficacy of insecticides, targeting key
biological pathways unique to pest species while minimizing
environmental and non-target impacts.23 For instance,
leveraging structure-based drug design to target specic insect
enzymes or receptors could lead to the development of
compounds with novel modes of action, a critical need given the
rapid evolution of resistance mechanisms.24 Additionally, the
adoption of AI models could accelerate the discovery process,
efficiently screening chemical libraries to identify candidates
with optimal properties for insect control.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Herein, we report a comprehensive study that implements
the computationally predicted structure of the AChE enzyme as
the starting material for conducting an enhanced VS pipeline.
Leveraging the computational prowess of HPC, we have per-
formed an in-depth in silico screening of the Drug Bank (DB)
database,25 aiming to identify novel inhibitors of the AChE. Our
approach integrates advanced ligand-based methods with
a consensus-based protocol, further rened by MMGBSA
rescoring to pinpoint compounds with high potential for in vivo
efficacy. The implemented protocol merges cutting-edge AI and
HPC technologies, embodying their transformative impact on
both; bioinformatics and pest control research. By validating
the predicted AChE structure through traditional similarity
search procedures, we have conrmed the reliability of AI-
generated protein models and underscored the potential of
these technologies to uncover novel bioactive compounds. The
main contributions of this work are as follows:

1. To the best of our knowledge, this is the rst time that
AlphaFold has been leveraged to predict the structure of AChE
for the American cockroach, which was further validated
against traditional homology modeling techniques. This
methodological innovation underscores the utility of AI in
enhancing the accuracy and feasibility of protein structure
predictions in species where empirical data are lacking.

2. The DB library of compounds has been screened against
the AI-based AChE structure. An AI-based pipeline has been
dened that performs an exhaustive and blind search over the
entire surface of the predicted structure to guarantee a repre-
sentative screening of the found compounds.

3. The application and assessment of metaheuristic-based
VS alongside the commercial Schrödinger workow provided
insights into the performance and quality trade-offs critical in
computational drug discovery. This comparison demonstrates
the efficacy of metaheuristics in handling complex screening
tasks and emphasized the importance of selecting appropriate
computational strategies based on the specic requirements of
the screening problem.

4. Our analysis reveals that metaheuristics offer an efficient/
fast throughput and a broader interaction with the target
protein, although they must be nely tuned to balance the
computational speed and the accuracy of the results. This
balance is crucial for optimizing the effectiveness of VS in
identifying viable insecticidal candidates.
2 Related works

Even if the literature is still scarce, a few works have applied
computational methods to nd new insecticides. One recent
example is the work conducted by Da Silva et al. with a focus on
combating Aedes aegypti, a mosquito that acts as a vector for
transmitting diseases such as dengue fever and Zika.26 These
authors search novel insecticides by using pyriproxyfen as
a template structure to identify structurally similar molecules
from the Zinc Natural Stock (ZNSt) database, employing tools
like ROCS and EON for molecular comparison. That early
screening included pharmacokinetic and toxicological
RSC Adv., 2025, 15, 4262–4273 | 4263
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assessments. This work leads to two promising molecules with
large binding affinities to AChE and the juvenile hormone.

Other excellent work has been published by Gang et al., who
addressed the pressing issue of pesticide resistance by
employing a computer-aided drug design (CADD) methodology
to synthesize novel sulfonamide pesticides.27 Their study
implements homology modeling and VS to identify lead
compounds, which are then chemically synthesized through
a multi-step process starting from p-chlorocresol. The binding
interactions of the top-ranked compounds were further
explored through docking simulations and structure–activity
relationship analysis. Their efficacy was tested using the leaf-
dipping method against Mythimna separata. Seven of these
derivatives exhibited superior insecticidal activities. One can
nd in the literature applications of machine learning (ML) as
an advanced tool for the discovery of insecticides. Ding et al.
explore eco-friendly and multitarget inhibitors targeting insect
chitinolytic enzymes, a novel approach in the eld of pesticide
development.28 Their research integrates ML with molecular
docking by merging data from prior high-throughput screening
to navigate a vast library of 17 600 natural compounds. This
strategy successfully identied potent inhibitors, such as 3,5-di-
O-caffeoylquinic acid and g-mangostin, which demonstrated
inhibitory action against multiple chitinolytic enzymes from
Ostrinia furnacalis (a species of moth). The transcriptomic
analysis of treated insects further elucidated the biochemical
pathways affected by these compounds, underscoring the
synergistic potential of ML in pesticide discovery.

Regarding the prediction of protein structures related to
insecticide activities, some authors recently applied AlphaFold
to nd these novel targets. For instance, Zhorov and Dong
assessed the challenge of pyrethroid resistance in arthropod
pests, a signicant hurdle in effective pest management and
disease vector control.29 Their study is specically focused on
mutations within the voltage-dependent sodium channels
(VGSC), which is the primary targets of pyrethroid action. By
leveraging the AlphaFold2 neural network, they generated
rened models of mosquito and cockroach sodium channels,
enabling a detailed investigation of pyrethroid interactions in
various channel states through computational docking. Their
ndings hint how mutations, including those distant from
known receptor sites, inuence pyrethroid efficacy. It was also
remarkable that molecular models were able to identify allo-
steric modulation of receptor site with a large impacts in
pesticide binding.29 Tahir et al. focus their research on
combating Ostrinia furnacalis, a major worldwide pest for maize
and other corn crops.30 Their study employs a structure-guided
computational approach to discover environmentally friendly
insecticides by targeting the b-N-acetyl-D-hexosaminidase, an
essential enzyme for the pest's survival but distinct in its
substrate binding from its plant and human counterparts.
These authors used Glide by Schrödinger to perform all VS
predictions. Their simulations were based on the crystal struc-
tures of OfHex1 and its homologues in humans and the
Alphafold model of b-N-acetyl-D-hexosaminidase from Trichog-
ramma pretiosum, a benecial parasitoid. Kong et al. also used
AI methodologies to streamline the discovery of novel
4264 | RSC Adv., 2025, 15, 4262–4273
insecticides with unique chemical structures.31 Their study
efficiently integrates deep learning models to predict and
generate potential neonicotinoid insecticides, which are
subsequently validated by both VS and experimental assays.

Our groups have also contributed to the use of computa-
tional methods in the search of better insecticides. We have
successfully used VS for targeting known biological pathways in
pest control, e.g., VGSC in the American cockroach.32 The per-
formed VS simulations allowed us to identify miglitol as
a potent synergist, as conrmed by animal model assays. The
present work aims to extend the scope of VS by integrating
emerging AI technologies by predicting protein structures
previously uncharacterized. The predictive power of AlphaFold
is exploited to explore protein targets without prior structural
data, offering a novel pathway to insecticide development that is
not limited by the current knowledge of target structures. As
discussed below, our strategy combines AI-driven protein
structure predictions with enhanced VS and rescoring for
broadening the target base in insecticide development.

3 Materials and methods
3.1 Biomolecular target discovery

The most classical computational strategy for discovering
bioactive molecules requires the crystal structure of a known
target as starting material, an approach usually called structure-
based design.33 However, the resolution of complex biological
targets is not always possible and consequently, the standard VS
procedure cannot be directly implemented. In these cases,
where the crystal structure of the target is unresolved, homology
modeling emerges as an alternative. This technique exploits the
evolutionary conservation of protein folds, using the resolved
structures of similar proteins as templates to predict the three-
dimensional structure of the protein of interest. This process is
based on alienating the target sequence with sequences of
homologous proteins of known structure while completing
missing parts.34 The production of homology models enables
the subsequent application of structure-based VS protocols.
This is not a trivial task. The robustness of homology modeling
is contingent upon the availability of a suitable template and
the degree of conservation between the target and the
template's active site. When a template with high sequence
similarity is available, the resulting model is oen of enough
quality to allow for meaningful VS procedure of potential
ligands.35 These models can be further rened using compu-
tational methods such as loop modeling, side-chain optimiza-
tion, and molecular dynamics simulations, enhancing the
accuracy of the predicted binding sites.36,37

In the present study, our bioactive target, AChE from the
American cockroach (Periplaneta americana), lacks crystallo-
graphic data. The construction of a structural model is, there-
fore, a prerequisite to facilitate our computational screening
efforts. In absence of X-ray structures, modeling was initiated by
searching for available nucleotide sequences in the well-known
GenBank, a public database that contains genetic sequences for
ca. 500 000 different species.38 The sequence for P. americana
AChE was identied by accession number ALJ10969.1. The
© 2025 The Author(s). Published by the Royal Society of Chemistry
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homology calculations were performed with the standard
protocol implemented in Schrödinger, which resulted in
a structural homologue deposited in the Protein Data Bank
(PDB) with code 5X61. This structure, which corresponds to the
Anopheles gambiae, was previously reported with a focus on
malaria vectors.39 For the records, the identity of 73.18%,
sequence positivity of 82.95%, andminimal gaps accounting for
only 0.22% of the sequence alignment. It is also worth noting
that the use of that specic template matches to an earlier
model for P. americana AChE suggested by Rajashekar and co-
workers.40 These authors identied the same template by using
an alternative homology code, e.g., SWISS-MODEL program.41

That agreement further conrms the accuracy of the proposed
homology strategy.

An alternative method for constructing a reliable AChE
structure for the American cockroach (Periplaneta americana)
was the application of AlphaFold, the next-generation articial
intelligence (AI) system developed by DeepMind.6 AlphaFold
has revolutionized computational biology by accurately pre-
dicting protein structures solely from their amino acid
sequences. The system leverages a deep learning model exten-
sively trained on a diverse dataset of known protein structures,
enabling it to capture intricate patterns in sequence–structure
relationships. AlphaFold's innovative neural network architec-
ture integrates evolutionary information, physical, and
geometric constraints, predicting the three-dimensional spatial
arrangement of amino acids with remarkable precision.42 Of
course, homology models and AlphaFold structures are
complementary rather than competitive solutions. The
homology modeling performs more reliably than AlphaFold if
the high-resolution homologous template is available for the
homology modeling, while AlphaFold might be optimal for
more critical systems.

To enhance accessibility and computational efficiency, the
ColabFold implementation of AlphaFold2 was selected in this
study.43 This version integrates MMseqs2 for generating
sequence alignments and HHsearch for identifying structural
templates, streamlining the prediction process in a cloud-based
environment. The ColabFold pipeline, congured for this task,
included options for modeling both monomeric proteins and
complexes, along with the capacity for Amber-based relaxation,
further rening the predicted structures.

AlphaFold's methodology, which estimates inter-residue
distances and angles to construct detailed 3D models, has
been rigorously validated, notably in the Critical Assessment of
Protein Structure Prediction (CASP) competitions, where its
predictive accuracy was found to be on par with experimental
methods.7 For the AChE of P. americana, where no experimental
crystallographic data were available, AlphaFold enabled the
derivation of a high-delity structural model. This model
provided the necessary foundation for subsequent virtual
screening (VS) processes, facilitating precise simulations of
potential inhibitor interactions at the enzyme's active site.
Thus, the predictive capabilities of AlphaFold (i.e. ColabFold
framework) were instrumental in accelerating our biocide
discovery efforts, highlighting the wide impact of AI in
advancing the eld of drug discovery.44
© 2025 The Author(s). Published by the Royal Society of Chemistry
3.2 VS pipeline

The interaction of novel insecticides with the AChE target was
assessed using two VS strategies. The rst approach was based
on the standard protocol implemented in Glide, which performs
three independent docking stages, including an initial high-
throughput virtual screening (HTVS) with a subsequent single-
precision and extra-precision docking (SP and XP, respec-
tively).45,46 This systematic method effectively reduces the initial
set of over 10 000 potential candidates deposited in the DB
database to around 1000 candidates during the initial HTVS
stage. We stress that both HTVS and SP employ identical scoring
mechanisms, though HTVS is characterized by a less demanding
approach to torsional renement and sampling. This allows for
the swi elimination of ligands poorly suited to bind the target.
The SP phase renes this selection further by redocking the top
1000 candidates, which is then narrowed down signicantly in
the XP stage. Only the top 100 scoring ligands undergo redocking
with enhanced accuracy.47 For the records, all settings were used
as default in Glide, where 10% of the top-ranked compounds are
retained at each step. We only imposed one change in that
default parameter, by increasing the number of poses up to 10 at
the XP step. Aiming to explore the whole AChE structure binding
sites were determined by using the SiteMap tool also imple-
mented in the Schröringer suite of programs. SiteMap has been
designed for scanning the protein surfaces and consequently
predicting target druggability.48

The VS workow implemented in Glide allows for a quick VS
of large libraries of compounds. However, that code is opti-
mized for targeting specic binding sites by using crystallo-
graphic ligands and/or druggable sites predicted with SiteMap.
It also restricts the generation of ligand poses in the default
parameter to a maximum of 3 per ligand. The increase of
computed poses (10 in our study) leads to a critical limitation to
maintain computational efficiency as Glide relies exclusively on
CPU resources.

As an alternative to the standard solution offered by Glide,
METADOCK 2 was used for performing more systematic VS
experiments. METADOCK 2 is an optimization procedure based
on structured metaheuristics.18,19 In short, metaheuristics
effectively address complex optimization challenges, oen
classied as NP-hard problems, due to their ability to quickly
converge on satisfactory solutions in scenarios with limited
computational resources or incomplete data.49 These algo-
rithms prioritize the exploration of the most promising candi-
dates rather than exhaustively searching all possible solutions,
which allows for near-optimal solutions in a reasonable time
frame. There are several metaheuristic algorithms,50 including
Scatter Search, Genetic Algorithms, Ant Colony Optimization,
Tabu Search, Hill Climbing, or Simulated Annealing.51 It should
be underlined that METADOCK 2 is not based on a single
specic metaheuristic but able to generate different meta-
heuristics by setting its input parameters.

The implemented schema integrates multiple functions
commonly found across various metaheuristics, as discussed in
ref. 49. Each function within the algorithm requires specic
parameters that are listed in the ESI.† Upon setting these
RSC Adv., 2025, 15, 4262–4273 | 4265
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parameters, METADOCK 2 executes its optimization routine to
select a collection of poses that optimally reduce the scoring
function. Indeed, METADOCK 2 is an iterative procedure with
a given termination criteria (dened by the End_condition(S,
ParamEnd)) that can be either: the maximum number of itera-
tions or the number of consecutive iterations without
improvement. On the one hand, the Select(S, Ssel, ParamSel)
function then lters a subset of the initial population (S),
selecting both; the best and worst conformations to promote
diversity based on their scoring function values. On the other
hand, the Combine(Ssel, Scom, ParamCom) function pairs
these selected conformations for mixing, targeting combina-
tions of the best, the worst, and cross-pairs of both to generate
new variants. The Mutation(Scom, ParamMut) function then
introduces variations to these combinations to maintain
diversity, altering aspects such as spatial coordinates or orien-
tations. The Improve(Scom, ParamImp) function conducts
a local search to rene these new conformations aer mutation.
The loop nishes with the Include(Scom, S, ParamInc) function,
which includes a selection of these rened conformations back
into the population for the next iteration, ensuring a contin-
uous evolution of potential solutions.

METADOCK 2 implements two distinct scoring functions,
both grounded in conventional force eld models that consider
various molecular interactions including dispersion–repulsion,
hydrogen bonds, electrostatics, and desolvation. We refer the
reader to19 for further details. Each scoring function incorpo-
rates unique modications to its formulae to adapt to specic
computational environments. Withing that framework, META-
DOCK 2 offers an alternative strategy to expand the scope of the
search, providing a broader and more exhaustive exploration of
the docking landscape. This comparison highlights the
complementary roles of both systems in the VS process, with
METADOCK 2 enhancing the exploration capabilities beyond
the targeted approach of Glide.

The inherent differences in the scoring functions of Glide
and METADOCK 2 impede a direct comparison or combination
of their respective numeric outputs. To standardize these
values, the binding energies of the highest-ranked hits from
both methods are rened by using MMGBSA method as
implemented in Prime module.52,53 This rened computational
approach calculates the binding-free energies as:

DGbind = Gcomplex − Gtarget − Gligand (1)

where DGbind signies the net binding-free energy, and Gcomplex,
Gtarget, and Gligand represent the free energies of the complex,
target AChE, and ligand respectively. The equation may be
expanded into:

DGbind = DEMM + DGGB + DGSA − TDS (2)

where DEMM includes all gas phase energies, DGGB accounts for
polar solvation energy calculated using the generalized Born
method, DGSA measures the nonpolar solvation component,
and TDS denotes the change in conformational entropy.54 These
components collectively yield the binding-free energy of each
4266 | RSC Adv., 2025, 15, 4262–4273
ligand as estimated by the MMGBSA approach and allow for
a fair comparison of the binding energies predicted by Glide
and METADOCK 2.
4 Results

This section summarized how the use of AI methodologies
discussed in Section 3 leads to novel candidates against the
AChE of the American cockroach. We rst describe the bench-
marking environment where simulations have been conducted.
The main conguration parameters, targeted database of
compounds, and hardware environment are dened. We next
discuss the use of the different computational tools used to
carry out VS for AChE-inhibiting compounds. To this end, the
prediction and validation of the AChE protein structure are
discussed. The results derived from the proposed VS strategies
are nally assessed and discussed with a more practical appli-
cations industry.
4.1 Benchmarking environment

The experiments underpinning these results were conducted on
a computational node with an Intel(R) Xeon(R) Silver 4216
CPU@2.10 GHz, boasting sixteen physical cores augmented to
thirty-two threads through hyperthreading. Complementing the
CPU, the node's computational prowess is bolstered by 384 GB
of DDR5 RAM and an NVIDIA A100 GPU. This Tensor core-
equipped GPU has a capacity of up to 80 GB of memory at
over 2 terabytes per second (TB per s), to run the largest AI
models on large datasets.

As in any VS experiment, the selection of a compound
repository is a key factor. For this study, we selected a well-
established database known for its utility in drug design,
albeit its potential for insecticide development has been
comparatively underexplored. The DB database has been
systematically screened,55 a vast array of compounds exceeding
10 000 entries, encompassing approved drugs, nutraceuticals,
experimental agents, as well as those that have been withdrawn
from the market.56 Until now, DB has been mostly used in drug
design by targeting human biomolecules. However, we have
recently demonstrated that library of compounds might be also
used as a source for other applications, including the discovery
of novel insecticides.32 Herein, the molecular structures
deposited in DB were cured by using the LigPrep tool code by
Schrörindger's, which assigns bond orders, computes the
predominant protonation states at neutral pH, and performs
structural optimization with the OPLS4 force eld.57

The deployment of METADOCK 2 in our study requires the
strategic conguration of its parameters. These parameters
govern the operational breadth of the fundamental meta-
heuristic algorithms for exploring the varied topography of
search spaces with differential computational effort. These
congurations, coded as M1, M2, M3, and M4, have been
systematically designed to progressively extend the computa-
tional rigor and expand the potential for probing the confor-
mational complexities of ligand–receptor interaction (see ESI†).
These congurations are:
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Overlays for the generated AChE target models displayed as
cartoons. Color scheme: homology model in green and Alphafold
structure in white.
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� M1: this setup is the baseline model, characterized by
minimal parameter intensication. M1 is specically cong-
ured for rapid, initial screenings, making it ideal for prelimi-
nary assessments where computational efficiency is prioritized
over exhaustive search depth. This conguration allows for
a swi traversal of the search space to quickly identify potential
hits with reasonable computational resources.

� M2: building on the M1 conguration, M2 introduces
moderate enhancements to the exibility and the parameters
governing initial improvement functions. This conguration is
designed to strike a balance between computational speed and
the depth of exploration. It adjusts the model's parameters to
allow for a more detailed exploration of the docking space
without a substantial increase in computational demand,
making it suitable for more rened screenings.

� M3: the third conguration marks a signicant escalation
in the complexity of the search process. It enhances the selec-
tion and combination parameters extensively, supporting
a more thorough exploration of the docking space. M3 employs
a large number of initial conformations and emphasizes the
strategic combination of the best and worst poses. This
approach is intended to explore a broader range of potential
interactions between the ligand and the receptor, potentially
uncovering unique and efficacious binding congurations.

� M4: the most complex of the congurations, maximizes
both computational intensity and search depth. It uses the
largest number of initial conformations and intensies each
parameter to push the limits of metaheuristic search capabil-
ities. M4 is oriented towards exhaustive computational experi-
ments where the goal is to explore the entire search space for
possible protein–ligand conformations that may have optimal
interactions, albeit at a higher computational cost.

Each conguration incrementally builds on the previous,
offering a spectrum of strategies from rapid screening to deep,
exhaustive searches. This systematic escalation in complexity
allows researchers to select a conguration that best suits the
specic demands and resources of their study, aligning
computational effort with the desired thoroughness of the
screening process.
4.2 Chemical models

As discussed, the AChE of the American cockroach remains
unresolved, which in turn impedes the use of the more classical
protein–ligand VS. Fortunately, we do know the sequence for P.
americana AChE, denoted by the GenBank sequence code
ALJ10969.1. As discussed, AlphaFold takes advantage of such
biological information to build up the target structure,
a required step to enable structure-based VS simulations. To
ensure that AI leads to meaningful structure, the generated
target by AlphaFold is compared to the classical Homology
strategy, which is mainly based on the search of similar
sequences that are subsequently used as structural templates.

Fig. 1 shows the overlapping structures of AChE predicted by
homology models with Schrödinger (green) and AlphaFold
(white) both given in cartoons. This gure illustrates that both
approaches exhibit a remarkable structural alignment with an
© 2025 The Author(s). Published by the Royal Society of Chemistry
Root Mean Square Deviation (RMSD) value of 0.89 Å only, an
agreement that conrms the predictive accuracy of the Alpha-
Fold algorithm about the established homology modeling
approach. That match is also observed when superposing the
developed AChE models for cockroach with the experimental
data available for other insect as the fruit y Drosophila mela-
nogaster (see ESI†). This structural agreement match backs up
the structural consistency between the computationally derived
models and validates the use of AlphaFold for generating reli-
able protein structures without crystallographic data.

Visual inspection and RMSD values suggest that both
methods lead to very similar structures so that both can be used
as targets for VS simulations. To conrm this hypothesis, we
have performed a comparative analysis to compare the inter-
action energies between the DB compounds and each of both
targets. Fig. 2 shows a box-and-whisker plot that conveys the
distribution of interaction energies achieved with the less
demanding M1 metaheuristics of METADOCK 2. On the x-axis,
it can be shown the two categories of scores: those obtained
using the AlphaFold-predicted AChE structure (ScoringAlpha-
Fold) and those derived from the homology-based AChE model
(ScoringHomology). Each box in the plot encapsulates the
interquartile range (IQR) of scores, representing the middle
50% of data for each structure, with the horizontal line inside
the box denoting the median score. The whiskers extend to
cover the total range of data, excluding outliers, denoted by
individual points beyond the whiskers. These outliers represent
scores, signicantly higher or lower than the bulk of the data
and could be indicative of exceptionally strong or weak binding
affinities. The scoring distribution also suggests that both the
AlphaFold and homology models have a similar range of
binding affinities across the screened compound library, as
evidenced by the similar span of the whiskers and the IQR. It is
also important to note that the score values are negative; in this
RSC Adv., 2025, 15, 4262–4273 | 4267
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Fig. 2 This scatter plot compares the binding affinity scores obtained from blind docking of DB compounds against two receptor structures: one
derived through homology modeling (blue) and the other predicted by AlphaFold (red). Each point represents the docking score for a single
compound, showcasing the overall distribution and highlighting the relative binding affinities predicted for each receptor. The data indicate
a similar trend.
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framework, a lower (more negative) score stands for stronger
predicted binding affinity. The similarity in the spread of scores
between the two models could suggest that despite the meth-
odological differences in structure prediction, the overall
binding landscapes that they predict are comparable. This
congruence is critical as it lends credence to the reliability of VS
results irrespective of the structural model used for modeling
AChE.

4.3 Computational performance

Fig. 3 shows the performance of the four metaheuristics
generated by METADOCK 2. Blind docking simulation imple-
ments the AChE receptor generated by AlphaFold and all
compounds included in the DB database. As discussed above,
the nomenclature of these metaheuristics adopts a sequential
designation, where M1 is attributed to the most computation-
ally agile algorithm, ascending in resource intensity up to M4.
The abscissa quanties the improvement in computational
performance, expressed as a speedup factor when juxtaposing
the pairwise metaheuristics. The ordinate captures the variance
in the score function, a metric reecting the estimate of binding
affinity. This numerical value can be expected to decrease with
a more rened search, which, of course, increases the compu-
tational effort. Close observation reveals that metaheuristic M1,
when compared to M2 (blue circles), shows accelerated
computational performance, albeit with wide variance in the
score function differential. The data sets suggest a heteroge-
neous response to efficiency improvements, implying
4268 | RSC Adv., 2025, 15, 4262–4273
a multifaceted trade-off between computational speed and
delity of affinity predictions. Progressing to the M2 versus M3
comparison (orange crosses), a convergence of data points
intimates a lesser magnitude of speed-up, aligned with a nar-
rower dispersion in scoring function differentials. This pattern
insinuates a progression towards balance—a moderate sacrice
in computational speed in favor of scoring precision. The M3–
M4 (red squares) presents the most intriguing paradigm; the
computational acceleration is minimal, implying a near-
equivalence in execution time. Nonetheless, there is
a pronounced leap in scoring function differentials in favor of
M4, suggesting that M4, while computationally intensive,
potentially achieves a marked improvement in the prediction of
binding affinities. Together, these data points illuminate the
intrinsic trade-off between computational convenience and the
accuracy of ligand–protein interaction predictions. This
graphical representation underscores the sophistication
inherent in developing computational strategies for drug
discovery, where algorithmic advances are meticulously cali-
brated to optimize both execution speed and predictive
modeling insight.

Fig. 4 provides a visual comparison between the search space
coverage of traditional Schröndinger workow using GLIDE and
the metaheuristics developed by METADOCK 2, as applied to
a molecular docking study. Rendered in a ribbon diagram, the
protein is shown as a gray structure, with the potential ligand
binding poses indicated by colored points: METADOCK 2
congurations M1 through M4 are represented by red, blue,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Comparative performance analysis of metaheuristic algorithms in METADOCK 2: this figure illustrates the trade-offs between execution
time and scoring function accuracy for different metaheuristics (M1, M2, M3, andM4) utilized in the screening of the top 50 compounds from the
DrugBank database. Each point represents a pair of metaheuristics compared, with the x-axis showing the speed-up factor in execution time and
the y-axis indicating the scoring function difference. The data suggest a balance between computational efficiency and the precision of binding
affinity predictions across the metaheuristics evaluated.

Fig. 4 Comparative analysis of search space coverage byMETADOCK 2metaheuristics (left panel) and Schröndinger Glide workflow (righ panel).
The protein structure is depicted in gray ribbon representation. Docking poses are visualized as color-coded points: METADOCK 2 configu-
rations M1 (red), M2 (blue), M3 (green), and M4 (yellow) illustrate the extensive search space covered through blind docking, while the standard
Schröndinger Glide workflow is shown in purple, indicating a more targeted approach. The image highlights the comprehensive search per-
formed by METADOCK 2 across the protein surface, contrasting with the focused search areas of the Glide workflow.

© 2025 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2025, 15, 4262–4273 | 4269
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green, and yellow points, respectively, while the Schröndinger
workow is denoted in purple. Distribution based on the
METADOCK 2 blind docking approach yields a more exhaustive
search across the protein surface, resulting in a multitude of
poses that dwarf the number generated by the Schröndinger
workow. This comprehensive search conrms the ability of
METADOCK 2 to perform an extensive conformational analysis.
As discussed, the standard VS workow implemented in Glide
leads to a lower number of poses. However, one can observe
a match in the areas explored by both methodologies. That
outcome hints that while the approaches may differ in thor-
oughness, they converge on similar regions of the protein that
are likely of high binding relevance. In addition, the density and
spread of the METADOCK 2 poses suggest an intense, stochastic
sampling of the ligand space, capturing a wide array of potential
binding modes that can then be further evaluated for their
biochemical viability. In contrast, the Schrödinger workow,
with its targeted docking strategy, searches on predened
regions of interest that might overlook novel interaction sites
that METADOCK 2 can uncover. These numeric outcomes
further validate METADOCK 2 in identifying a rich landscape of
binding congurations, offering a valuable complement to the
targeted docking approach traditionally employed in compu-
tational drug discovery.

Fig. 5 summarizes the impact of the post-renement through
the MMGBSA. That level of theory is used to increase the
accuracy of the binding energies generated by the meta-
heuristics M1 through M4, which are arranged in ascending
order of their inherent computational complexity. Represented
in this graphical analysis are the differential rescoring values
between successive pairs of metaheuristics: M1 versus M2 (blue
circles), M2 versus M3 (red triangles), and M3 versus M4 (green
crosses). The abscissa enumerates the DB compounds subject
Fig. 5 Differential impact of MMGBSA rescoring on metaheuristic-
generated poses. This scatter plot contrasts the differences in
MMGBSA rescoring outcomes for docking poses derived from
a spectrum of metaheuristic algorithms (M1–M4) implemented in
METADOCK 2. Each point represents the rescoring differential
between successive metaheuristics for DB compounds, indicating the
ability of MMGBSA optimization to converge the predictive accuracy of
various computational strategies towards a cohesive standard.

4270 | RSC Adv., 2025, 15, 4262–4273
to this analysis, while the ordinate captures the resultant vari-
ance in the rescoring values post-MMGBSA application. Nega-
tive values on the ordinate suggest an enhancement in the
predicted binding affinity post-rescoring for poses generated by
the more computationally complex metaheuristic. Positive
values, however, indicate a superior rescoring result for poses
obtained by the comparatively less complex metaheuristic
within the compared pair. The distribution of data points,
particularly the prevalence of points along and above the zero
line, suggests that the MMGBSA rescoring results in similar or
improved scoring outcomes for poses generated by less complex
metaheuristics. This observation infers that the optimization
inherent in the MMGBSA procedure can, to some extent, miti-
gate the disparities in the initial scoring generated by different
levels of metaheuristic complexity. Notably, the frequency of
negative values is diminished relative to previous comparisons
in Fig. 3, which may be attributed to the intrinsic renement
capability of MMGBSA. This rescoring method independently
evaluates and potentially improves the predicted binding
affinities by accounting for factors such as solvation effects and
entropic contributions, thus providing a more nuanced view of
the thermodynamics of ligand-receptor interaction. All that
accumulated numeric results demonstrate that while the
adoption of more sophisticated metaheuristics is generally
associated with an initial predictive advantage, the subsequent
application of MMGBSA rescoring can effectively balance and
enhance the binding affinity predictions, which is specially true
for those poses generated by less computationally demanding
algorithms, e.g., M1.
4.4 Novel insecticides

Let us nally collect all the results reported by using the stan-
dard Glide workow and the enhanced sampling by META-
DOCK 2. Table 1 depicts the top-ranked compounds with the
potential to target the AChE of the American cockroach. The
criteria for selection was based on their rened binding-free
energy at the MMGBSA level of theory, with a threshold set for
values lower (more negative) than −50 kcal mol−1, indicative of
strong potential interactions.32 On the le panel, molecules are
listed by their DB identiers or generic names when available,
alongside their respective Glide scores and rened binding-free
energy interactions with the main target, namely, AChE
(DGAChE). Aiming at providing a more general view, the inter-
action with the voltage-activated sodium channel (Nav) has been
also computed, which is labeled as DGNav. This dual-target
evaluation addresses the possibility of cumulative efficacy,
which is particularly pertinent in the context of insecticidal
action. The right panel of Table 1 includes numeric outcomes
from the enhanced sampling by using METADOCK 2 with both
targets.

It is remarkable that among the ∼10 000 compounds
deposited in the DB database, both screenings match Nadide in
their top-ranked list. Nadide is a coenzyme involved in
numerous enzymatic reactions, which indicates the robustness
of the screening across different search algorithms. We also
stress that a Nadide analogue, e.g., DB02732, is present in the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Top-ranked compounds predicted by the standard Schröndinger protocol (Glide score, in kcal mol−1) and by sampling with blind-
docking METADOCK 2. Interaction energies are refined binding-free energy at MMGBSA level of theory (DGAChE, in kcal mol−1). Top-ranked
compounds are also used to target the voltage-activated sodium channel (DGNav, in kcal mol−1) to assess cumulative efficacy

Standard workow Enhanced sampling

Moleculea Glide DGAChE DGNav Moleculea METADOCK 2 DGAChE DGNav

DB02226 −12.60 −98.99 −50.59 Capivasertib −100.43 −69.07 −50.01
RPR128515 −10.75 −65.25 −46.03 Netilmicin −88.16 −66.81 −53.78
DB02732 −12.54 −63.75 −29.76 Acarbose −112.81 −65.92 −39.73
DB06858 −12.97 −62.57 −50.24 Pf 04995274 −117.96 −65.01 −50.81
Zorubicin −9.86 −55.79 −38.21 Domperidone −99.55 −57.99 −56.78
Hexoprenaline −10.53 −54.38 −63.01 Nadide −100.43 −54.49 −40.09
DB06942 −11.10 −52.74 −49.11 Quinine −95.89 −53.55 −30.78
DB07054 −9.21 −52.67 −51.43 Miglustat −78.51 −53.36 −35.18
Nadide −9.82 −51.03 −40.09 Sotalol −79.25 −51.10 −39.41

Tetracaine −94.25 −50.13 −37.20

a Generic names are given when available, otherwise molecules are identied by DB codes.
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standard VS workow list, suggesting the algorithm's effec-
tiveness in identifying biochemically relevant molecules. It is
also worth mentioning that Nadide is present in commercial
products, such as the referenced shampoo, which underscores
its wide applicability and market availability. Finally, one can
also note that the associated energies to the binding of the
AChE (DGAChE) are larger (more negative) than the values ob-
tained for the sodium channel (DGNav). This is an expected
result, as the selection list was specically based on the inter-
action to AChE. However, some hits fulll the prerequisite of
the −50 kcal mol−1 in both targets: DB02226, DB06858, hex-
oprenaline and DB07054 in the Glide-based standard workow;
capivasertib, netilmicin, Pf 04995274 and domperidone for the
enhanced sampling with METADOCK 2. These compounds
might consequently offer a more lethal insecticide action if
simultaneously blocking both targets.

All accumulated data demonstrated that the enhanced
sampling by METADOCK 2 increases the multiplicity and
dispersion of predicted poses, and consequently conducts
a more expansive search over the surface of the target. This
blind docking method reveals a diverse array of candidate
molecules with signicant predicted interactions, as evidenced
by their MMGBSA scores. Table 1 eventually provides an illus-
trative picture of the VS most promising ndings. The reported
lists (standard and enhanced samplings) might be directly
implemented in experimental assays to conrm the synergy
between traditional computational techniques and innovative
AI-enhanced methodologies in the search for effective insecti-
cidal agents.
5 Discussion

Our search for better inhibitors to the American cockroach
AChE reveals the potential use of AI-powered VS processes in
the development of more efficient insecticides. The performed
analysis began with the challenge of determining the tertiary
structure of the AChE protein, as it remains unresolved in the
literature; a key step for screening of the DB library of
© 2025 The Author(s). Published by the Royal Society of Chemistry
compounds. The application of the AlphaFold algorithm in this
specic framework demonstrated its predictive capacity,
generating a tertiary structure very much in line with the most
classical homology processes. Accordingly, structural bio-
informatics based on AI introduces a novel framework that
improves the current state of the art, yielding considerable time
savings for molecular modelers and facilitating broader access
to these tools for the scientic community.

The integration of metaheuristic algorithms within the
METADOCK 2 framework through GPU acceleration might help
in the development of enhanced VS methodologies. The
comparison of METADOCK 2 vs. the standard Schrörindger
Glide workow demonstrated the comprehensive nature of
metaheuristic searches while conrming the ability of HPC to
increase the efficiency and precision of these algorithms.
METADOCK 2 exploits the parallel processing capabilities
inherent to GPUs, facilitating a broad and intensive exploration
of the docking landscape. This exhaustive approach permits the
investigation of an expansive array of ligand–receptor interac-
tions across the entire protein surface, surpassing the tradi-
tional targeted docking methodologies that focus on predened
active sites.

Furthermore, our work demonstrates that AI algorithms in
general and metaheuristics in particular must be correctly
parameterized to optimize the balance between computational
cost and predictive capacity. As it has been shown, the most
powerful metaheuristics (in general the models) do not neces-
sarily correlate the best results. On the contrary, the computa-
tional strategy might require the specic adaptation of the
model to the problem domain to optimize the quality/
performance ratio. The convergence of metaheuristics and
HPC exemplies a powerful toolkit for modern bioinformatics,
setting a new benchmark for drug discovery.

We complete our study by assessing the binding energies of
novel ligands to the AChE model generated for the American
cockroach. The candidate poses selected by the two employed
screening methods (i.e., Glide and METADOCK 2) were rened
using MMGSBA, culminating in a set of prospective inhibitors
RSC Adv., 2025, 15, 4262–4273 | 4271
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of this protein. Furthermore, another action mode for insecti-
cides targeting the American cockroach, specically the sodium
channel, which has been documented in the literature,32 was
employed as a reference. The interaction energies of
compounds selected through our investigative process with this
receptor were presented, thereby providing an enriched
perspective of this screening to the reader. Notably, the
compound Nadide was highlighted as active against both action
modes, rendering it an exceptionally promising candidate for
subsequent in vivo assays. Additionally, several other
compounds exhibiting signicant activity emerged as auspi-
cious contenders for further investigation of their efficacy
within this biological model that might also include higher
levels of theory, including quantum mechanical simulations
and/or more exhaustive MMGBSA sampling trajectories in
during molecular dynamic simulations.58–62

6 Conclusions and outlook

This article aims to contribute to the convergence of HPC and AI
by paving the way towards the discovery of novel agents for pest
control. The ability of the AlphaFold algorithm to predict the
structure of major targets for insecticides, e.g., AChE, has been
rst assessed. This strategy overcomes the limitations imposed
by the lack of empirical crystallographic data. The use of new
metaheuristic algorithms enabled by the power of GPUs opened
the door to a more exploratory and comprehensive approach to
virtual detection compared to the standard VS workows. The
application of these advanced computational techniques leads
to the identication of promising AChE inhibitors, which may
offer new avenues for controlling pest populations, specically
the American cockroach. The compound Nadide, among others
identied in this study, emerges as a particularly notable
candidate due to its activity in multiple modes of action, sug-
gesting potential for broad-spectrum efficacy.

The effort to rene the interface of AI and HPC will continue
to be the cornerstone of our research. Next steps will be focused
on the development of multi-target AI-based models for VS
processes. Such models would leverage the insights gained in
the current study and integrate them into an even more
sophisticated framework capable of identifying compounds
with multifaceted modes of action. It is expected that this will
improve the efficiency of the screening process and also
provides new potential bioactive compounds. Furthermore, we
aim to advance from computational modeling to empirical
validation through in vivo testing of the identied compounds.
These animal assays will help us to corroborate VS predictions
as well as to evaluate the real-world efficacy and safety proles of
proposed compounds, bridging the gap between computational
predictions and tangible impact.

Data availability

The code for METADOCK can be found at https://
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