
RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 9

/1
4/

20
25

 4
:3

2:
54

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
How well do var
Department of Chemical & Materials Engine

Cruces, New Mexico, 88003-8001, USA. E-m

† Electronic supplementary information
containing: (1) Proof the QDR scheme pr
traceless quadrupole moments, (2) math
matrix for DR is well-conditioned and has
mathematical proof that the coefficient m
has eight or fewer distinct eigenvalues, (4)
to compute the QDR charges, (5) supplem
raincloud plots. A 7-zip archive containing
each geometry in the training and validat
the electrostatic potential RMSE and RRM
lists of the atomic charges computed usin
for each geometry in the training and v
parameters and atom-in-material dipole

Cite this: RSC Adv., 2025, 15, 23223

Received 6th November 2024
Accepted 2nd June 2025

DOI: 10.1039/d4ra07900k

rsc.li/rsc-advances

© 2025 The Author(s). Published by
ious QM-derived net atomic
charges reproduce the electrostatic potential
surrounding a material across multiple geometric
conformations?†

Alma Carolina Escobosa and Thomas A. Manz *

Atom-centered point-chargemodels are computationally efficient and commonly used electrostaticmodels to

build forcefields used in classical simulations of materials. To assess their performance, we evaluated various

atomic charge assignment methods across the following material types: (a) organic molecules, (b) inorganic

molecules, (c) heterodiatomic molecules, (d) transition metal complexes, and (e) nanoporous crystals. We

compared 12 atomic charge assignment methods for molecular systems and 6 for nanoporous crystals. In

this article, we introduce a computationally efficient quadrupole-dipole-resorption (QDR) method that

improves the accuracy of stockholder-partitioning models (e.g., DDEC6) for approximately reproducing the

electrostatic potential and molecular dipole and quadrupole moments. For each electrostatic model, we

computed the electrostatic potential's root-mean-squared error (RMSE) and relative RMSE (RRMSE) using the

material's QM-computed electrostatic potential as a reference. The electrostatic RMSE and RRMSE were

computed for a training dataset containing 21 geometric conformations per material and a validation dataset

containing 20 new geometric conformations per material. Raincloud plots were prepared to visualize the

resulting data distributions. For each charge assignment method in the nonperiodic materials, we also

computed and compared the root-mean-squared charge transfer magnitude, correlations to other charge

assignment methods, conformational sensitivity, etc. Among point-charge models, multiframe ESP methods

provided the best overall accuracy for reproducing the electrostatic potential across different system

conformations, but they require a training set containing many geometric conformations. The QDR-DDEC6

and CM5 methods provided good conformational transferability and electrostatic potential accuracy across

various conformations even when trained only on a single optimized ground-state geometry. A Pareto plot

was prepared illustrating the tradeoff between conformational sensitivity and accuracy for reproducing the

electrostatic potential of individual conformations. Including atomic dipoles (e.g., QDR-DDEC6_ad,

DDEC6_ad, and MBIS_ad) greatly improved the electrostatic model for individual conformations, and QDR-

DDEC6_ad outperformed all atom-centered point-charge models. We recommend that more

computationally efficient methods be developed to use electrostatic models containing atom-centered

point charges plus atomic dipoles in flexible forcefields. Finally, some electron-density partitioning

approaches have the key advantage of providing accurate results even when applied to dense solids under

high pressures, and we demonstrated this using 11 sodium chloride crystals having various stoichiometries.
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1. Introduction

Nonreactive exible forceelds allow changes in bond lengths,
bond angles, and dihedral values without forming any new
chemical bonds or breaking any existing chemical bonds;
however, a bond's length may be allowed to stretch to innity.1–5

In general, such nonreactive exible forceelds contain both
bonded interactions and nonbonded interactions.6,7 Bonded
interactions typically include bond stretches, angle bends,
dihedral torsions, etc.6–11 Nonbonded interactions typically
include electrostatic interactions,12–16 short-range repulsion,17–19

and uctuating multipole dispersion20–23 interactions. These
classical forceelds may be either polarizable or
nonpolarizable.24–28

A key challenge is to build electrostatic models that are
computationally efficient, easy to parameterize, and accurate
across multiple geometric conformations of the material. The
following questions should be considered when developing
electrostatic models for exible forceelds:

(1) How accurately does the classical electrostatic model
reproduce the quantum-mechanically (QM) computed electro-
static potential surrounding the material across multiple
conformations?14,19,29,30

(2) Do the assigned atom-in-material electrostatic descrip-
tors (e.g., atomic charges, atomic dipoles, etc.) accurately
quantify the chemical states of atoms in the material?30–36

(3) How easy is it to construct and parameterize the classical
electrostatic model? How much intellectual manual human
labor and computer resources (i.e., computational time and
memory) are required to construct and parameterize the clas-
sical electrostatic model?

(4) Is the electrostatic model computationally cheap to use?
Low computational cost is desirable to allow classical molecular
dynamics (MD) and Monte Carlo simulations to sample more
system congurations and larger (i.e., containingmore atoms in
the simulation box) systems.

(5) Does the method work reliably across diverse material
types?31–33,37,38 The following are worth considering: (i) Does the
method work well for both surface atoms and buried atoms? (ii)
Does the method work well for both non-periodic (e.g., molec-
ular) and periodic (e.g., crystalline) materials? (iii) Does the
method work well for all of the naturally occurring chemical
elements? (iv) Does the method work well for ionic, covalent,
and polar-covalent materials and for electrically conducting,
semiconducting, and insulating materials?

(6) Does the classical forceeld include polarization effects
explicitly, implicitly, or not at all? To achieve reasonable accu-
racy, the electrostatic model (including atomic charge values)
must be appropriately chosen to avoid over-counting or under-
counting the polarization effects.13,39

Electron density partitioning approaches have key advan-
tages compared to other approaches to computing atom-in-
material charges. By partitioning the material's total electron
density distribution, r½~r�, among atoms in the material:

r½~r� ¼
X
B;‘

rB½~r� (1)
23224 | RSC Adv., 2025, 15, 23223–23265
the electrostatic potential surrounding the material can be
expressed exactly as the sum of a polyatomic multipole expan-
sion and a polyatomic charge penetration expansion.32,40 In eqn
(1), the sum over B; ‘ means summing over all atoms {B} in the
reference unit cell and their periodic images (if any). The
multipole expansion of each atom in the material is determined
by its net charge and its multipole moments: net atomic charge
(i.e., the monopole moment), atomic dipole, atomic quadru-
pole, atomic octupole, atomic hexadecapole, etc.41–43 The charge
penetration expansion for each atom in the material comprises
its spherically-averaged (aka ‘spherical’) cloud penetration plus
non-spherical contributions of various orders.17,44–48

The quantum theory of atoms in molecules (QTAIM) parti-
tions the material's electron density into non-overlapping
compartments.49,50 Because its assigned atoms in materials
are not approximately spherically symmetric, the QTAIM
approach requires including atomic multipoles up to at least
quadrupole order to approximately reproduce the electrostatic
potential surrounding a material.42,51–53 For this reason, QTAIM
net atomic charges are generally not considered to be viable
candidates for atom-centered point-charge-only electrostatic
models.14,30

Stockholder approaches partition a material's electron
density into overlapping atoms.31,43,54–57 To be useful for con-
structing atom-centered point-charge-only electrostatic models
for classical forceelds, a stockholder partitioning scheme
should be dened to optimize the assigned atom-in-material
electron density distributions to be approximately spherically
symmetric.34,43,57,58

Besides enabling a formally exact expansion of the electro-
static potential surrounding a material, some electron density
partitioning approaches allow a host of other key properties to
be computed.14,17–19,43,49,50,55,56,59–64 Density-derived electrostatic
and chemical (DDEC) approaches can be used to compute
atom-in-material polarizabilities, dispersion coefficients,
quantum Drude oscillator parameters, electron cloud parame-
ters controlling short-range repulsion and charge penetration
interactions, exponents for the Morse and Manz stretch
potentials, and key chemical properties including bond orders
and atomic spin moments.7,20,21,31,32,37,38,65

Is it possible to reproduce the polyatomic multipole expan-
sion correctly up to quadrupole order using only atom-centered
point charges (i.e., monopoles) with all atomic dipoles and
atomic quadrupoles set to zero in the electrostatic model? It can
easily be shown this is not always possible. As a simple example,
homodiatomic molecules such as H2, O2, N2, etc. have a non-
zero quadrupole moment.66 Because the net charge is zero
and the two atoms are equivalent, the assigned net atomic
charge must be zero in these homodiatomics; consequently, the
resulting atom-centered point charge yields both a zero
molecular dipole moment and a zero molecular quadrupole
moment. The homodiatomic's non-negligible quadrupole
moment can be modeled using either an added off-site charge
(i.e., an added point charge placed at a non-nuclear position) or
by atom-centered dipoles or by a bond-centered quadrupole.
For example, a charge of −q could be placed at the bond's
midpoint and a charge of q/2 could be placed at each atom's
© 2025 The Author(s). Published by the Royal Society of Chemistry
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nuclear position to reproduce the homodiatomic's molecular
quadrupole moment and net charge.66

This implies tradeoffs between the accuracy and the
complexity of electrostatic models for constructing exible
forceelds. On the one hand, simple electrostatic models
comprised of atom-centered point charges are desirable,
because they are computationally fast. On the other hand,
electrostatic models that correctly reproduce the local values of
the electrostatic potential surrounding the material up to
quadrupolar order are desirable based on accuracy consider-
ations. Unfortunately, these two targets cannot generally be
satised simultaneously. Specically, if one restricts the elec-
trostatic model to atom-centered point charges, then there are
systems (e.g., homodiatomic molecules) for which this restric-
tion precludes reproducing the electrostatic potential accurately
at quadrupolar order. Thus, one is generally forced to choose
between atom-centered point-charge models that do not ach-
ieve quadrupolar accuracy and more complicated electrostatic
models that achieve quadrupolar accuracy by including off-site
charges13,39,66,67 or atomic multipoles3,40,42,43 or bond multipoles.

This manuscript compares and evaluates the suitability of
several different methods to assign QM-derived atomic charges
to construct electrostatic models using atom-centered point
charges across multiple conformations of materials. This work
is one of the most extensive comparisons of its type to date. The
following particular aspects of this manuscript constitute
a signicant scientic advance over previous literature:

� We include an extremely diverse collection of materials in
our test sets: organic molecules, inorganic molecules, hetero-
diatomic molecules, transition metal complexes, and nano-
porous crystals. Moreover we selected diverse materials within
each of these ve test sets. In the nanoporous solids test set we
included metal–organic frameworks, a zeolite, a nanotube,
a metal–inorganic framework, a covalent organic framework,
and aluminum phosphate crystal structures. In the organic
molecules test set, we included representatives from more than
30 different classes of organic compounds. Elements were
included from across the periodic table. We included covalent,
polar-covalent, and ionic materials.

� For the larger materials, we included some functional
groups that are rotatable leading to multiple conformers. Our
training and validation datasets for these materials included
various conformers. In addition to the ground-state (optimized)
geometry, the training datasets included non-equilibrium
structures generated using ab initio molecular dynamics
(AIMD) calculations or conformation sampling. The validation
datasets included geometries from new AIMD runs or confor-
mation sampling that were separate from those used to
generate the training datasets. This ensured that various
congurations of each material were effectively sampled and
tested.

� We tested a variety of different QM-derived charge
assignment methods. For the non-periodic materials (i.e.,
molecules), we even included several multiframe approaches
(e.g., multiframe MK, multiframe CHELPG, and multiframe
RESP) for which the charges were optimized to simultaneously
minimize the root-mean-squared error (RMSE) of the
© 2025 The Author(s). Published by the Royal Society of Chemistry
electrostatic potential over the valid grid points across multiple
geometries (aka ‘frames’) of the material.

� For each material, we evaluated three different sets of
atomic charges for the non-multiframe charge assignment
methods: charges specic to each geometric conguration,
charges averaged over all geometric congurations, and charges
from the optimized ground-state geometry.

� For the DDEC6 and MBIS methods, we also quantied the
effects of including atomic dipoles and/or spherical electron
cloud penetration potentials.

� For stockholder electron-density partitioning approaches
such as DDEC6, we introduce a new method to partly resorb the
atom-in-material quadrupole and dipole moments into the
atom-centered point charges to improve the accuracy of atom-
centered point-charge models derived using stockholder parti-
tioning. The new QDR-DDEC6 charges achieve a near-optimum
combination of electrostatic accuracy and conformational
transferability.

� Our data analysis goes beyond averages, medians, and
standard deviations by including full raincloud plots of the
electrostatic RMSE and RRMSE data. This claries the behavior
of outliers, which are discussed in detail.

� In a manner analogous to ref. 14, we use Pareto plots to
analyze trade-offs between accuracy for reproducing the elec-
trostatic potential of individual molecular conformations and
changes in the assigned atomic charge values across molecular
conformations. In a manner analogous to ref. 35, 36 and 68, we
statistically analyze correlations between various charge
assignment schemes to identify the most conuent36 approach.
2. New quadrupole-dipole-resorbed
density-derived electrostatic and
chemical (QDR-DDEC) charges
2.1 Motivation

We begin with the parable of the robot golfers as a useful
analogy to better understand the history of methods that assign
QM-derived atomic charges in chemical systems to parame-
terize atom-centered point-charge models for constructing
classical forceelds. In this parable, the task is to design a robot
that excels at playing golf. In this hypothetical game of golf, the
robots compete not to get the golf ball into the hole in the fewest
number of strokes, but rather to see which robot can get the golf
ball closest to the hole regardless of the number of strokes
taken. As described in Section 3.3 below, the accuracy of
a parameterized atom-centered point-charge model is quanti-
ed by how closely it reproduces the QM-computed electrostatic
potential surrounding thematerial. This is analogous to how far
the golf ball ends up away from the target hole. This kind of
scoring is necessary, because it is usually not possible to make
the atom-centered point-charge model's electrostatic potential
exactly match the QM-computed electrostatic potential. In this
analogy, the different holes within the same golf course repre-
sent different geometric congurations of the same bonded
cluster (i.e., molecule, nanostructure, or chemical specie), while
different golf courses represent different chemical species.
RSC Adv., 2025, 15, 23223–23265 | 23225
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Since we want to use the same forceeld parameters to describe
all of the molecule's congurations, we seek a solution that also
maximizes conformational transferability of the assigned
atomic charge values.

The earliest robot prototypes that are built may not be
sophisticated or rened. At rst, progress could be achieved by
building a robot prototype that can hit the golf ball perhaps
with little control over the specic direction or distance of the
golf ball's trajectory. This is analogous to the earliest atomic
population analysis methods which lacked a complete basis set
limit, such as Mulliken69 population analysis introduced in
1955 and Lowdin70–72 population analysis. The explicit basis set
dependence of these population analyses methods could be
likened to the robot hitting the golf ball too hard (causing the
golf ball to travel too far of a distance) when the robot's battery
is freshly charged and hitting the golf ball too soly (causing the
golf ball to travel too short of a distance) when the robot's
battery is wearing down. Although these results are reproduc-
ible, they are far from desirable.

In the 1970's, Bader73 and Hirshfeld54 developed atomic
population methods that had complete basis set limits. By
analogy, this could be likened to adding a voltage regulator to
the robot so that its battery's output is nearly constant thereby
facilitating more consistent results. Bader population analysis
is also called the quantum theory of atoms in molecules
(QTAIM49,50,61) and forms a subpart of the quantum chemical
topology (QCT42,51,64,74) theoretical framework. Compared to
earlier approaches, QTAIM and Hirshfeld population analysis
more consistently predicted the charge transfer direction
between atoms in a material. This is analogous to the robot
more consistently hitting the golf ball in the general direction of
the hole. However, for purposes of constructing atom-centered
point-charge electrostatic models used in classical forceelds
for molecules, Hirshfeld partitioning typically severely under-
estimates the charge transfer magnitude (analogous to the
robot hitting the golf ball too soly) while QTAIM typically
severely overestimates the charge transfer magnitude (analo-
gous to the robot hitting the golf ball too hard).36,75–77 In fair-
ness, it should be pointed out that Hirshfeld partitioning and
QTAIM were not designed for that purpose. Specically, one
needs to include the atomic multipoles to achieve reasonable
electrostatic potential models using QTAIM.42,51,52

A subsequent major development on this topic came in the
form of electrostatic potential tting (ESP) charges. In the
decades since the late 1970's, a series of protocols were intro-
duced to compute ESP charges.78,79 In this article, for non-
periodic materials (i.e., molecules) we used charges from
electrostatic potentials using a grid (CHELPG),80 Merz–Singh–
Kollman electrostatic potential tting (MK),81,82 and restrained
electrostatic potential tting (RESP).83 For periodic materials,
we used repeating electrostatic potential extracted atomic
(REPEAT)84 and RESP charges. These top-down approaches
empirically optimize the atomic charge values to closely repro-
duce the QM-computed electrostatic potential surrounding
a material. In other words, the atomic charge values are opti-
mized based on the material's geometry and the target QM-
computed electrostatic potential (a top-down approach) rather
23226 | RSC Adv., 2025, 15, 23223–23265
than partitioning the material's QM-computed electron-density
distribution r½~r� (a bottom-up approach). In the robot golfer
analogy, this optimization process is akin to having the robot
make empirical adjustments based on trial-and-error ‘practice’
shots without any underlying programming of Newton's laws of
motion. For example, if the ‘practice’ shot falls short of the hole,
the robot has programming that redoes the shot from the
starting tee using a larger force or a different club to hit the golf
ball. In this way, the robot eventually optimizes the shot so that
the ball lands close to the target hole. An advantage of this top-
down optimization approach is that it gets the ball close to the
hole regardless of the wind conditions and Coriolis force.

Single-frame ESP methods optimize the ESP charges for an
individual geometric conguration of the bonded cluster. In
this analogy, the robot golfer uses the top-down trial-and-error
‘practice’ shots to rene the golf swing for an individual hole
on the golf course. When the robot goes to the next hole on the
golf course (i.e., the next geometric conguration of the mole-
cule), it retains no information from the previous holes (i.e.,
other geometric congurations of the molecule). Because the
robot golfer starts from scratch every time, this trial-and-error
process has poor transferability. Even if two holes on the golf
course are similar to each other, the robot golfer may eventually
reach dramatically different solutions; for example, using
dramatically different clubs to hit the golf ball in each case. This
is akin to the ESP methods assigning dramatically different
atomic charge values for two different geometric congurations
of the same molecule. In other words, single-frame ESP
methods have poor conformational transferability.83,85

Multiframe ESP methods try to resolve this problem by using
a top-down approach to simultaneously optimize the atomic
charge values across multiple geometric congurations of the
bonded cluster.29 A multiframe ESP method uses the same
atomic charge values across all geometric congurations of the
bonded cluster.29 This is analogous to the robot golfer using the
same golf club for all 18 holes in the golf course and taking
practice swings on all 18 holes before updating the swings to
their nal values on any of the holes.

Except for the two-stage (‘two-stroke’) RESP method, all of
the strategies described above hit the golf ball from the starting
tee to its nal position in one stroke. Several strategies can be
devised in which the robot golfer uses two or more strokes to try
to successively move the ball closer to the hole. The iterative
Hirshfeld76 (IH, introduced in 2007), iterated stockholder
atoms57 (ISA, introduced in 2008), early generations of the
density-derived electrostatic and chemical30,34 (e.g., DDEC/c1,
DDEC/c2, DDEC3), and minimal basis iterative stockholder14

(MBIS, introduced in 2016) methods used successive charge
cycles to iteratively update the electron density partitioning
until some internal self-consistency condition is met. These
approaches were ‘bottom-up’ in the sense that they started with
the material's QM-computed electron density distribution and
then partitioned it into overlapping atoms according to some
dened criterion. This is analogous to the robot golfer using
Newton's laws of motion to predict the golf ball's trajectory and
successively hitting the golf ball in multiple strokes until it
lands where the robot predicts the hole is. In this case, the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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robot's programming is not sophisticated enough to account for
wind speed, wind direction, or the Coriolis force due to Earth's
rotation. So, the golf ball does not end up exactly where the
hole is.

For some materials, ISA partitioning involved an extremely
large number of iterations (e.g., >1000) to reach convergence.34

Since each iteration (aka ‘charge cycle’) can introduce a small
error, these errors can build up to substantial values if the
number of iterations is large. By analogy, if the robot golfer hits
the ball in more than 1000 strokes to reach the predicted
location of the target hole, even a slight miscalibration might
successively build up to a large error over such a large number
of strokes. The IH and early DDEC (e.g., DDEC/c1, DDEC/c2,
DDEC3) methods do not converge to a unique solution in
some materials (i.e., their optimization landscape is not convex
in some materials).30,32

Charge model 5 (CM5) introduced in 2012 is a ‘two-stroke’
method. In CM5, rst a standard Hirshfeld partitioning is
performed, then an empirical correction is added.75 This
empirical correction intends to reproduce reference molecular
dipole moments and was parameterized to a training dataset.75

For a pair of atoms A and B in a material, this CM5 correction
depends on which chemical elements they are and the distance
between them.75 In the robot golfer analogy, the CM5 scheme is
analogous to the robot rst hitting the ball in the general
direction of the hole (using Hirshfeld partitioning) and then
hitting a second stroke that attempts to correct for the average
shortfall (of the Hirshfeld method) and the average wind speed
(i.e., average dipole polarization of the atoms). As shown in
Section 5 below, our computed results showed the CM5method
is highly effective under normal conditions but fails for some
materials at extremely high pressures.

The DDEC6 approach avoids the convergence problems of
early DDEC (e.g., DDEC/c1, DDEC/c2, DDEC3) methods by
optimizing a series of 14 Lagrangians dening seven charge
partitioning steps.37 By limiting the number of charge parti-
tioning steps to seven, this avoids the problem of small errors
building up to large errors over hundreds of charge cycles.32

Amongst methods developed to date, DDEC6 is one of the most
chemically accurate, widely applicable, and conuent charge
partitioning methods.31–33,35–38 In the robot golfer analogy, this is
a ‘seven stroke’ method in which the robot uses Newton's laws
of motion to compute trajectories and successively hits the ball
seven times towards the predicted location of the hole.

As mentioned in the Introduction above, each electron-
density partitioning approach generates a polyatomic multi-
pole expansion that exactly reproduces the QM electrostatic
potential outside of the material's electron density distribution.
In this polyatomic multipole expansion, the rst term is due to
atom-in-material charges, the second term is due to atom-in-
material dipole moments, the third term is due to atom-in-
material quadrupole moments, and so forth.

By Gauss's law of electrostatics, if each atom in the material
had an exactly spherically-symmetric electron density distribu-
tion, then the atom-centered point-charge model would be exact
and all of the atom-in-material dipole moments and higher-
order multipole moments would be zero. Due to the build-up
© 2025 The Author(s). Published by the Royal Society of Chemistry
of electrons in covalent bonds and other angular distortions
of atoms, it is typically not possible to assign atom-in-material
electron distributions that are exactly spherically symmetric.
Usually, the atom-in-material dipole moments and higher-order
multipole moments can be optimized to be small in magnitude
but not necessarily zero. Even if one were hypothetically able to
construct an electron-density partitioning scheme that deliv-
ered the ‘closest-to-perfect’ or ‘best’ atom-in-material charge
values, each of the assigned atom-in-material dipole moments
would not be zero for such a scheme in some materials.

Accordingly, if we construct an atom-centered point-charge
electrostatic model by truncating the polyatomic multipole
expansion at monopole order and discarding all of the terms
due to atom-in-material dipoles and higher-order multipoles,
this would introduce a truncation error even for the hypothet-
ically ‘closest-to-perfect’ or ‘best’ electron-density partitioning
method. Returning to the analogy of the robot golfer, the atom-
in-material charges are analogous to computing the ball's
trajectory in the absence of wind and in the absence of the
Coriolis force due to the Earth's rotation, while the atom-in-
material dipole moments and higher-order multipole
moments account for these effects. If the robot aims the ball
‘perfectly’ or ‘directly’ at the hole, then it will actually not land
in the hole, because the wind and Coriolis force will blow it off
course. So, to make the ball land as close to the hole as feasible,
it must actually be hit towards a direction beside the hole so the
wind and Coriolis force will blow it sideways towards the hole
during ight.

This implies a strategy for constructing atom-centered point-
charge models in which one starts with atom-in-material charge
values that are derived from a chemically-accurate electron-
density partitioning approach (such as DDEC6) and then adds
an adjustment for the discarded atom-in-material multipole
moments. Most importantly, this does not imply that the
starting atom-in-material charge values are chemically inaccu-
rate, because such an adjustment would still be required for the
hypothetically ‘closest-to-perfect’ or ‘best’ electron-density par-
titioning method that delivers chemically-accurate net atomic
charge values. For this reason, we believe it is not appropriate to
claim such an adjustment ‘corrects’ the net atomic charge
values, but rather to state that part of the discarded atom-in-
material dipole and quadrupole moments have been ‘resor-
bed’ into the atom-centered point-charge values. This is not
intended to make the atom-in-material charges ‘more chemi-
cally accurate’ but rather to recover some of the electrostatic
potential accuracy lost by not explicitly including the atom-in-
material multipole moments—a subtle but critically impor-
tant distinction.

The atomic dipole corrected Hirshfeld (ADCH)method starts
with the Hirshfeld atom-in-material charges and then adds
atom-centered point-charge corrections to account for discard-
ing the Hirshfeld-assigned atom-in-material dipoles.86 Two
aspects of the ADCH method are notable. First, since the
Hirshfeld method systematically underestimates charge trans-
fer magnitudes, these atomic dipole corrections are oen large.
Second, the linear equation system dening the ADCH charges
can have an ill-conditioned coefficients matrix,86,87 which makes
RSC Adv., 2025, 15, 23223–23265 | 23227
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the ADCH charge values extremely sensitive to changes in the
molecule's conformation in some cases.

As shown in the following sections, we solved these two
problems as follows. To solve the rst problem, we start with
a more chemically accurate stockholder partitioning method
(e.g., DDEC6) instead of Hirshfeld partitioning. To solve the
second problem, we introduce a new optimization scheme that
always yields a linear equation system having a well-
conditioned coefficients matrix. In addition to solving those
two problems, our new approach also has the advantage of
partly resorbing both the atom-in-material quadrupole
moments and atom-in-material dipole moments into the atom-
in-material charge values in a way that optimizes conforma-
tional transferability.

2.2 Denition via optimization function

2.2.1 System notation and input information. Here, we use
a capital letter (e.g., A) to denote an atom in the reference unit
cell and a lowercase letter (e.g., b) to denote a translated image
of an atom (due to periodic boundary conditions, if any). Let
b be an atom image in the material whose nuclear position is

~Rb ¼ ~RB þ ‘1~v1 þ ‘2~v2 þ ‘3~v3 (2)

where~RB is the nuclear position of atom B in the reference unit
cell. The system can have 0, 1, 2, or 3 periodic boundary
conditions, with ð~v1; ~v2; ~v3Þ being the corresponding periodic
lattice vectors (if any). The translation indices of image b are the
integers ð‘1; ‘2; ‘3Þ. For a direction without periodic boundary
conditions, ‘i ¼ 0. For a direction with periodic boundary
conditions, ‘i is an integer between minus innity and plus
innity. The translation images ð‘1; ‘2; ‘3Þ ¼ ð0; 0; 0Þ corre-
spond to atom images in the reference unit cell. The vector,
distance, and direction from atom A to image b are

~RAb ¼ ~Rb � ~RA (3)

RAb ¼ k~RAbk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~RAb$~RAb

q
(4)

R̂Ab ¼ ~RAb

.
k~RAbk

~RA is the nuclear position of atom A, and

~rA ¼~r� ~RA (5)

is the relative position of grid point~r. The vector from position~r
to image b is:

~rb ¼~r� ~Rb (6)

and rb is the corresponding distance.
Our quadrupole-dipole-resorption (QDR) charge scheme

starts with the set of net atomic charges ({qA}), atom-in-material
dipole moments ðf~mAgÞ, traceless atom-in-material quadrupole
moments, and overlap populations ({OPAb}) computed via
a stockholder54 electron-density partitioning approach:

rA½~rA� ¼
wA½~rA�
W ½~r� r½~r� (7)
23228 | RSC Adv., 2025, 15, 23223–23265
W ½~r� ¼
X
B;‘

wB½~rb� (8)

qA ¼ ℤA �NA (9)

NA ¼
þ
rA½~rA�d3~r ¼

þ
wA½~rA�
W ½~r� r½~r�d3~r (10)

~mA ¼ �
þ
~rArA½~rA�d3~r (11)

OPAb ¼ 2

þ
rA½~rA�rB½~rb�

r½~r� d3~r ¼ 2

þ
wA½~rA�wB½~rb�

ðW ½~r�Þ2 r½~r�d3~r (12)

ℤA is the atomic number of atom A. The summed overlap
population (SOP) for atom A

SOPA ¼
X
b

OPAb ¼ 2

þ
wA½~rA�ðW ½~r� � wA½~rA�Þ

ðW ½~r�Þ2 r½~r�d3~r (13)

Since

2

þ
wA½~rA�ðW ½~r� � wA½~rA�Þ

ðW ½~r�Þ2 r½~r�d3~r\2

þ
wA½~rA�
W ½~r� r½~r�d3~r (14)

SOPA is clearly bounded by

0 # SOPA < 2NA (15)

The atom-in-material traceless quadrupole moment tensors
were computed as

~~QA ¼ �
þ �

~rA~rA � ðrAÞ2~~d
�

3

�
rA½~rA�d3~r (16)

where~~d is the identity tensor. In the literature, several different
conventions are in use for dening the traceless quadrupole
moments. For example, the Buckingham88 convention uses

~~Q
Buckingham

A ¼ 1:5
~~QA (17)

We used the ~~QA convention of eqn (16), because it is also the
denition used by the Gaussian16 (ref. 89) program. Mul-
tiwfn90,91 used the Buckingham convention.

While any stockholder partitioning scheme could be used as
inputs, for best results a chemically accurate and broadly
applicable stockholder partitioning scheme (such as DDEC6)
should be chosen.

2.2.2 Resorption scheme that preserves net charge, dipole
moment, and quadrupole moment. As stated in the Introduc-
tion, electron-density partitioning methods yield polyatomic
multipole expansions that exactly reproduce the electrostatic
potential outside the material's electron density distribution. In
a system with multiple expansion sites, the polyatomic multi-
pole expansion of the electrostatic potential can be re-written in
different ways that are equivalent up to some nite order. In this
work, we introduce polyatomic multipole re-expansions that
shi electric charge and dipole moments between adjacent
expansion sites (e.g., atom A and an adjacent image b) in a way
that leaves all of the following unchanged: (i) the system's net
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Top panel: A pairwise dipole resorption scheme that preserves
the net charge, the total dipole moment, and the total traceless
quadrupole moment expanded about any specific origin. In this panel,
‘full resorption’ means the projection of ð~mA þ~mBÞ onto the Ab bond
direction, R̂Ab, is completely resorbed onto the atom-centered
charges q

0
A and q

0
B of the two atoms. General formulas applying to any

qAb and qBa values are listed in the ‘partial resorption’ column. Bottom
panel: A pairwise quadrupole resorption scheme that preserves the net
charge, the total dipole moment, and the total traceless quadrupole
moment expanded about any specific origin. In this panel, ‘full
resorption’ means the projections of ~~QA and ~~QB onto the Ab bond
direction, R̂Ab, are completely resorbed onto the atom-centered
charges and atom-centered dipole moments of the two atoms: q

0
A, q

0
B,

~m
0
A, and ~m

0
B. General formulas applying to any qAb and qBa values are

listed in the ‘partial resorption’ column.
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charge, (ii) the system's total dipole moment vector, and (iii) the
system's overall traceless quadrupole moment tensor.

This will be true regardless of which particular position is
chosen as the coordinate system's origin for the purpose of
computing the system's overall multipole moments. However,
values of the system's overall non-leading multipole moments
can depend on the origin's choice. For example, if a molecule
has a non-zero molecular dipole moment, the value of the
molecule's overall traceless quadrupole moment tensor
depends on the choice of origin. We seek re-expansions such
that when keeping the coordinate system's origin xed (i.e.,
unchanged), the original polyatomic multipole expansion and
its re-expansion yield the same values for the system's overall
charge, dipole moment vector, and traceless quadrupole
moment tensor.

We specically seek polyatomic multipole re-expansions that
satisfy the following design criteria:

(a) The re-expansions will be designed so that the sum of
residual atom-in-material dipole moment vectors and sum of
residual atom-in-material quadrupole moment tensors are
approximately zero to the extent feasible within limitations
imposed by the system's geometry. This design criteria intends
to maximize the accuracy of the associated atom-centered point-
charge model for approximately reproducing the system's total
dipole moment vector and overall traceless quadrupole
moment tensor.

(b) The re-expansions will achieve excellent conformational
transferability by conning the re-expansion changes to nearby
(e.g., rst-neighbor and second-neighbor) atoms. These local
changes will be designed to preserve the local net charge, local
dipole moment vector, and local traceless quadrupole moment
tensor.

(c) The re-expansions will minimize some well-chosen loss
functions that are convex (i.e., have a unique minimum) and
that are computationally easy to solve.

(d) The re-expansions will optimize the assigned QDR atomic
charge values to approximately equal chemically-relevant
stockholder-partitioned (e.g., DDEC6) net atomic charge values.

(e) More oen than not, the re-expansions will reduce the
average magnitudes of atom-in-material quadrupole and dipole
moments. This design criteria intends to maximize the accuracy
of the associated atom-centered point-charge model for
approximately reproducing the electrostatic potential
surrounding the material.

Fig. 1 illustrates pairwise atom-in-material dipole and
quadrupole moment resorption between an atom A and
a nearby atom image b. The illustrated scheme always preserves
the net charge, the total dipole moment, and the overall trace-
less quadrupole moment expanded about any choice of origin.
The overall traceless quadrupole moment expanded about site 1
(e.g., atom A), the overall traceless quadrupole moment
expanded about site 2 (e.g., image b), and the overall traceless
quadrupole moment expanded about the Ab midpoint have the
same values aer resorption as before resorption. As described
in the following subsections, this pairwise resorption scheme
can be readily extended to systems containing many atoms.
Since changes are performed within pairwise adjacent atoms,
© 2025 The Author(s). Published by the Royal Society of Chemistry
such an approach is easy to implement and localizes the
resorption changes.

2.2.3 Loss function and linear equation system for
resorbing atom-in-material dipole moments. In the dipole
resorption (DR) charge scheme, electric charge is moved
between two atoms such that the charge qAb is moved from
image b to atom A. This adjusts the atomic charge of atom A by
RSC Adv., 2025, 15, 23223–23265 | 23229
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qAb and that of atom image b by −qAb. This process does not
change the system's net charge. Following DR, the ‘new’ atomic
charge for atom A is

qDR
A ¼ qA þ

X
b

qAb �
X
B

qBa (18)

The charge shi qAb generates a dipole moment of

D~m½qAb� ¼ �qAb
~RAb (19)

To preserve the quadrupole moment value, half of D~mAb is
assigned atom A while the other half is assigned to atom image
b (see Fig. 1). Accordingly, the ‘new’ atomic dipole vector~mDR

A for
atom A satises the relationship

~mDR
A þ 1

2
D~m½qAb� þ 1

2
D~m½qBa� ¼ ~mA (20)

Substituting eqn (19) into (20) and rearranging gives:

~mDR
A ¼ ~mA þ 1

2

X
b

qAb
~RAb � 1

2

X
B

qBa~RAb (21)

During DR, the traceless atomic quadrupole moment tensor
~~QA is le unchanged.

The optimal solution is dened by minimizing the following
loss function:

LDR ¼
XNatoms

A¼1

X
b

�
qAbRAb

2tanh½2OPAb�
�2

þ
XNatoms

A¼1

k~mA þ
X
b

qAb
~RAbk2

(22)

where Natoms is the number of atoms in the reference unit cell.
The rst term in eqn (22) ensures that qAb/ 0 as OPAb/ 0; this
turns off qAb for atoms that are far away from each other. The
second term in eqn (22) minimizes the squared magnitude of
the unresorbed part of ~mA:

XNatoms

A¼1

k~mA �
X
b

D~m½qAb�k2 ¼
XNatoms

A¼1

k~mA þ
X
b

qAb
~RAbk2 (23)

The rst term in eqn (22) was derived as follows. To mini-
mize the sensitivity of the DR charges to conformational
changes of a material and also to minimize the deviations of DR
charges from the parent (stockholder) charges, the loss function
should contain a rst term of the form

XNatoms

A¼1

X
b

ðSomethingAbqAbÞ2 (24)

To make the unit dimensions of the rst and second terms of
the loss function compatible, SomethingAB must have units of
length. For a diatomic molecule AB, using eqn (24) and (23) as
the rst and second terms in a loss function gives the optimal
solution

qAb ¼ �~mA$~RAb

ðRAbÞ2 þ ðSomethingAbÞ2
(25)

Since SomethingAb must have units of length, it is most
convenient to dene it as proportional to RAb, so that RAb can be
23230 | RSC Adv., 2025, 15, 23223–23265
factored out of the sum in the denominator of eqn (25).
SomethingAb should be dened to effectively localize the DR
correction to 1st-neighbor atoms that directly share a chemical
bond. This can be accomplished by setting

SomethingAb ¼
RAb

2tanh½2OPAb� (26)

When OPAb = 1
2 the bond order (BOAb) computed via Manz's

comprehensive bond order equation38 is signicantly larger
than 1

2 and signicantly smaller than 1. Examining eqn (25) and
(26), the fraction of~mA recovered for a heterodiatomic molecule
in the absence of externally-applied elds 0.699 = 69.9% for
OPAb = 0.5, 0.788 = 78.8% for OPAb = 1, 0.135 = 13.5% for OPAb
= 0.1, 0.0016 = 0.16% for OPAb = 0.01, 1.6 × 10−5 = 1.6 ×

10−3% for OPAb = 0.001, etc.
The partial derivative is

vLDR

vqAb

¼ 2qAb

�
RAb

2tanh½2OPAb�
�2

þ 2~mA$~RAb

þ 2~RAb$

 X
d

qAd
~RAd

!
(27)

The minimum of the loss function occurs when

vLDR

vqAb

¼ 0 (28)

Combining eqn (27) and (28) gives the linear equation
system:

MY = T (29)

T is a column vector containing the elements

TAb ¼ �2tanh½2OPAb�
�
~mA$R̂Ab

�
(30)

Y is a column vector containing the elements

YCd ¼ RCdqCd

2tanh½2OPCd� (31)

M is a symmetric matrix containing the diagonal elements

MAb,Ab = 1 + (2 tanh[2OPAb])
2 (32)

and the off-diagonal elements

MAb,CdsAb = dA,C(2 tanh[2OPAb])(2 tanh[2OPCd])(R̂Ab$R̂Cd) (33)

dA,C is the Kronecker delta:

dA;C ¼
(
1 if C ¼ A

0 if CsA
(34)

In a periodic material, the atom images b and b0 refer to two
different translations of the parent atom B, and this gives rise to
the distinct pairs Ab and Ab0, respectively, which occupy
© 2025 The Author(s). Published by the Royal Society of Chemistry
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different elements (locations) in T, Y, and M. Hence, MAb,Ab0 is
an off-diagonal element governed by eqn (33).

In eqn (22), the summation occurs over all images b that are
within the sum of density cutoff radii for the two atoms (i.e., 10
Å = rcutoffA + rcutoffB , which was used in this work) or that have
OPAb greater than a threshold (e.g., 10−4) (atom image pairs
having RAb > rcutoffA + rcutoffB have OPAb = 0 (ref. 37 and 38)). The
computed results are not sensitive to the precise value of this
threshold. For extremely small OPAb, qAb becomes proportional
to (2 tanh[2OPAb])

2, and this makes (qAbRAb)
2/(2 tanh[2OPAb])

2

also proportional to (2 tanh[2OPAb])
2. Thus, we are simply

omitting from the sum terms that are extremely close to zero
when OPAb < threshold. If a nontrivially translated image a0 of
atom A has an overlap population with its parent atom in the
reference unit cell greater than or equal to the cutoff threshold
(i.e., OPAa0 $ threshold) or is within the cutoff distance (i.e., 10
Å), then this pair appears within the sum of eqn (22). This same
set of atom image pairs is used to construct the vectors T and Y
and the matrix M in eqn (30)–(32).

Because of the dA,C term in eqn (33), the matrix M has a block
diagonal structure. Let M(A), T(A), and Y(A) represent the blocks of
matrixM and sections of vectors T and Y corresponding to atom A:

M(A)
b,d = MAb,Ad (35)

Y(A)
d = YAd (36)

T(A)
b = TAb (37)

Using this block structure, the loss function dened by eqn (22)
can be rewritten in matrix form as

LDR ¼
XNatoms

A¼1

��
Y ðAÞ	TMðAÞY ðAÞ � 2

�
Y ðAÞ	TT ðAÞ þ ðmAÞ2

�
(38)

where superscript T denotes the vector's transpose, and

mA ¼ k~mAk (39)

The loss function's variational rst derivative expands as

dLDR ¼
XNatoms

A¼1

�
2
�
dY ðAÞ	TMðAÞY ðAÞ � 2

�
dY ðAÞ	TT ðAÞ

�
(40)

Collecting terms, clearly the solution dLDR = 0 is reached when
the following linear equation system

MðAÞY ðAÞ ¼ T ðAÞ;
X
d

M
ðAÞ
b;d Y

ðAÞ
d ¼ T

ðAÞ
b (41)

is satised for all atoms A in the reference unit cell, where the
summation runs over all atom images that have OPAd >
threshold or are within the cutoff radius sum as described
above.

The loss function's variational second derivative expands as

d2LDR ¼
XNatoms

A¼1

�
2
�
dY ðAÞ	TMðAÞdY ðAÞ

�
(42)

Using the denition of matrix M in eqn (32), (33), and (35), this
can be rewritten as
© 2025 The Author(s). Published by the Royal Society of Chemistry
d2LDR ¼ 2
XNatoms

A¼1

 X
b

�
dY

ðAÞ
b

�2
þ
�
~G

ðAÞ
$~G

ðAÞ�!
(43)

where the vector ~G
ðAÞ

is dened as

~G
ðAÞ ¼

X
b

�
dY

ðAÞ
b ð2 tanh½2OPAb�ÞR̂Ab

�
(44)

The dot product of a vector with itself is non-negative:X
b

�
dY

ðAÞ
b

�2
$ 0 (45)

~G
ðAÞ

$~G
ðAÞ

$ 0 (46)

Therefore, it directly follows from eqn (43) that for any nonzero
variation of the independent variables, dY(A)b s 0, d2LDR is
positive denite:

d2LDR > 0 (47)

Accordingly, the loss function LDR is convex, has positive
curvature, and has a unique minimum.

ESI Section S2† proves that M(A) has at most four distinct
eigenvalues {li}. All of these eigenvalues are within the range

1 # lmin # li # lmax # (1 + 16(SOPA)
2) (48)

As shown in eqn (15), SOPA can never be a huge number. This
proves matrixM(A) can never have a huge condition number (i.e.,
it is always well-conditioned). Since thematrixM(A) is always well-
conditioned, this means the optimization landscape is never
close to at. Thismeans that small changes in the inputs, such as
small changes in the geometric conguration's internal coordi-
nate values (i.e., bond lengths, bond angle values, and dihedral
values) do not cause huge changes in the optimized {qAb} values.

2.2.4 Loss function and linear equation system for
resorbing atom-in-material quadrupole moments. Quadrupole
resorption (QR) proceeds in a manner partly analogous to the
dipole resorption. In the QR charge scheme, electric charge is
moved between two atoms such that the charge qAb is moved
from image b to atom A. This adjusts the atomic charge of atom
A by qAb and that of atom image b by −qAb. This process does
not change the system's net charge. Following QR, the ‘new’
atomic charge for atom A is

qQR
A ¼ qA þ

X
b

qAb �
X
B

qBa (49)

This charge shi qAb generates a dipole moment following
eqn (19). As shown in Fig. 1, to preserve the net dipole moment
a compensating atomic dipole is placed on atom A

D~mQR
Ab ¼ �D~m½qAb� ¼ qAb

~RAb (50)

Following QR, the ‘new’ atomic dipole moment for atom A is

~mQR
A ¼ ~mA þ

X
b

D~mQR
Ab ¼ ~mA þ

X
b

qAb
~RAb (51)
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To preserve the overall quadrupole moment value computed
about atom A's center, the ‘new’ atomic quadrupole moment for
atom A equals its original atomic quadrupole moment minus
the quadrupole moment generated by the charge shi:

~~Q
QR

A ¼ ~~QA þ
X
b

qAb

�
~RAb

~RAb � ðRAbÞ2~~d
�

3

�
(52)

Since the dipole moment ~mQR
A was placed on atom A's center

leaving the atomic dipole on atom image b unchanged, the

changed atomic dipoles do not affect the ~~Q
QR
A value.

The optimal solution is dened by minimizing the following
loss function:

LQR ¼
XNatoms

A¼1

X
b

 
qAbðRAbÞ2

2tanh½2OPAb�

!2

þ
XNatoms

A¼1

~~Q
QR

A :
~~Q

QR

A (53)

where Natoms is the number of atoms in the reference unit cell.
The rst term in eqn (53) ensures that qAb/ 0 as OPAb/ 0; this
turns off qAb for atoms that are far away from each other. The
rst term of LQR is constructed analogously to the rst term of
LDR and for similar reasons, except that LQR has an additional
factor of (RAb)

2 compared to LDR to make the units of the rst
and second termsmatch in each loss function. The second term
in eqn (53) uses the double-dot product to minimize the

squared magnitude of the unresorbed part of ~~QA:

XNatoms

A¼1

~~Q
QR

A :
~~Q

QR

A ¼
XNatoms

A¼1

X3
i¼1

X3
j¼1

��
QQR

A

	
i;j

�2
(54)

Dene

S
ðAÞ
b ¼ qAbðRAbÞ2

2tanh½2OPAb� (55)

This loss function is manifestly convex with positive denite
curvature, because

d2LQR ¼
XNatoms

A¼1

X
b

�
dS

ðAÞ
b

�2
þ
XNatoms

A¼1

d
~~Q

QR

A : d
~~Q

QR

A . 0 (56)

for any nonzero variation in the independent variables, dS(A)b s 0:

XNatoms

A¼1

X
b

�
dS

ðAÞ
b

�2
. 0 (57)

XNatoms

A¼1

d
~~Q

QR

A : d
~~Q

QR

A $ 0 (58)

Hence, LQR has a unique minimum.
The partial derivative is

vLQR

vqAb

¼ 2qAb

ðRAbÞ4
ð2tanh½2OPAb�Þ2

þ 2

�
~RAb

~RAb � ðRAbÞ2~~d
�

3

�

:

 
~~QA þ

X
d

qAd

�
~RAd

~RAd � ðRAdÞ2~~d
�

3

�!
(59)

The minimum of the loss function occurs when
23232 | RSC Adv., 2025, 15, 23223–23265
vLQR

vqAb

¼ 0 (60)

Substituting eqn (59) into (60) and rearranging gives

qAb

ðRAbÞ4
ð2tanh½2OPAb�Þ2

þ
X
d

qAd

�
~RAb

~RAb � ðRAbÞ2~~d
�

3

�

:

�
~RAd

~RAd � ðRAdÞ2~~d
�

3

�
¼ �~~QA :

�
~RAb

~RAb � ðRAbÞ2~~d
�

3

�
(61)

Eqn (61) can be re-written as

S
ðAÞ
b þ

X
d

S
ðAÞ
d ð2tanh½2OPAb�Þð2tanh½2OPAd�Þ

�
R̂AbR̂Ab �~~d

�
3

�

:

�
R̂AdR̂Ad �~~d

�
3

�

¼ �~~QA :

�
R̂AbR̂Ab �~~d

�
3

�
ð2tanh½2OPAb�Þ

(62)

Dene

V
ðAÞ
b ¼ �~~QA :

�
R̂AbR̂Ab �~~d

�
3

�
ð2tanh½2OPAb�Þ

¼ �ð2tanh½2OPAb�Þ
�
R̂Ab$

~~QA$R̂Ab

�
(63)

where use has been made of the fact that ~~QA is traceless. Then
eqn (62) is the linear equation system

C (A)S (A) = V (A) (64)

having a symmetric positive denite coefficients matrix C(A).
The diagonal elements of C(A) are

C(A)
b,b = 1 + (2/3)(2 tanh[2OPAb])

2 (65)

The off-diagonal elements are

C
ðAÞ
b;dsb ¼ ð2tanh½2OPAb�Þð2tanh½2OPAd�Þ

�
R̂AbR̂Ab �~~d

�
3

�

:

�
R̂AdR̂Ad �~~d

�
3

�
(66)

which simplies to

C(A)
b,dsb = (2 tanh[2OPAb])(2 tanh[2OPAd])((R̂Ab$R̂Ad)

2 − 1/3) (67)

As derived in ESI Section S3,† the matrix C(A) has at most
eight distinct eigenvalues. All of these eigenvalues are within
the range

1# lmin # li # lmax\
�
1þ 32

3
ðSOPAÞ2

�
(68)

As shown in eqn (15), SOPA can never be a huge number. This
proves matrix C(A) can never have a huge condition number (i.e.,
it is always well-conditioned). Since the matrix C(A) is always
well-conditioned, this means the optimization landscape is
© 2025 The Author(s). Published by the Royal Society of Chemistry
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never close to at. This means that small changes in the inputs,
such as small changes in the geometric conguration's internal
coordinate values (i.e., bond lengths, bond angle values, and
dihedral values) do not cause huge changes in the optimized
{qAb} values.

2.2.5 Two-pass scheme that maximizes the electrostatic
potential accuracy and conformational transferability. Table 1
summarizes the approximate spatial extent of changes in
atom-in-material charges, dipole, and quadrupole moments.
This approximated spatial extent is based on the observation
that the OPAb values are substantial between rst-neighbors
(i.e., atoms directly sharing a chemical bond) but small
between second-neighbors. Some notable features include the
following.

During QR, the atomic quadrupole moments are adjusted
only on the self atom; changes in atomic quadrupoles do not
propagate to any of the neighboring atoms. No changes in
atomic quadrupole moments occur during DR. Accordingly, any
possible combinations of QR and DR repeated any number of
times will only adjust the atomic quadrupole moments on the
self atoms.

QR affects the atomic dipole moment only on the self atom,
while DR affects the atomic dipole moment on the self atom and
atoms having signicant OPAb, whichmostly corresponds to the
‘1st-neighbors’. QR and DR each affect the atomic charge values
on the self atom and atoms having signicant OPAb, which
mostly corresponds to the ‘1st-neighbors’.

Since QR changes the atomic dipole values but DR does not
affect the atomic quadrupole values, it is strongly preferable to
perform DR aer QR. This QDR ordering allows the atomic
dipole changes generated by QR to be partly resorbed during
DR. Consider the hypothetical situation in which atom A and
image b have zero-valued atomic dipoles but non-zero-valued
atomic quadrupoles. If DR is performed rst followed by QR,
then DR does nothing in this case, but we still end up with
signicant atomic dipoles from the QR. If QR is performed rst
followed by DR, then QR generates some atomic dipole changes,
and these atomic dipole changes can be partly resorbed into the
atomic charge values during DR.

Since the resorbed portion of the atomic quadrupole is
wholly assigned to the self atom (see Fig. 1 and eqn (52)) and not
shared with any other atoms, a single pass of QR normally
dramatically reduces (and almost eliminates) the magnitudes of
the atomic quadrupole moments. In stark contrast, the resor-
bed portion of the atomic dipole is evenly split between the self
atom and the adjacent atom image (see Fig. 1 and eqn (21)).
More oen than not, this results in the average magnitude of
the atomic dipoles decreasing but still leaves substantial atomic
dipole moments on some atoms in the material. Another round
Table 1 The approximate spatial extent of changes in atom-in-material

QR DR QDR

Atomic quadrupoles Self No changes Self
Atomic dipoles Self Self, 1st-neighbors Self, 1st-ne
Atomic charges Self, 1st-neighbors Self, 1st-neighbors Self, 1st-ne

© 2025 The Author(s). Published by the Royal Society of Chemistry
of DR is usually benecial to further reduce the average atomic
dipole magnitudes. Since QDR does not propagate changes any
further than DR does, it is generally desirable to perform
a second QDR pass instead of just a second DR pass. As shown
in Table 1, a portion of the atomic dipole moment changes that
propagated to the 1st-neighbors during the rst QDR pass can
now propagate to the 2nd-neighbors during the second QDR
pass. If a third QDR pass is performed, a portion of these dipole
moment changes could propagate to the 3rd-neighbor atoms.

2-Pass QDR means specically that we begin with the
stockholder (e.g., DDEC6) atom-in-material charges, dipole
moments, quadrupole moments, and overlap populations.
First, we perform QR using these stockholder-computed inputs.
Then, we use the atomic charges, dipole moments, and quad-
rupole moments resulting from this rst QR as the inputs to
perform DR. Then, we use the atomic charges, dipole moments,
and quadrupole moments resulting from this DR as the inputs
to perform QR (for a second time). Then, we use the atomic
charges, dipole moments, and quadrupole moments resulting
from this second QR as the inputs to perform DR (for a second
time). Results of this second DR are the nal results.

When resorbing atomic dipoles and quadrupoles, changes in
the atomic charge values primarily (almost exclusively) propa-
gate to self atoms and 1st-neighbor atoms during each QDR
pass. Consequently, n subsequent passes of QDR allows the
atomic charge changes to signicantly propagate up to nth-
neighbors.

Imagine that various congurations of a polymer molecule
are sampled using molecular dynamics or Monte Carlo simu-
lations in the NVT ensemble (aka canonical ensemble). In ex-
ible materials, the dihedral values of rotatable dihedrals are
typically less stiff than the bond angles, which are typically less
stiff than the bond lengths. During the NVT ensemble simula-
tion, changes in bond lengths and changes in bond angle values
are typically less dramatic than changes in dihedral values. Also,
the bond lengths and bond angles are typically similar amongst
various different conformers of a typical biomolecule (e.g.,
a protein molecule), while some of the dihedral values are
dramatically different. Now, it can be inferred that exactly two
QDR passes are preferred to maximize the accuracy and
conformational transferability of the associated atom-centered
point-charge model for constructing a exible forceeld. Since
a bond angle involves only 1st- and 2nd-neighbor atoms,
keeping the bond lengths and bond angles approximately (but
not necessarily strictly) constant across conformations means 2-
pass QDR has excellent conformational transferability (in this
work, the term ‘dihedral’ means a proper dihedral not an
improper dihedral). Dihedral values for rotatable dihedrals
typically change dramatically across different conformations of
charges, dipole moments, and quadrupole moments

2-Pass QDR 3-Pass QDR

Self Self
ighbors Self, 1st- & 2nd-neighbors Self, 1st-, 2nd-, and 3rd-neighbors
ighbors Self, 1st- & 2nd-neighbors Self, 1st-, 2nd-, and 3rd-neighbors

RSC Adv., 2025, 15, 23223–23265 | 23233
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a exible material (such as a polymer chain), and dihedrals
involve 1st-, 2nd-, and 3rd-neighbor atoms. Since results of 3-
pass QDR depend signicantly on the 3rd-neighbor atoms, it is
more sensitive to the particular dihedral values than 2-pass
QDR. In other words, 3-pass QDR (which affects up to 3rd-
neighbor atomic charge and atomic dipole values) has signi-
cantly higher conformational sensitivity of the resulting atomic
charge and atomic dipole moment values than 2-pass QDR. To
parameterize a exible forceeld, the atom-in-material charge
values used should be representative across various energeti-
cally accessible conformations. Hence, it is preferred to use the
2-pass QDR charge values that are not too sensitive to the
particular dihedral values.

In this work, the QDR-DDEC6 results correspond to 2-pass
QDR that used the DDEC6 stockholder-partitioned inputs.
2.3 Choice of stockholder-partitioning method to use with
the QDR procedure

Which stockholder partitioning method is best suited for use
with QDR? Within this article, the three stockholder electron
density partitioning methods we studied are the DDEC6,
Hirshfeld, and MBIS methods.

What denes the close-to-optimal root-mean-squared (rms)
charge transfer magnitude? Since net atomic charge is directly
experimentally measurable only when the electron density overlap
with adjacent atoms is small (e.g., isolated atoms and the nitrogen
atom in the N@C60 system36), for most systems net atomic charge
is not directly experimentally measurable. In spite of this, the
close-to-optimal rms charge transfer magnitude is objectively
quantiable. Within the present context, the close-to-optimal
values of the atomic charges (for constructing exible force-
elds) would correspond to something close to those obtained
using a multi-frame ESP tting procedure (such as MF-CHELPG,
MF-MK, or MF-RESP) (here, the term ‘close-to-optimal’ means
specically that the optimized atomic charge values should
approximately reproduce the electrostatic potential surrounding
the material across multiple conformations). As shown in Table
11, theMF-MK gave the smallest median RRMSE for the validation
set geometries and also yielded a relatively high summed corre-
lations (to the various charge assignment schemes) of 11.21. This
suggests that those atomic charge values are ‘close-to-optimal’.

As shown in Table 11, the three multi-frame ESP tting
methods had rms charge transfer magnitudes of 0.337 (MF-
MK), 0.335 (MF-RESP), and 0.356 (MF-CHELPG). The rms
charge transfer magnitudes followed the trend: 0.163 (Hirsh-
feld) < 0.335–0.356 (multi-frame ESP) < 0.388 (DDEC6) < 0.448
(MBIS). There is a small amount of ambiguity in the optimal
rms charge transfer magnitude, as demonstrated by the small
range of rms charge transfer magnitudes across various
different multi-frame ESP tting methods. However, the
important point is that the Hirshfeld method's rms charge
transfer magnitude is objectively much smaller than the
optimal range, as has been repeatedly pointed in out in prior
literature for decades.30,34,75–77 Herein, we see that the DDEC6
method's rms charge transfer magnitude is slightly too high
23234 | RSC Adv., 2025, 15, 23223–23265
(i.e., 9–15% higher than the multi-frame ESP tting). The MBIS
method's rms charge magnitude is substantially higher.

In order to maximize chemical transferability and confor-
mational transferability of the assigned atomic charge values,
the QDR method is purposefully designed to make small (not
large) adjustments to the stockholder-partitioned atomic
charge values. Because QDR makes small adjustments to the
atomic charge values, the rms charge transfer magnitude is only
modestly affected by the QDR adjustment to the atomic charge
values. In other words, a stockholder partitioning method that
has substantially too small (cf. too large) of a rms charge
transfer magnitude before the QDR procedure is expected to
still have substantially too small (cf. too large) of a rms charge
transfer magnitude for the post-QDR atomic charge values. For
example, the QDR-DDEC6 method had a rms charge transfer
magnitude of 0.379 compared to 0.388 for DDEC6.

The NaCl crystal demonstrates unambiguously why the QDR
procedure cannot fully correct the rms charge transfer magnitude
if an inaccurate stockholder-partitioning method is used. For the
NaCl crystal at ambient pressure (see Table 12), the Na atom
charges are 0.21 (Hirshfeld) and 0.85 (DDEC6). Due to symmetry,
all atomic dipole and quadrupole moments are zero in the opti-
mized geometry of this crystal. Accordingly, the QDR procedure
yields atomic charges that are identical to the starting stockholder-
partitioned atomic charges for the optimized geometry of this
crystal structure. If a stockholder-partitioning method yields
atomic charges that are too small inmagnitude (e.g., Hirshfeld) for
this crystal structure, the QDR procedure cannot x that problem.
None of the previously published dipole-adjustment86,92 or dipole-
and-quadrupole-adjustment93 schemes could x that problem,
unless the stockholder-partitioning method itself is changed to
something that yields the approximately correct charge-transfer
magnitude (e.g., DDEC6, ADCHa-I,16 or constrained MBIS94).

We studied the water molecule as an example to compare the
QDR-DDEC6, QDR-Hirshfeld, and QDR-MBIS performance. The
atomic charge magnitudes in this molecule followed the trend
Hirshfeld < ESP t < DDEC6 < MBIS, which is the same trend as
the rms charge transfer magnitudes for the entire dataset of
nonperiodic materials (see Table 11). Tables 2–4 track changes
during each step of the QDR procedure. The largest (cf. smallest)
overall change in atomic charge magnitude occurred for the
QDR-HD (cf. QDR-DDEC6) procedure. This reects the fact that
the starting Hirshfeld atomic charges were farthest from
optimal, while the starting DDEC6 atomic charges were closer
to optimal. Aer the QDR procedure, results from the QDR-HD,
QDR-DDEC6, and QDR-MBIS were somewhat mixed, because
different methods performed better on different metrics.

All norms in Tables 2–4 are the Frobenius norm, kkF (aka

Euclidean norm). The molecular kD~mkF and molecular kD~~QkF
are dened as the Frobenius norm of the difference between the
point-charges (or point-charges plus atomic dipoles) model and
the reference QM-computed molecular multipole moment. For
individual steps of the QDR procedure, the most consistent
trends were: (i) reduction in the Frobenius norm of the atomic
quadrupole moments during quadrupole resorption steps, (ii)
reduction in molecular kD~mkF during dipole resorption steps,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Tracking the progress of various quantities during the 2-pass QDR-DDEC6 procedure applied to a water molecule. The quadrupole

moments are with respect to the center of nuclear charge. For the molecular kD~mkF, molecular kD~~QkF, RMSE, and RRMSE, the quantities outside
parentheses are for the point-charge model, while the quantities inside parentheses are for the model including atomic dipoles

H atom
q

H atom
k~mkF

H atom

k~~QkF
O atom
q

O atom
k~mkF

O atom

k~~QkF
Molecular
kD~mkF

Molecular

kD~~QkF
Electrostatic RMSE
(kcal mol−1 e−1)

Electrostatic
RRMSE

Starting 0.388 0.042 0.053 −0.776 0.136 0.384 0.13 (0.00) 0.66 (0.49) 1.12 (0.48) 0.22 (0.09)
Aer QR #1 0.446 0.056 0.041 −0.892 0.283 0.186 0.26 (0.00) 0.48 (0.26) 1.85 (0.29) 0.36 (0.06)
Aer DR #1 0.381 0.112 0.041 −0.762 0.212 0.186 0.12 (0.00) 0.68 (0.26) 1.05 (0.31) 0.20 (0.06)
Aer QR #2 0.411 0.117 0.039 −0.822 0.283 0.091 0.18 (0.00) 0.59 (0.16) 1.38 (0.26) 0.27 (0.05)
Aer DR #2 0.372 0.152 0.039 −0.744 0.240 0.091 0.09 (0.00) 0.70 (0.16) 0.96 (0.28) 0.19 (0.05)
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(iii) reduction in molecular kD~~QkF during quadrupole resorp-

tion steps, (iv) no changes in the molecular kD~~QkF predicted by
the point-charges plus atomic dipoles model during dipole
resorption steps, and (v) no changes in the atomic quadrupoles
during dipole resorption steps. There is a general, albeit not
necessarily monotonic, improvement in the electrostatic RMSE
and RRMSE across the QDR steps.

Following the above arguments, it is important to select
a stockholder-partitioning method that has an approximately
close-to-optimal rms charge transfer magnitude. Amongst the
three stockholder partitioning methods studied in this work,
the DDEC6 method currently comes closest to this ideal,
although its rms charge transfer magnitude is slightly higher
than optimal. Another important consideration is to select
a stockholder-partitioning method that yields relatively small
rms atomic dipole and quadrupole magnitudes. This helps keep
the QDR adjustments small, which should in turn help preserve
the chemical and conformational transferability of the assigned
QDR charges. As shown in Table 8, the DDEC6 method yields
slightly smaller rms atomic dipole and quadrupole magnitudes
than the Hirshfeld and MBIS methods. For these reasons, we
used the QDR procedure with DDEC6 stockholder partitioning
(i.e., QDR-DDEC6) throughout the remainder of this work.
2.4 Linear-scaling computational costs with good
parallelization efficiency

The symmetric matrices M(A) and C(A) are positive denite. As
shown in eqn (48) and (68), none of their eigenvalues are close
to zero. This ensures that their inverses, (M(A))−1 and (C(A))−1,
always exists and are not close to singular. The exact solution
could be found by rst computing the inverse matrices and then
computing Y(A) = (M(A))−1T(A) and S(A) = (C(A))−1V(A).

However, the exact solution is computed more efficiently
using our method described in ESI Section S4.† For dipole
resorption, our method requires a maximum of four matrix-
vector multiplies (i.e., up to four multiplications of M(A) times
a column vector) and does not require explicit computation of
(M(A))−1. For quadrupole resorption, our method requires
a maximum of eight matrix-vector multiplies (i.e., up to eight
multiplications of C(A) times a column vector) and does not
require explicit computation of (C(A))−1. Our computational
method is based on the conjugate gradient95,96 method but
© 2025 The Author(s). Published by the Royal Society of Chemistry
makes the further computational efficiency improvement that
the matrices M(A) and C(A) do not have to be explicitly allocated
in memory. Our method is easy to parallelize using shared-
memory (e.g., OpenMP20,37,97,98) and makes efficient use of
cache without requiring excessive memory allocations.

As a computational test, different sized periodic unit cells were
prepared for the ALPO-5 crystal. Specically, periodic unit cells
were prepared containing 72, 576, 4608, 36 864, 294 912, and 2
359 296 atoms. No quantum chemistry calculations were per-
formed on the larger unit cells; rather, the DDEC6 atomic pop-
ulation analysis les (which are the input les for QDR charge
computation) were prepared by constructing larger units cells
from the smaller unit cells. These input les explicitly stored all
required input information for each and every individual atom in
the larger unit cell; we did not reduce the amount of information
stored using symmetry equivalency. The material (and its asso-
ciated computational model) does not ‘end’ at the unit cell's
boundary, because the ALPO-5 crystal has 3-dimensional periodic
boundary conditions. Fig. 2 plots the required computational
time and random access memory (RAM) for serial program
execution to compute the QDR charges from the input DDEC6 net
atomic charges, atom-in-material dipole moments, atom-in-
material quadrupole moments, and overlap populations. Each
computational time displayed in Fig. 2 and Table 5 is the average
of three runs. As clearly shown in Fig. 2, the required computa-
tional time and memory scale linearly with increasing number of
atoms in the material's unit cell. For the smallest three periodic
unit cells (i.e., containing 72, 576, and 4608 atoms), the memory
requirements were too small to precisely measure using our
computational setup; however, by extrapolating the linear
trendline the predicted RAM requirements for these three small
periodic unit cells are predicted to be approximately 0.29 (for 72
atoms), 2.5 (for 576 atoms), and 21 MB (for 4608 atoms).

For the periodic unit cell containing 2.36million atoms, Table 5
summarizes the computational times and parallelization efficien-
cies for the OpenMP parallelized code ran on 1, 2, 4, and 8
computing cores compared to the not-parallelized serial code. For
these calculations, the RAM requirements were measured and
found to be 13 GB independent of the number of parallel
computing cores. As shown in Table 5, the parallelization effi-
ciencies were excellent. By using parallel computation, one can
easily solve the linear equation system computing the QDR charges
in less than one minute for a material containing a couple million
RSC Adv., 2025, 15, 23223–23265 | 23235
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Table 3 Tracking the progress of various quantities during the 2-pass QDR-HD procedure applied to a water molecule. The quadrupole

moments are with respect to the center of nuclear charge. For the molecular kD~mkF, molecular kD~~QkF, RMSE, and RRMSE, the quantities outside

parentheses are for the point-charge model, while the quantities inside parentheses are for the model including atomic dipoles

H atom
q

H atom
k~mkF

H atom

k~~QkF
O atom
q

O atom
k~mkF

O atom

k~~QkF
Molecular
kD~mkF

Molecular

kD~~QkF
Electrostatic RMSE
(kcal mol−1 e−1)

Electrostatic
RRMSE

Starting 0.147 0.225 0.112 −0.294 0.145 0.417 0.40 (0.00) 1.37 (0.62) 2.98 (0.63) 0.58 (0.12)
Aer QR #1 0.198 0.230 0.111 −0.396 0.025 0.258 0.29 (0.00) 1.22 (0.45) 2.23 (0.49) 0.43 (0.10)
Aer DR #1 0.282 0.154 0.111 −0.564 0.068 0.258 0.10 (0.00) 0.97 (0.45) 1.14 (0.47) 0.22 (0.09)
Aer QR #2 0.314 0.157 0.110 −0.628 0.141 0.164 0.03 (0.00) 0.88 (0.34) 0.87 (0.39) 0.17 (0.08)
Aer DR #2 0.332 0.140 0.110 −0.664 0.161 0.164 0.01 (0.00) 0.82 (0.34) 0.80 (0.39) 0.15 (0.08)

Table 4 Tracking the progress of various quantities during the 2-pass QDR-MBIS procedure applied to a water molecule. The quadrupole

moments are with respect to the center of nuclear charge. For the molecular kD~mkF, molecular kD~~QkF, RMSE, and RRMSE, the quantities outside

parentheses are for the point-charge model, while the quantities inside parentheses are for the model including atomic dipoles

H atom
q

H atom
k~mkF

H atom

k~~QkF
O atom
q

O atom
k~mkF

O atom

k~~QkF
Molecular
kD~mkF

Molecular

kD~~QkF
Electrostatic RMSE
(kcal mol−1 e−1)

Electrostatic
RRMSE

Starting 0.433 0.029 0.019 −0.866 0.224 0.371 0.23 (0.00) 0.52 (0.41) 1.67 (0.41) 0.32 (0.08)
Aer QR #1 0.468 0.030 0.019 −0.936 0.303 0.265 0.31 (0.00) 0.42 (0.30) 2.15 (0.31) 0.42 (0.06)
Aer DR #1 0.416 0.073 0.019 −0.832 0.245 0.265 0.19 (0.00) 0.58 (0.30) 1.45 (0.33) 0.28 (0.06)
Aer QR #2 0.441 0.073 0.018 −0.882 0.302 0.190 0.25 (0.00) 0.50 (0.22) 1.78 (0.27) 0.35 (0.05)
Aer DR #2 0.403 0.108 0.018 −0.806 0.259 0.190 0.16 (0.00) 0.62 (0.22) 1.45 (0.33) 0.28 (0.06)
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atoms in its unit cell. For the periodic unit cell containing 2.36
million atoms and 97.8million nonzero overlap population values,
the input le reading was not parallelized and took approximately
232 seconds, and the buffered output le writing was not paral-
lelized and took approximately 25 seconds (the input le reading
took longer than output le writing, because the data is sorted
during input le reading as shown in Fig. S2 of the ESI†). This
calculation used real-valued numbers providing at least 15 digits
of accuracy (aka ‘double-precision’ reals) and 64-bit integers.

The key purpose of these computational tests was to quantify
how the time and memory required to compute the QDR
charges scale with increasing number of atoms in the material's
unit cell. Using enlarged periodic unit cells of the samematerial
(e.g., ALPO-5 crystal) provides a direct test of this scaling. All of
these periodic unit cells converged to functionally equivalent
sets of QDR charges, so in practical applications there is no
other motivation for creating enlarged unit cells (aka ‘super-
cells’) that are multiples of the material's smallest unit cell. This
was only done here to see how the required computational time
and memory scaled with increasing number of atoms in the
material's unit cell. These scaling tests showed the QDR charges
can be computed from the stockholder net atomic charges,
overlap populations, and atom-in-material dipole and quadru-
pole moments in less than one minute (including the time
required for input le reading, all calculation steps, and output
le writing) on a single computing core when thematerial's unit
cell contains up to 400 000 atoms. For the unit cell containing
2.36 million atoms, the QDR charges were computed from the
23236 | RSC Adv., 2025, 15, 23223–23265
stockholder net atomic charges, overlap populations, and atom-
in-material dipole and quadrupole moments in 5.4 minutes
(including the time required for input le reading, all calcula-
tion steps, and output le writing) on a single computing core.
The practical signicance of this is that the QDR charges for
large biomolecules (e.g., proteins, DNA, RNA, etc.) containing
several hundred thousands or even millions of atoms can be
computed in a few minutes or quicker.
3. Computational methods
3.1 Quantum chemistry methods

To explore the effects of various molecular conformations, we
compared the electrostatic models across many different
conformations of each material. For both periodic and non-
periodic structures, the training set included 21 geometries:
the optimized ground state geometry plus 20 other conforma-
tions. The validation set included 20 different conformations. No
conformation was used in both the training and validation sets.

In all cases, the ‘optimized ground state geometry’ (also
called the ‘low energy conformation’) is at least a local ground
state (i.e., a local energy minimum) on the material's potential
energy surface. For the simpler molecules, this ‘low energy
conformation’ is the material's global ground state geometry
(i.e., having the globally lowest energy). For molecules having
a large number of different conformers, we did not exhaustively
determine which conformer had the globally lowest energy,
because that is not our study's purpose. Rather, our study's
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Plot of the computational time and randomaccessmemory (RAM)
required to compute the quadrupole-dipole-resorbed (QDR) charges for
unit cells containing different numbers of atoms. Results are for serial
program execution using one computing core. The required computa-
tional time and memory include all steps from program start to program
finish: input file reading, solving the linear equation systems, and output
file writing. The required computational time and memory scale linearly
with increasing number of atoms in the material's unit cell.

Table 5 Parallelization efficiency for solving the linear equation
system computing the quadrupole-dipole-resorbed (QDR) charges.
The listed computational times start after input file reading and end
before output file writing. The listed computational times correspond
specifically to the tasks labeled ‘QDR pass #1 and QDR pass #2’ (aka
‘the 2-pass QDR procedure’) in Fig. S1 of the ESI. The system studied
contained 2 359 296 atoms in the material's periodic unit cell and had
97 845 248 nonzero overlaps, which gave a total of 4 (QR or DR steps)
× 97 845 248 unknowns per step= 391 380 992 unknowns to solve for

Number of
cores

Require RAM
(GB)

Average time
(seconds)

Parallelization
efficiency

Serial 13 65.1 100.0%
1 13 67.0 97.2%
2 13 37.4 87.0%
4 13 22.8 71.5%
8 13 14.1 57.8%
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purpose was to investigate how well the atomic charges
computed for one local ground state geometry (i.e., one
conformer) perform for reproducing the electrostatic potential
surrounding the molecule across various geometric
conformations.

For both the training and the validation datasets, the same
QM level of theory was always used to compute the system's
electron density distribution and its QM electrostatic potential.
This ensured the atomic charges were computed from the same
QM level of theory as the target electrostatic potential.

3.1.1 Nonperiodic systems. For the nonperiodic systems,
we performed quantum chemistry calculations using the
Gaussian16 program.89 All the calculations were performed at
the B3LYP99,100/def2tzvpd101 level of theory with GD3BJ102–106

empirical dispersion. The convergence criteria for geometry
optimization were as follows: (1) the maximum force was less
than 0.00045 hartrees bohr−1; (2) the root-mean-squared (RMS)
force was less than 0.0003 hartrees bohr−1; (3) the maximum
© 2025 The Author(s). Published by the Royal Society of Chemistry
displacement was less than 0.0018 bohr; and (4) the RMS
displacement was less than 0.0012 bohr.

Conformations were generated using one of several kinds of
conformational sampling. First, we divided the materials into
two groups depending on whether each material contained any
chemical groups with easily rotatable dihedrals. To determine
whether a material contained any rotatable dihedrals, we used
the specic denition of ‘rotatable dihedral’ introduced in ref.
8. Examples of easily rotatable chemical functional groups
include methyl, alkyl chains, hydroxyl, thiol, nitro, phosphate,
amino, –CF3, etc. For each structure without any rotatable
dihedrals, we performed AIMD calculations starting from the
optimized ground state geometry.

When the structure contained rotatable functional groups,
the 20 non-optimized conformations were generated as follows.
For the organic molecules with rotatable functional groups, we
generated conformers using either: (a) the ETKDG method107 in
the Research Database Toolkit (RDKit)108 or (b) conformers
published on the pubchem website. Case # 1: when this
generated 40 or more distinct conformations, then we selected
20 at random for the training set and a different 20 for the
validation set. Case # 2: when this generated fewer than eight
different conformations, then we performed AIMD calculations
using the generated conformations plus the optimized struc-
ture as the starting geometries for various runs. Case # 3: when
this generated between 8 and 39 conformers, then we per-
formed AIMD calculations using a randomly generated subset
containing eight different conformers. Case # 4: for the non-
organic structures, we generated different conformations by
hand as the starting point for each AIMD calculation. These
hand-generated structures contained various rotations of the
rotatable functional groups.

Because the N@C60 and ATP molecules contained relatively
large numbers of atoms, AIMD calculations for these two
molecules were performed in VASP by placing the corresponding
molecule in a large cubic unit cell containing several angstroms of
vacuum all around (this lowered the computational cost of the
AIMD computations for these two molecules compared to what
the computational cost would be for performing BOMD simula-
tions using Gaussian basis set code). The AIMD calculations for
these twomolecules were performed using the same VASP settings
as described in Section 3.1.2 below. The subsequent single-point
energy calculations to generate the QM-computed electrostatic
potentials and electron densities (used to compute the atomic
charges) of the 20 AIMD geometries for the training dataset and 20
AIMD geometries for the validation dataset were performed in
GAUSSIAN16 at the B3LYP/def2tzvpd level of theory with GD3BJ
empirical dispersion. The ground-state geometry optimization for
these two molecules was also performed in GAUSSIAN16 using this
same level of theory.

For other non-periodic systems, the AIMD calculations were
performed as follows. Four Born–Oppenheimer molecular
dynamics (BOMD) simulations were performed in Gaussian16
to generate the congurations for the training dataset, and
another four for the validation dataset. Each BOMD simulation
was run for 100 trajectory points (steps). The Hessian was
calculated analytically every 30 steps. The simulation
RSC Adv., 2025, 15, 23223–23265 | 23237
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temperature was 300 K. The dynamic step size was set to 0.0812
amu1/2 bohr. Every simulation was run with different random
seeds. Aer this AIMD calculation completed, we extracted every
20th geometry. Then we performed single-point DFT calcula-
tions on each of these 20 geometries to generate their electron
density distributions and electrostatic potentials.

3.1.2 Periodic systems. For the periodic systems, quantum
chemistry calculations were computed using the Vienna ab
initio simulation package (VASP).109–112 All calculations were
performed using the PBE113 functional with DFT-D3 Becke–
Johnson damping function102–106 and the projected augmented
wave (PAW) method.114,115 The energy convergence criterion for
the self-consistent eld (SCF) cycles was set to 10−6 eV. The k-
point grid was set to ensure that the product of the length of
each lattice vector and the number of k-points exceeded 16 Å.
The planewave energy cut-off was 400 eV. A Prec= Accurate grid
with Addgrid = False were used to avoid wrap-around (aka ali-
asing) errors.

A geometry optimization was performed, allowing relaxation
of the atomic positions, cell shape, and volume. The conver-
gence criterion was set such that the absolute magnitude of
each force component (i.e., Fx, Fy, and Fz) for every atom was
below 0.01 eV Å−1 (however, for the BN nanotube array two of
the lattice vectors were held xed at 16.0 Å to ensure the
nanotubes remained separated).

Four AIMD runs were performed to generate different
conformations for the training dataset. A separate four AIMD
runs were performed to generate conformations for the valida-
tion dataset. The AIMD simulations encompassed 100 geometry
steps per run, originating from the optimized geometry. The
forces were computed in response to atomic positional changes,
while maintaining constant cell shape and volume. A time step
of 1 femtosecond was employed, accompanied by an initial
temperature of 300 K, utilizing a microcanonical (NVE)
ensemble. This setup used the specic VASP settings: IBRION =

0, NSW = 100, ISIF = 0, MDALGO = 0, POTIM = 1, TEBEG =

300, SMASS= −3. Every 20th geometry was extracted for further
analysis. Then we performed single-point DFT calculations on
each of these 20 geometries (using VASP keywords LCHARG =

True, LAECHG = True, and LVHAR = True) to generate their
electron density distributions and electrostatic potentials.
3.2 Various charge assignment methods

For nonperiodic materials, we tested the following methods for
assigning net atomic charges: ADCH,86 CHELPG,80 charge
model 5 (CM5),75 sixth generation density-derived electrostatic
and chemical (DDEC6),32 QDR-DDEC6, Hirshfeld,54 MBIS,14

MK,81,82 and RESP.83 The ADCH, CHELPG, CM5, Hirshfeld,
MBIS, MK, and RESP charges were computed with Multiwfn90,91

version 3.8. The DDEC6 and QDR-DDEC6 charges were
computed using the Chargemol31,37 program. For CHELPG, MK,
and RESP, the van der Waals radii was the universal forceeld
(UFF) radii scaled by 1/1.2 as dened by Multiwfn.116 For RESP,
a hyperbolic penalty function with two-stage tting was used as
recommended in the article introducing the RESP method:
23238 | RSC Adv., 2025, 15, 23223–23265
constants were: a = 0.0005 (stage 1), a = 0.001 (stage 2 on
selected atoms), and b = 0.1 (both stages).83

The Multiwfn program performs MBIS analysis as follows.
For electron densities that were generated from QM computa-
tions that replaced some core electrons with a relativistic
effective core potential (RECP), Multiwfn uses a stored core-
electron density library117 to add these missing core electrons
back in at the start of MBIS partitioning so that an effective all-
electron MBIS partitioning is performed.90 According to the
paper dening the MBIS method, the initial guess for the
population (i.e.,Ninitial_guess

A,i ) of each Slater function dening the
MBIS pro-atom is “set to the number of electrons in each shell
of the corresponding neutral isolated atom”.14 Initially, it was
unclear to us whether this means the 3d electrons should be
initialized into the 3rd or 4th MBIS Slater function of the pro-
atom. Because the converged MBIS results may be sensitive to
the choice of Ninitial_guess

A,i , it is necessary to have some agreed
upon initialization protocol.14 Multiwfn initializes the MBIS
Slater functions such that the (n − 1)d (if any) and (n − 2)f (if
any) electrons are initialized into the same Slater function as the
ns (if any) and np (if any) electrons. For example, Multiwfn
initializes the Slater functions for a gold atom with the
following populations: 2, 8, 8, 18, 18, 25. We used Multiwfn's
default convergence criteria for computing MBIS charges: abs
[DqA] < 0.0001 between subsequent charge cycles with
a maximum of 500 charge cycles.

For the nonperiodic materials, the multiframe CHELPG (MF-
CHELPG), multiframeMerz–Kollman (MF-MK), andmultiframe
RESP (MF-RESP) were computed in Multiwfn version 3.8 using
the same settings as described above. These optimized the
charges to simultaneously minimize the electrostatic potential
RMSE across all 21 conformations in the training set. A key
point is that the grids used to minimize this RMSE are those
dening each of these charge methods. For example, CHELPG
uses a Cartesian grid of points, while Merz–Kollman uses grid
points on Connolly surfaces.80–82

For each of the periodic systems, the electron density
distributions and local electrostatic potential were generated
and saved to les using VASP. These were analyzed in post-
processing to compute the following net atomic charges:
CM5, DDEC6, QDR-DDEC6, Hirshfeld, REPEAT,84 and RESP.
The CM5, DDEC6, QDR-DDEC6, and Hirshfeld charges were
calculated using the Chargemol program. The RESP and
REPEAT charges were calculated using the REPEAT 2.0
program.84 The valid grid points for computing the RESP and
REPEAT charges were dened as those outside a surface dened
by 1.0 times the UFF84,118 van der Waals radii. The RESP charges
for periodic systems were computed using quadratic
constraints of the form a(qi)

2 with the constant a = 0.01 for all
elements except hydrogen and a= 0 (no restraints) for hydrogen
atoms as described in the original RESP paper.83

Importantly, all of the charge assignment methods used in
this work have no explicit basis-set dependence. The ADCH,
CM5, DDEC6, QDR-DDEC6, Hirshfeld, and MBIS atomic
charges are functionals of the material's QM-computed electron
density distribution. The CHELPG, MK, REPEAT, and RESP
atomic charges are functionals of the material's QM-computed
© 2025 The Author(s). Published by the Royal Society of Chemistry
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electrostatic potential. As long as the QM level of theory is
adequate to provide a reasonably accurate computation of the
material's electron density distribution and its electrostatic
potential, these computed atomic charge values have low
sensitivity to the specic choice of exchange–correlation func-
tional and basis set. Please see the prior literature for a more
detailed discussion and associated computational tests
showing this.30,32,34,119–122

3.3 Method for computing the electrostatic root-mean-
squared errors (RMSEs)

To quantify the accuracy of the different charge assignment
methods, we conducted tests that measured how accurately
each method reproduced the electrostatic potential
surrounding the material. This was done using a program123

that calculated the root mean squared error (RMSE) and relative
RMSE (RRMSE) of the electrostatic potential produced by each
tested charge method compared to the benchmark QM-
computed electrostatic potential.

The RMSE of each of the charge methods for each system
was calculated as follows:

RMSEcharge_method ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNgrid

i¼1

�
V

charge_method
i � VQM

i

	2
Ngrid

vuuuut (69)

where Vcharge_method is the electrostatic potential produced by
a charge assignment method for a particular system, while VQM

is the quantum-mechanically-computed electrostatic potential
for the same system, and Ngrid is the number of valid grid
points. The RRMSE was calculated as follows:

RRMSE ¼ RMSEcharge_method

RMSEnull_model

(70)

where RMSEnull_model represents a model for which the charge
of each and every atom in a system is set to zero (i.e., no
model).

In eqn (69), the sum over i corresponds to the sum over valid
grid points within the region of interest. We dened a set of valid
grid points in the region immediately outside the material and
within its pores. The selection of these grid points was based on
three criteria. First, to make sure that the selected points were
outside the core-electron density of individual atoms, valid grid
points were required to have an electron density less than 10−4 e
bohr−3. Second, to prevent the grid points extending innitely into
space, we implemented an outer radius cutoff of 5 Å, meaning
each valid grid point must be within 5 Å of at least one atom in the
system. Third, to ensure the potential is not measured inside the
electronic density, we set an inner radius cutoff of 2 Å. Thus,
a valid grid point in our analysis satises all of the following
conditions: it has an electron density less than 10−4 e bohr−3, is
farther than 2 Å away from every atom in the system and is within
5 Å of at least one atom in the system.

For nanoporous materials, one could choose the outer cutoff
radius for valid grid point selection to be the same as for the
nonperiodic (i.e., molecular) materials, or one could choose there
to be no outer cutoff radius so that the valid grid points always
© 2025 The Author(s). Published by the Royal Society of Chemistry
extend to the center of the nanoporous cavity. Either choice is
justiable. The choice of using no outer cutoff radius can be
justied on the basis that it ensures the entire nanoporous cavity
is included in the valid grid points for RMSE computation, while
the choice of using a 5 Å outer cutoff radius can be justied on the
basis that it ensures the valid grid points for RMSE computation
are not too far away from atoms (where important adsorption sites
occur). For 2-dimensional periodic materials such as graphene,
one needs to use a nite outer cutoff radius such as 5 Å for the
RMSE computation. As well, one could also use a periodic plane-
wave QM computation to study a single molecule placed in a large
periodic box, and in this case the outer cutoff radius should be set
consistently with the nonperiodic RMSE computation. Hence, for
maximum consistency and generality, the RMSE code by default
uses a 5 Å outer cutoff radius for allmaterials.We used this default
(universal) value, rather than removing the outer cutoff radius for
the nanoporous solids.

Incidentally, most of the nanoporous solids we studied had
atom-centered cavity diameters #10 Å, which means their
entire cavity was included in the RMSE computation. However,
a few (IRMOF-1, Mg-MOF-74, etc.) had atom-centered cavity
diameters between 10 and∼15 Å, which means that a small part
(<25%) of their cavity volume was excluded from the RMSE
computation because it was far away from atoms.

Conceptually, smaller RMSE and RRMSE values indicate
a better agreement between the charge method tested and the
quantum mechanical benchmark, which is desirable.
Conversely, a RRMSE > 1 indicates the method performs worse
than the null model; in other words, setting all the atomic
charges for a particular system to zero would be better than the
charge method tested. An RRMSE of #0.3 is desirable with the
R-squared for the model in this case being $0.91. R-squared
and RRMSE are related as follows:

R-squared = 1 − RRMSE2 (71)
4. Test sets

To test the reliability of the charge assigning methods across
different material types, we analyzed a diverse set of chemical
systems. These systems included organic molecules, inorganic
molecules, heterodiatomic molecules, transition metal
complexes, and nanoporous solids. Each category represents
a distinct class of materials with different structural character-
istics. This diverse set allowed us to evaluate how the methods
performed in different circumstances, such as surface versus
buried atoms, and to determine their effectiveness for both non-
periodic (e.g., molecular systems) and periodic (e.g., crystalline)
materials. Additionally, we examined the applicability of the
methods across different bonding types by including ionic,
covalent, and polar-covalent materials. We purposefully chose
systems containing many different chemical elements from
across the periodic table.

Table 6 lists details for the heterodiatomic molecules test set.
Fig. 3 shows the 2D chemical structure of each molecule in the
RSC Adv., 2025, 15, 23223–23265 | 23239
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Table 6 Molecules included in the heterodiatomics test set with their optimized bond lengths and the net atomic charges on the first atom of
each molecule for the different charge assigning methods

Chemical formula
Optimized bond
length (Å)

Net atomic charge of rst atom

ADCH CHELPG CM5 DDEC6 QDR-DDEC6 Hirshfeld MBIS MK RESP

AgBr 2.43 0.45 0.51 0.37 0.47 0.46 0.33 0.47 0.47 0.47
BaS 2.53 0.87 0.98 0.91 1.14 0.91 0.68 1.16 0.96 0.96
CO 1.13 −0.02 −0.02 0.13 0.13 −0.004 0.08 0.13 0.00 0.00
CsLi 3.75 0.18 0.02 0.18 0.30 0.25 0.18 0.40 0.03 0.03
CuI 2.40 0.38 0.39 0.33 0.41 0.38 0.30 0.55 0.38 0.38
HCl 1.28 0.18 0.19 0.17 0.26 0.20 0.12 0.31 0.21 0.21
KF 2.22 0.83 0.82 0.83 0.90 0.85 0.64 0.85 0.83 0.83
NaCl 2.37 0.77 0.77 0.69 0.88 0.81 0.57 0.94 0.78 0.78
NO 1.15 −0.02 −0.02 −0.03 0.03 −0.02 0.03 0.03 −0.02 −0.02
SrO 1.94 0.95 1.03 1.06 1.18 0.98 0.70 1.15 1.02 1.02
ZnO 1.72 0.70 0.79 0.56 0.72 0.70 0.45 0.84 0.76 0.76
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organics test set. ESI Table S1† lists the chemical formula and
compound class for each of these organic molecules. Fig. 4
shows the optimized 3D chemical structure of each molecule in
the inorganic molecules test set. ESI Table S2† lists their
chemical formulas. Fig. 5 shows the optimized 3D chemical
structure of each molecule in the transition metal complexes
test set. ESI Table S3† lists their chemical formulas. Fig. 6 shows
the optimized 3D chemical structures of the nanoporous crys-
tals. ESI Table S4† lists the chemical formula, framework type,
and unit cell parameters for each nanoporous crystal. In Fig. 3–
6, chemical compounds with any rotatable dihedrals have
a blue label, while those without any rotatable dihedrals have
a black label. Table 7 lists the test systems having non-zero net
charge and/or non-singlet spin state.

For the DNA base guanine, we studied the charged depro-
tonated state illustrated in Fig. 3. For phospholipid, we studied
the zwitterionic form illustrated in Fig. 3. For the alanine,
arginine, and cystine amino acids and adenosine triphosphate
(ATP), we studied the protonation states illustrated in Fig. 3,
which are preferred for the gas-phase (i.e., isolated) molecules.
These differ from the preferred protonation states of these
molecules in aqueous solutions. We used the preferred gas-
phase (i.e., isolated molecule) protonation states, because our
AIMD simulations were performed for the isolated, unsolvated
molecules.
5. Results
5.1 Electron-density partitioning that approximately
reproduces the molecular total dipole and traceless
quadrupole moments

The QDR-DDEC charges are not a chemical correction to the
DDEC net atomic charges, but rather they are an atom-centered
polyatomic multipole re-expansion that moves (‘resorbs’) part
of the atomic dipole and atomic quadrupole contributions into
the adjusted point-charge values. This allows the QDR-DDEC
point-charge model to more accurately reproduce molecular
dipole and quadrupole moments and the electrostatic potential
surrounding a material.
23240 | RSC Adv., 2025, 15, 23223–23265
Our QDR method purposefully does not incorporate hard
constraints that would force (or attempt to force) the assigned
atomic charges to exactly reproduce the molecular dipole and/
or traceless quadrupole moment. It would not always be
possible to satisfy such constraints using just an atom-centered
point-charge model. For example, the molecular quadrupole
moment about the bond's midpoint cannot be precisely repro-
duced for the CO or N2 molecules using just an atom-centered
point-charge model. Moreover, if one places a CO or N2 mole-
cule in an external electric eld, then the molecular dipole
moment component(s) that are not parallel to the bond cannot
be reproduced by just an atom-centered point-charge model. As
a consequence of these issues, imposing a hard constraint on
the point-charge-model's total dipole and/or traceless quadru-
pole moment values would be counter-productive, because this
would cause the coefficients matrix to be ill-conditioned in
some systems. An ill-conditioned coefficients matrix would
cause high conformational sensitivity of the assigned atom-
centered point-charge values in some materials. Imposing
hard constraints on the system's total dipole and traceless
quadrupole moments would also violate size consistency. If
using a hard constraint, a system comprised of three molecules
far apart would impose constraints on the system's overall total
dipole and/or traceless quadrupole moment. On the other
hand, considering these molecules individually would impose
constraints on the total dipole and/or traceless quadrupole
moment of each molecule. This could yield different assigned
point-charge values for the individual molecules compared to
a system in which they are far apart, which means that such
hard constraints violate size consistency. For all of these
reasons, our QDR method does not incorporate such hard
constraints.

Swart et al.93 introduced a multipole-resorption scheme that
uses hard constraints enforced using the method of Lagrange
multipliers to assign a point-charge model. Their approach can
be applied to resorb multipoles up to any specic order
(including dipoles, quadrupoles, and/or octupoles) into the
point-charge model. Their approach used an exponential decay
function (instead of overlap populations used in QDR) to
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 The names and 2D chemical structures of molecules in the organics test set. Molecules with (cf. without) any rotatable dihedrals have
a blue (cf. black) label.
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localize the distributed atomic charges. Their approach incor-
porated off-site charges for some small molecules such as
homodiatomics and carbon monoxide.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Our QDR method has some analogies to how the ADCH
method corrects the Hirshfeld charges to reproduce the total
molecular dipole moment. In another approach, the dipole
RSC Adv., 2025, 15, 23223–23265 | 23241
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Fig. 4 The optimized structures included in the inorganic molecules
test set. The atoms are colored by chemical element. Molecules with
(cf. without) any rotatable dihedrals have a blue (cf. black) label.

Fig. 5 The optimized structures included in the transition metal
complexes test set. The atoms are colored by chemical element.
Molecules with (cf. without) any rotatable dihedrals have a blue (cf.
black) label.
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preserving and polarization consistent (DPPC) method corrects
the Mulliken charges to reproduce the total molecular dipole
moment.92 However, there are substantial differences in the
technical details between our QDR approach and the ADCH and
DPPC approaches. Our QDR method resorbs both atomic
dipoles and atomic quadrupoles into the adjusted point-charge
values to produce a new atom-centered polyatomic multipole
expansion (including residual atomic dipoles and residual
atomic quadrupoles) that is net-equivalent to the original
expansion up to quadrupole order. The ADCH and DPPC
methods resorb the atomic dipoles but not the atomic quad-
rupoles, and they are only net-equivalent to the original
expansion up to dipole order. ADCH and DPPC use other
distance-dependent functions (instead of overlap populations
used in QDR) to localize the distributed atomic charges.86,92

The ADCH and DPPC methods attempt to constrain the
point-charge model's total dipole moment to exactly reproduce
the nonperiodic system's total dipole moment; this hard
constraint is incorporated in their loss functions using the
method of Lagrange multipliers.86,92 However, to x cases in
which the ADCH or DPPC coefficients matrix is singular, those
methods use a small shi (e.g., +10−5) in the eigenvalues as
proposed by Thole and van Duijnen.86,87,92 This eigenvalue shi
causes the ADCH or DPPCmethod to approximately rather than
23242 | RSC Adv., 2025, 15, 23223–23265
exactly reproduce the molecular dipole moment in such cases.
For the nonperiodic systems studied here, the CsLi molecule
was an example of such a case. For CsLi, the analytic dipole
moment from the DFT-computed electron density was 1.695
a.u., while the dipole moment from the ADCH point charges
was 1.239 a.u. This CsLi molecule accounted for the majority of
the ADCH method's small but non-zero molecular dipole
moment error listed in Table 8.

Fig. 7 uses parity plots to compare the ADCH to Hirshfeld
atomic charges (le panel) and the QDR-DDEC6 to DDEC6
atomic charges (right panel) for the optimized ground-state
geometry of each molecule in the nonperiodics dataset. Both
the ADCH and QDR schemes resulted in modest adjustments to
the underlying Hirshfeld and DDEC6 charges, respectively.

We computed the QM molecular dipole and traceless
quadrupole moments using the molecule's center-of-mass as
the reference point. For purposes of computing the molecule's
center-of-mass, the mass of each atom was set equal to the
standard atomic weights averaged over natural isotope abun-
dances as reported in ref. 124. These molecular dipole and
traceless quadrupole moments were computed for the opti-
mized ground-state geometry of each molecule in the combined
nonperiodics dataset, which contained 54 organic molecules,
11 heterodiatomic molecules, 20 inorganic molecules, and 7
transition metal complexes (another popular convention in the
literature is to use the molecule's center-of-nuclear-charge as
the reference point for computing molecular multipole
moments. The QDR program provided in the ESI† rst
computes and prints the molecular dipole and quadrupole
moments using the center-of-nuclear-charge as the reference
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 The optimized structures in the nanoporous solids test set. The atoms are colored by chemical element. MECWEX and HENYUV are the
Cambridge Structural Database (CSD) refcodes for those two materials. The other nine porous solids are identified by their common names.
Materials with (cf. without) any rotatable dihedrals have a blue (cf. black) label.

Table 7 List of test systems having non-zero net charge and/or non-singlet spin states. All test systems not listed in this table had a net charge of
zero and spin multiplicity of 1 (i.e., spin singlet)

System Chemical formula Net charge Spin multiplicity

Acetate ion [C2H3O2]
− −1 1

DNA base guanine [C12H17N5O10P2]
2− −2 1

Ethylammonium ion [C2H8N]
+ +1 1

N@C60 N@C60 0 4
NO NO 0 2
Chromium hexacyanide anion [Cr(CN)6]

3− −3 4
Osmium hexauoride OsF6 0 3
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point, and then it recomputes and prints these using the center-
of-mass as the reference point).

Fig. 8 compares the DDEC6 (le panel) and QDR-DDEC6
(right panel) point-charge model total dipole moment
© 2025 The Author(s). Published by the Royal Society of Chemistry
magnitude to the QM-computed value for the optimized
ground-state geometry of each molecule in the nonperiodics
dataset. The DDEC6 point-charge model already performed well
and was substantially further improved by the QDR adjustment.
RSC Adv., 2025, 15, 23223–23265 | 23243
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Table 8 Summary statistics quantifying the accuracy of the ADCH, CM5, DDEC6, QDR-DDEC6, Hirshfeld, and MBIS methods for reproducing
the QM-computed dipole and quadrupolemoments. The dataset includes the optimized ground-state geometry of all molecules and ions in the
combined nonperiodics dataset. The RMSE values outside parentheses (cf. inside parentheses) are for the atom-centered point-charge model
(cf. for the model including both atomic charges and atomic dipole moments). For the DDEC6, QDR-DDEC6, Hirshfeld, and MBIS methods, the
RMSE values are zero (not shown) for the molecular traceless quadrupole tensor when the model includes atomic charges, atomic dipole
moments, and atomic quadrupole moments

Mean error
molecular dipole
magnitude (a.u.)

RMSE
molecular dipole
magnitude (a.u.)

RMSE
molecular dipole
vector (a.u.)

RMSE molecular
traceless quadrupole
tensor (a.u.)

rms Atomic
dipole
magnitude (a.u.)

rms Atomic
quadrupole
magnitude (a.u.)

Null model −1.056 1.656 1.656 12.17 n.a. n.a.
ADCH −0.005 0.045 0.045 1.98 n.a. n.a.
CM5 −0.049 0.155 0.169 1.99 n.a. n.a.
DDEC6 +0.096 (0.00) 0.258 (0.00) 0.279 (0.00) 1.90 (0.78) 0.112 0.212
QDR-DDEC6 +0.032 (0.00) 0.069 (0.00) 0.082 (0.00) 1.54 (0.30) 0.099 0.071
Hirshfeld −0.252 (0.00) 0.355 (0.00) 0.388 (0.00) 3.44 (1.44) 0.154 0.378
MBIS +0.176 (0.00) 0.320 (0.00) 0.335 (0.00) 2.35 (0.97) 0.132 0.217

RME molecular dipole
magnitude

RRMSE molecular dipole
magnitude

RRMSE molecular
dipole vector

RRMSE molecular traceless
quadrupole tensor

ADCH −0.5% 2.7% 2.7% 16.3%
CM5 −4.6% 9.4% 10.2% 16.4%
DDEC6 +9.1% (0.0%) 15.6% (0.0%) 16.8% (0.0%) 15.6% (6.4%)
QDR-DDEC6 +3.0% (0.0%) 4.2% (0.0%) 4.9% (0.0%) 12.7% (2.5%)
Hirshfeld −23.9% (0.0%) 21.5% (0.0%) 23.5% (0.0%) 28.2% (11.9%)
MBIS +16.7% (0.0%) 19.3% (0.0%) 20.2% (0.0%) 19.3% (8.0%)

Fig. 7 Left panel: Parity plot comparing ADCH to Hirshfeld conformation-averaged atomic charges for the entire nonperiodics dataset. Right
panel: Parity plot comparing QDR-DDEC6 to DDEC6 conformation-averaged atomic charges for the combined nonperiodics dataset (see
Section 4 for a list of materials in this dataset).
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As shown in Table 8, we computed several quantitative
descriptors that quantify how accurately eachmodel reproduces
the reference QM-computed molecular dipole and quadrupole
moments (all quadrupole moments in Table 8 use the conven-
tion shown in eqn (16)). The mean error in the dipole moment
magnitude was dened as

ME_m ¼ 1

Ngeoms

XNgeoms

j¼1

�
mj;model � mj;ref

	
(72)
23244 | RSC Adv., 2025, 15, 23223–23265
The relative mean error (RME) was dened as the ME divided by
the average dipole magnitude:

RME_m = ME_m/avg_m (73)

avg_m ¼ 1

Ngeoms

XNgeoms

j¼1

mj;ref (74)

The RME_m can be expressed as a percentage. Examining Table
8, the Hirshfeld (−23.9%) and CM5 (−4.6%) methods were
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Left panel: Parity plot of DDEC6 versus QM-computed molecular dipole magnitude for the optimized geometries of all molecules and
ions in the nonperiodics dataset. Right panel: Parity plot of QDR-DDEC6 versus QM-computed molecular dipole magnitude for the optimized
geometries of all molecules and ions in the combined nonperiodics dataset.
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under-polarizing, the MBIS (+16.7%) and DDEC6 (+9.1%)
methods were over-polarizing, and the ADCH (−0.5%) and
QDR-DDEC6 (+3.0%) methods were nearly on-target for the
molecular dipole moment predictions.

The root-mean-squared errors (RMSEs) were dened as

RMSE_m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Ngeoms

XNgeoms

j¼1

�
mj;model � mj;ref

	2vuut (75)

RMSE_~m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Ngeoms

XNgeoms

j¼1

�k~mj;model �~mj;refkF
	2vuut (76)

RMSE_
~~Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ngeoms

XNgeoms

j¼1

 
k~~Qj;model � ~~Q

j;refkF
!2

vuut (77)

In Table 8, the ‘null model’ is a point-charge-only model with
all atomic charges set to zero. For each model, the relative root-
mean-squared error (RRMSE) is dened as the RMSE of the
model divided by the RMSE of the null model:

RRMSE_m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNgeoms

j¼1

ðmj;model � mj;refÞ2
, XNgeoms

j¼1

ðmj;refÞ2
vuut (78)

RRMSE_~m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNgeoms

j¼1

�k~mj;model �~mj;refkF
	2, XNgeoms

j¼1

ðmj;refÞ2
vuut (79)

RRMSE_
~~Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNgeoms

j¼1

 
k~~Qj;model � ~~Q

j;refkF
!2, XNgeoms

j¼1

 
k~~Qj;refkF

!2
vuut

(80)
© 2025 The Author(s). Published by the Royal Society of Chemistry
The RRMSE can be expressed as a percentage, and smaller is
better.

Among the three stockholder-partitioning methods, DDEC6
showed slightly better accuracy (i.e., smaller RMSE and RRMSE
values) than MBIS which performed slightly better than Hirsh-
feld. This justies our choice of using DDEC6 as the starting
stockholder-partitioning approach to apply our new QDR
adjustments. As shown in Table 8, the QDR-DDEC6 method
performed better than DDEC6. When atomic dipoles are
included in the model, the model predicts the molecular dipole
moments exactly: ME_m ¼ RME_m ¼ RMSE_m ¼ RMSE_~m ¼ 0.
This is a mathematical property of the atom-centered poly-
atomic multipole expansion.

Our computed results conrmed that the ADCH and CM5
schemes are effective in removing most of the Hirshfeld
molecular dipole moment error. The ADCH and CM5 point-
charge models predicted the molecular dipole moments more
accurately than the DDEC6 point-charge model. However, the
DDEC6 point-charge model predicted the molecular quadru-
pole moments slightly more accurately than the ADCH and CM5
point-charge models (see Table 8).

The root-mean-squared (rms) atomic dipole and traceless
quadrupole moment magnitudes were dened as

RMS_mA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ntot

XNgeoms

j¼1

X
A

�
mA

j;model
	2vuut (81)

RMS_QA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ntot

XNgeoms

j¼1

X
A

 
k~~QA

j;model

kF
!2

vuut (82)

where Ntot is the total number of atoms in the optimized
ground-state geometries of the training set. Smaller RMS_mA
and RMS_QA values are desirable, because this means more of
the atom-centered polyatomic multipole expansion is captured
RSC Adv., 2025, 15, 23223–23265 | 23245
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by the point-charge-only model. Examining Table 8, the RMS_mA
and RMS_QA values followed the trend QDR-DDEC6 < DDEC6 <
MBIS < Hirshfeld.
5.2 Electrostatic potential RMSE and RRMSE values

The following kinds of assessments were performed:
(1) For various charge assignment methods, net atomic

charges were calculated for the optimized ground-state geom-
etry. For each material, these ‘optimized conformation’ charges
were then used to compute the electrostatic RMSE and RRMSE
across the training dataset containing 21 geometries. Please
note that the 20 AIMD geometries in this dataset were used to
assess the performance of the optimized conformation charges
and were not involved in the assignment of these charge values.

(2) For various charge assignment methods, net atomic
charges were calculated for each of the 21 geometries of each
material in the training dataset. The performance of the ‘indi-
vidual conformation’ charges is the electrostatic RMSE and
RRMSE values computed for each geometry in the training
dataset using the charge values that were computed from that
same specic chemical geometry. In addition to point-charge-
only models, we also tested electrostatic models containing
DDEC6, QDR-DDEC6, and MBIS atomic charges plus spherical
electron cloud penetration (aka DDEC6_cp, QDR-DDEC6_cp,
and MBIS_cp), plus atomic dipoles (aka DDEC6_ad, QDR-
DDEC6_ad, and MBIS_ad), and both (aka DDEC6_ad_cp,
QDR-DDEC6_ad_cp, and MBIS_ad_cp).14,32,33

(3) For each material in the training dataset, the ‘average
conformation’ charges are the average of the assigned charge of
each atom over the 21 geometries of that samematerial. That is,
the 21 ‘individual conformation’ charges for the training data-
set were averaged to compute the ‘average conformation’
charges. The performance of these average conformation
charges is the electrostatic RMSE and RRMSE values computed
using these ‘average conformation’ charges applied to the
training and validation datasets. Their performance for the
validation dataset can assess whether over-tting occurred,
because the validation dataset contains entirely new geometries
Fig. 9 Raincloud plots for the combined nonperiodic materials data
complexes) for different charge assignment methods using individual co
training dataset.

23246 | RSC Adv., 2025, 15, 23223–23265
that were not involved in computing the average conformation
charges.

(4) For each nonperiodic material, multiframe variants of the
CHELPG, MK, and RESP methods were computed in Mul-
tiwfn90,91 version 3.8 by minimizing the electrostatic RMSE
simultaneously across all 21 geometries of the training dataset.
These were then tested on the training and validation datasets.
Since the grid points used to dene the charge values for each of
these methods differed from the grid points used to assess their
performance, it is possible to obtain RRMSE values >1 if the
charge assignment method suffered from an over-tting
problem.

Raincloud plots were prepared for each kind of assessment
described above. We plotted these via the Python package
PtitPrince125 using the following parameters. The box denotes
the second and third quartiles with the midline indicating the
median. The 5th and 95th percentiles are marked by whiskers.
Each outlier is plotted as a diamond. Each individual datapoint
in the distribution is printed as a jittered point (aka ‘raindrop’)
below the kernel density prole (aka ‘cloud’).

Fig. 9 summarizes results of individual conformation
charges for all nonperiodic materials in the training dataset.
The Hirshfeld charges showed the highest median RMSE and
RRMSE values. The electrostatic models including atomic
dipoles (e.g., DDEC6_ad, QDR-DDEC6_ad, and MBIS_ad) had
better performance than the point-charge-only models.
Including cloud penetration had little impact on the results.
Among the point-charge-only models, the CHELPG, CM5, QDR-
DDEC6, ADCH, DDEC6, and MBIS models performed reason-
ably well; however, each of these methods produced a few
outliers with RRMSE values >1. Although the MK and RESP
methods gave low RMSE and RRMSE values for the individual
conformations in the training dataset, they did not perform well
when transferred across different molecular conformations due
to severe over-tting problems as shown in Fig. 10 and 11.

Fig. 10 contains the raincloud plots showing the perfor-
mance of the optimized conformation charges across all
geometries in the nonperiodic materials training dataset. This
quanties how well the charges optimized on the ground-state
set (i.e., organics, inorganics, heterodiatomics, and transition metal
nformation charges. This contains all materials and geometries in the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Raincloud plots for the combined nonperiodic materials dataset (i.e., organics, inorganics, heterodiatomics, and transition metal
complexes) for different charge assignment methods using the optimized ground-state conformation charges. This contains all materials and
geometries in the training dataset. The bottom row uses an enlarged scale to zoom in on the results.
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structure of each molecule performed across all 21 training set
geometries of that molecule. The over-tting problem of single-
frame ESP-tting methods is apparent.

Fig. 11 contains the raincloud plots showing the perfor-
mance of the average conformation and multiframe charges
across all geometries in the training and validation datasets of
the nonperiodic materials. The multiframe ESP-tting methods
were mostly successful in resolving the over-tting problem of
single-frame ESP-tting methods.

For each point-charge-only model, the distributions of RMSE
and RRMSE were broader than desired. Unfortunately, each and
every one of the point-charge-only models in Fig. 10–12 had
some outliers with RRMSE > 1.0. This strongly shows that better
point-charge-only models still need to be developed, or alter-
natively one should include atomic dipoles in the electrostatic
model. This also shows that constructing consistently accurate
point-charge-only models is a hard problem.

The ESI† contains separate raincloud plots for: (a) organic
molecules, (b) heterodiatomic molecules, (c) inorganic mole-
cules, and (d) transition metal complexes. The following should
be considered when interpreting these raincloud plots for
different material classes. A feature that consistently appeared
across many material classes was more widespread (and thus
more likely to be signicant) than a feature that appeared in
only one or two material classes.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Raincloud plots for the ‘individual conformation’, ‘opti-
mized conformation’, and ‘average conformation’ charges are
displayed in Fig. 12 for the nanoporous crystals. Among the
point-charge-only models, REPEAT and RESP had the lowest
median electrostatic RMSE and RRMSE values for these mate-
rials. For this set of periodic solids, the DDEC6 charges
produced wider electrostatic RMSE and RRMSE distributions
than the CM5 charges. For the DDEC6 and QDR-DDEC6 point
charges, the BN nanotube was a notable outlier as discussed in
the following section. For individual conformations (top
panels), including atomic dipoles (i.e., DDEC6_ad, DDE-
C6_ad_cp, QDR-DDEC6_ad, and QDR-DDEC6_ad_cp) xed this
problem.
5.3 Analysis of the outliers

We dene a ‘double outliers’ as any material that has some
datapoints with RRMSE > 2.0 and some datapoints with RMSE >
5 kcal mol−1 e−1 for any charge scheme, including using indi-
vidual conformation charges, low-energy conformation charges,
multiframe charges, or conformationally-averaged charges
applied to either the training or validation dataset geometries.
To be classied as a ‘double outlier’, the datapoint(s) having
RRMSE > 2.0 do not necessarily have to be the same datapoint(s)
having RMSE > 5 kcal mol−1 e−1. For example, if charge method
#1 gives RRMSE > 2.0 for training geometries #2, 6, and 8 of
a material, while charge method #5 gives RMSE > 5.0 for
RSC Adv., 2025, 15, 23223–23265 | 23247
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Fig. 11 Raincloud plots for the combined nonperiodic materials dataset (i.e., organics, inorganics, heterodiatomics, and transition metal
complexes) using average conformation charges (top and middle rows) and using multiframe charges (bottom row) for different charge
assignmentmethods. Themiddle row uses an enlarged scale to zoom in on the results. These raincloud plots include training and validation data.
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validation geometries #5 and 20 of this material, then this
would be sufficient to classify this material as a ‘double outlier’.

This denition of a ‘double outlier’ identies materials for
which relatively large errors in both RMSE and RRMSE
occurred. This denition intentionally excludes materials for
which the RMSE is small but the RRMSE is large, and also
excludes materials for which the RMSE is large but the RRMSE
is small.

Among the set of materials we examined, the only ‘double
outliers’ were N@C60 and the BN nanotube. There were no
‘double outliers’ amongst the heterodiatomics, inorganics, or
transition metal complexes we studied.

The BN nanotube was part of a series of BN structures (i.e.,
B4N4 cluster, BN nanotube, BN sheet, and h-BN crystal) that
were previously studied as part of the development of the DDEC
methods.30,32–34 The BN nanotube, BN sheet, and h-BN crystal all
have B and N atoms at alternating corners of hexagonal bonded
23248 | RSC Adv., 2025, 15, 23223–23265
rings. The h-BN crystal is composed of a stack of h-BN sheets
with weak dispersion bonds (interlayer B–N bond order = 0.02)
between sheets.38 Due to their similar chemical bonding struc-
tures, one expects the net atomic charges for these three
materials should be similar.38 Indeed, previous studies reported
DDEC6 charges on the B atom equal to +0.83 (BN nanotube),
+0.82 (BN sheet), and +0.82 (h-BN crystal).33,38 A prior study re-
ported electrostatic potential tting charges (aka V-t) for the B
atom of +0.47 (BN nanotube) and +0.86 (BN sheet) that were
optimized to minimize the RMSE and RRMSE.34

As shown in Table 9, the REPEAT and RESP methods gave
good RRMSE values for this material; however, these two
methods suffered an overtting problem as demonstrated by
the relatively large range of assigned N atom charges. For this
material, REPEAT and RESP gave essentially identical results
with N atom charges ranging from −0.447 to −0.108. Each N
atom in the chemical structure has the same covalent bond
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 12 Raincloud plots for the nanoporous materials dataset for different charge assignment methods using individual conformation (top
panels), optimized ground-state conformation (middle panels), and average conformation (bottom panels) charges. Data in the top and middle
panels is for all materials and geometries in the training dataset, while the bottom panels display results for both the training and validation
datasets.
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structure but is not strictly chemically equivalent due to the
dispersion interactions between nanotubes caused by the
stacking between nanotubes in the crystal lattice. For this
reason, one expects small but not large variations in the
computed N atom charges. The range of 0.339 for the REPEAT
and RESP methods seems excessive indicating an overtting
problem. Each of the other four methods (i.e., CM5, DDEC6,
QDR-DDEC6, and Hirshfeld) gave B and N atom charges with
ranges <0.13, and this suggests these methods did not suffer an
overtting problem.

A prior study showed the computed bond orders are essen-
tially identical in the BN nanotube and sheet.38 Because of
© 2025 The Author(s). Published by the Royal Society of Chemistry
symmetry, every atomic dipole is zero in the BN sheet. Atomic
dipoles are small but nonzero in the BN nanotube. However, the
cumulative effect of these atomic dipoles is additive causing an
electrostatic potential difference of ∼0.6 volts between the
inside and outside of the BN nanotube, as shown in Fig. 13.

It is manifestly clear that an atom-centered point-charge-
only model cannot exhibit chemical transferability and low
RRMSE values simultaneously for the BN sheet and BN nano-
tube. Specically, if we adopt a B atom charge value of
approximately +0.86, this minimizes the RRMSE for the BN
sheet but gives a RRMSE of ∼2 for the BN nanotube. On the
other hand, if adopt a B atom charge value of approximately
RSC Adv., 2025, 15, 23223–23265 | 23249
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Table 9 Computed atomic charges for the optimized ground-state BN nanotube structure. The average ± standard deviation are listed as well
as the range (i.e., maximum minus minimum). The electrostatic potential RMSE and RRMSE values are also listed

Method

B charge N charge

RMSE (kcal mol−1 e−1) RRMSEAvg. � st. dev. Range Avg. � st. dev. Range

CM5 +0.221 � 0.030 0.090 −0.221 � 0.018 0.046 2.14 0.64
DDEC6 +0.816 � 0.035 0.093 −0.816 � 0.023 0.068 6.81 2.04
QDR-DDEC6 +0.823 � 0.035 0.093 −0.823 � 0.041 0.124 6.83 2.04
Hirshfeld +0.207 � 0.033 0.096 −0.207 � 0.021 0.052 2.13 0.64
REPEAT +0.268 � 0.051 0.143 −0.268 � 0.120 0.339 0.39 0.12
RESP +0.268 � 0.051 0.143 −0.268 � 0.120 0.339 0.39 0.12

Fig. 13 Contour diagrams of the electrostatic potential distribution for the BN nanotube array. The left panel shows the positive voltages inside
the atoms. The center panel shows the unit cell (gold box) and positions of the boron (pink) and nitrogen (blue) atoms. The right panel shows the
voltages in the empty spaces inside and outside the nanotubes, with the boron (pink) and nitrogen (blue) atom positions overlayed. No atom-
centered point-charge-only model can accurately reproduce the potential difference between the empty space inside and outside the
nanotube. A model that includes atom-centered point charges plus atomic dipoles can approximately reproduce this electrostatic potential
distribution.
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+0.27 (see REPEAT method in Table 9), this approximately
minimizes the RRMSE for the BN nanotube over the grid points
used in this work, but it will give relatively high RRMSE values
for the BN sheet. Note: the difference between V-t B atom
charges for the BN nanotube of +0.47 in the prior study34 and
+0.27 in this study is due to selecting different grid points (for
computing RMSE) and unit cell lengths in these two studies.

A BN nanotube has a cylindrical geometry with opposite
charges on the B and N atoms. Since the net charge is zero and
both atoms are located at the same radial value, every atom-
centered point-charge-only model gives the same electrostatic
potential value in the empty space inside the BN nanotube as in
the empty space outside the BN nanotube. As shown in Fig. 13,
the QM-computed potential difference is∼0.6 volts between the
empty space inside and outside the nanotube in this array.
Since no atom-centered point-charge-only model can produce
such a nonzero potential difference, we conclude that one must
include atomic dipoles to describe such an effect. Higher-order
atomic multipoles (e.g., quadrupoles, octupoles, etc.) may be
optionally included, but they are not strictly required to
describe such an effect.
23250 | RSC Adv., 2025, 15, 23223–23265
When atomic dipoles are included, the RMSE improves to
1.02 (DDEC6_ad) and 0.25 (QDR-DDEC6_ad) kcal mol−1 e–1, and
the RRMSE improves to 0.31 (DDEC6_ad) and 0.07 (QDR-
DDEC6_ad) for the BN nanotube's optimized geometry.
Including both atomic dipoles and cloud penetration gives
RMSE of 1.00 (DDEC6_ad_cp) and 0.22 (QDR-
DDEC6_ad_cp) kcal mol−1 e–1, and the RRMSE equals 0.30
(DDEc6_ad_cp) and 0.06 (QDR-DDEC6_ad_cp). Including cloud
penetration but not atomic dipoles gives RMSE of 6.83
(DDEC6_cp) and 6.84 (QDR-DDEC6_cp) kcal mol−1 e–1, and the
RRMSE equals 2.04 (DDEC6_cp) and 2.05 (QDR-DDEC6_cp) for
the BN nanotube's optimized geometry. Thus, including atomic
dipoles rather than charge penetration results in the most
improvement.

If using a point-charge-only model, moderate RRMSE values
can be obtained by setting the B atomic charge to a comprise
value that is between the V-t values for the BN sheet and
nanotube. For example, if one sets qB=∼0.5, then this can yield
transferable results for the BN sheet and nanotube with RRMSE
< 1.0. There is a higher penalty for over-estimating the point-
charge magnitude than for under-estimating the point-charge
magnitude. Specically, if one sets qB = 0.0, then by
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ra07900k


Table 10 Performance of different charge assignment methods for the N@C60 endohedral complex. The RMSE and RRMSE values for the
validation dataset were computed using the conformation averaged charges or the multiframe charges

Method

N charge training set geoms.
RMSE (kcal mol−1 e−1)
validation set RRMSE validation set

Min. Avg. Max. Avg. � st. dev. Max Avg. � st. dev. Max

ADCH 0.101 0.110 0.118 0.33 � 0.06 0.51 1.06 � 0.07 1.22
CHELPG 0.310 0.321 0.332 0.44 � 0.11 0.62 1.46 � 0.36 2.12
MF-CHELPG 0.325 0.325 0.325 0.47 � 0.14 0.71 1.53 � 0.48 2.43
CM5 0.084 0.091 0.099 0.32 � 0.06 0.54 1.04 � 0.07 1.20
DDEC6 0.131 0.139 0.146 0.35 � 0.07 0.57 1.12 � 0.13 1.40
QDR-DDEC6 0.136 0.143 0.150 0.34 � 0.07 0.56 1.12 � 0.11 1.39
Hirshfeld 0.107 0.112 0.118 0.33 � 0.06 0.55 1.07 � 0.09 1.28
MBIS 0.101 0.106 0.114 0.33 � 0.07 0.55 1.07 � 0.09 1.26
MK 8.70 9.47 10.75 9.0 � 4.7 16.2 30.2 � 16.1 58.5
MF-MK 0.015 0.015 0.015 0.31 � 0.06 0.50 1.00 � 0.01 1.01
RESP 4.74 5.36 6.05 5.1 � 2.6 9.2 17.1 � 9.1 33.0
MF-RESP 0.015 0.015 0.015 0.31 � 0.06 0.50 1.00 � 0.01 1.01
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denition this yields RRMSE = 1.0. Under-estimating the point-
charge magnitudes (as long as one gets the charge-transfer
direction correct) typically yields RRMSE < 1.0, because it does
not over-shoot. In contrast, over-estimating the point-charge
magnitudes can sometimes produce RRMSE > 1.0 due to over-
shooting. Thus, it is ‘safer’ to under-estimate rather than to
over-estimate the point-charge magnitudes when creating an
electrostatic model. This explains why the CM5 model, which
has a smaller rms charge transfer magnitude (see Table 11) than
the DDEC6 model and ESP-tting approaches, also produced
narrower electrostatic RMSE and RRMSE distributions than the
DDEC6 point-charge model. This strongly indicates that it
would be useful to develop a seventh-generation DDEC
approach that has a smaller rms charge transfer magnitude
than the sixth-generation (aka DDEC6) method.

Table 10 summarizes the performance of various point-
charge methods for the N@C60 endohedral complex. In this
work as well as in a prior study, the MK and RESP methods gave
extremely large and chemically implausible values for the N
atom charge in the N@C60 endohedral complex.36 This gave rise
to the humongous RMSE and RRMSE outliers for these two
methods in Fig. 11. For all of the other charge assignment
methods, the maximum validation dataset RMSE for the N@C60

molecule was less than 1 kcal mol−1 e−1.

5.4 Comparing various gures of merit for different charge
assignment methods

The root-mean-squared (rms) charge transfer magnitude of
each charge assignment method was quantied by computing

smethod ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
training_set
atoms

XN
training_set
atoms

A¼1

�
q
avg;method
A � qmethod

	2
vuut (83)

where qavg,method
A is the conformation-average charge

q
avg;method
A ¼ 1

21

X21
j¼1

qA
j;method (84)
© 2025 The Author(s). Published by the Royal Society of Chemistry
In eqn (84), j is the conformation number in the training
dataset, which contained 21 different conformations for each
material. In eqn (83), Ntraining_set

atoms is the number of atoms in the
training set. The combined nonperiodics training set contained
1094 atoms. In eqn (83), �qmethod is the overall average atomic
charge in the training set for that particular charge assignment
method:

qmethod ¼
1

N
training_set
atoms

XN
training_set
atoms

A¼1

q
avg;method
A (85)

Because the training set contains some charged molecules (see
Table 7), �qmethod is close to but not exactly equal to zero. For the
multiframe charges, smethod and �qmethod were computed using
analogs of eqn (83) and (85) that replaced qavg,method

A with
qmultiframe,method
A .
As shown in Table 11, the ADCH and CM5 methods gave

substantially smaller rms charge transfer magnitudes than the
multiframe ESP (i.e., MF-CHELPG, MF-MK, and MF-RESP)
methods. The DDEC6 and QDR-DDEC6 methods gave slightly
higher rms charge transfer magnitudes than the multiframe
ESP methods. The MBIS and MK methods substantially over-
estimated the rms charge transfer magnitude, while the
Hirshfeld method severely under-estimated the rms charge
transfer magnitude.

As explained in Manz's article introducing the Seven
Conuence Principles, the summed correlations (Sa) and the
number of strong correlations (i.e., number of Uab > 0.9) can be
used to identify the most conuent descriptor within a posi-
tively correlated descriptor group.36 In the present work, we
dened the covariance matrix La,b and the correlation matrix
Ua,b between two charge assignment methods a and b as:

La;b ¼ 1

N
training_set
atoms

XN
training_set
atoms

A¼1

ðqAavg;a � qaÞ
�
qA

avg;b � qb
	

(86)

Ua;b ¼ La;b

sasb

(87)
RSC Adv., 2025, 15, 23223–23265 | 23251
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Table 11 Various figures of merit for several methods that assign atomic charges. The rms charge transfer magnitude, sensitivity of NACs,
normalized sensitivity of NACs, and summed correlations were computed across the training datasets containing all of the nonperiodicmaterials.
The listed validation dataset median RRMSE is using the conformation-averaged or multiframe (MF) charges. The listed training dataset median
RRMSE is for all training dataset geometries using the optimized conformation charges

Method

rms Charge
transfer
magnitude (e)

Median RRMSE
validation
dataset

Median RRMSE
training
dataset

Sensitivity
of NACs (e)

Normalized
sensitivity of
NACs

Summed
correlations
(Sa)

Number
(Uab > 0.9)

Electron
density
partition?

Works for
dense crystalline
solids?

ADCH 0.246 0.278 0.283 0.033 0.133 10.80 8 No ab

CHELPG 0.371 0.263 0.275 0.048 0.128 11.15 7 No No
MF-CHELPG 0.356 0.257 — — — 11.12 8 No No
CM5 0.254 0.297 0.297 0.013 0.051 10.86 8 No Yesbc

DDEC6 0.388 0.317 0.316 0.019 0.050 11.13 10 Yes Yesb

QDR-DDEC6 0.379 0.265 0.266 0.023 0.060 11.27 10 d Yesb

Hirshfeld 0.163 0.492 0.490 0.008 0.052 10.73 9 Yes Partlybe

MBIS 0.448 0.348 0.345 0.024 0.053 11.12 10 Yes bf

MK 0.470 0.251 0.257 0.063 0.133 9.45 2 No No
MF-MK 0.337 0.235 — — — 11.21 10 No No
RESP 0.399 0.252 0.260 0.063 0.157 10.61 2 No No
MF-RESP 0.335 0.238 — — — 11.20 10 No No

a To the best of our knowledge, the ADCH method has not yet been applied to dense crystalline solids. b Electrides are materials in which an
electron not associated with a particular atom acts as an anion. These charge partitioning methods are not expected to give reliable results for
electrides. c The CM5 method works for most dense solids at ambient pressures; however, it overestimates charge transfer magnitudes in some
dense solids under high pressures (see Table 12). d The QDR-DDEC6 charges do not explicitly equal an integrated stockholder-partitioned
electron density distribution; however, they are derived from the DDEC6 stockholder-partitioned atom-in-material charges and atomic dipoles.
e The Hirshfeld method typically underestimates the charge transfer magnitudes. f MBIS was applied to a small number of dense solids in ref.
14; however, the MBIS method has not yet been widely tested on a large number of dense solids.
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Sa ¼
X
b

Ua;b (88)

where sa and �qa are computed via eqn (83) and (85), respec-
tively. Fig. 14 illustrates the correlation matrix between the 12
charge assignment methods listed in Table 11. Among these 12
methods, the QDR-DDEC6, MF-MK, and MF-RESP charges were
the most conuent, which means these methods are the best
representatives of the entire descriptor group.

The following key points should be kept in mind. The mul-
tiframe ESP (i.e., MF-CHELPG, MF-MK, and MF-RESP) charges
cannot be computed for a single geometry but instead require
simultaneously optimizing the atomic charge values across
a training set containing many geometries (conformations) of
Fig. 14 Correlation matrix between 12 methods for assigning net atom
conformations, correlations between the conformation-averaged charge
fitted charges) of the electrostatic potential fittingmethods. Stoplight colo
0.8.

23252 | RSC Adv., 2025, 15, 23223–23265
the same material. In contrast, the QDR-DDEC6 charges can be
computed for individual geometries of a material. This makes
the QDR-DDEC6 charges more convenient to compute than
multiframe ESP charges.

In the present work, we dened the conformational sensi-
tivity of each charge assignment method as

Sensitivitya ¼ 1

N
training_set
atoms

XN
training_set
atoms

A¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

21

X21
j¼1

�
qA

j;a � qA
avg;a

	2vuut (89)

The Hirshfeld and CM5 methods that assign relatively small
magnitudes to the net atomic charges have small conforma-
tional sensitivities. Thus, it is also useful to dene a normalized
ic charges in molecules. For methods assigning charges to individual
values were used. MF denotes themultiframe variants (i.e., multiframe-
rs indicate the correlation values: green$ 0.9, 0.8# yellow < 0.9, red <

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ra07900k


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 9

/1
4/

20
25

 4
:3

2:
54

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
conformational sensitivity which divides the sensitivity by the
rms charge transfer magnitude:

Normalized_sensitivitya ¼ sensitivitya
sa

(90)

The normalized conformational sensitivity is unitless. The
DDEC6, CM5, and Hirshfeld methods had the smallest
normalized sensitivities. The ESP-tting methods (e.g., MK,
RESP, CHELPG) had the largest sensitivities and large normal-
ized sensitivities.

Among methods that assign atomic charges to individual
geometries of a material, there is a tradeoff between the
conformational sensitivity of the atomic charge values and the
accuracy of the corresponding atom-centered point-charge
model for approximately reproducing the electrostatic poten-
tial around the material. Analogous to ref. 14, this tradeoff is
visualized by the Pareto plots shown in Fig. 15. Examining
Fig. 15, the QDR-DDEC6 and CM5 methods provided the best
tradeoff between the conformational sensitivity of the atomic
charge values and the accuracy of the corresponding atom-
centered point-charge model for approximately reproducing
the electrostatic potential around the material.

For comparison, Fig. 15 also includes results for the DDEC6,
MBIS, and QDR-DDEC6 methods with atomic dipoles (label-
ed_ad), spherical cloud penetration (labeled_cp), and both
(labeled_ad_cp). Cloud penetration was negligible, because the
grid points used to compute the RRMSE were almost entirely
outside the material's electron density distribution. Cloud
penetration would become important at shorter distances.
Including atomic dipoles reduced the RRMSE substantially.
MBIS_ad, DDEC6_ad, and QDR-DDEC_ad all gave lower median
RRMSE than the ESP-tted point-charge-only models (MK,
RESP, CHELPG). Among all of these models, the lowest median
RRMSE were 0.066 (QDR-DDEC6_ad_cp) and 0.068 (QDR-
DDEC6_ad).

Table 11 lists the median RRMSE for the nonperiodics vali-
dation set using the conformation averaged or multiframe
charges. The multiframe ESP methods performed well on this
metric. The QDR-DDEC6, ADCH, and CM5 methods also per-
formed well on this metric. Table 11 also lists the median
RRMSE for the nonperiodics training set using the optimized
conformation charges. Although the single-frame ESP methods
performed well on both median RRMSE metrics, they are not
recommended owing to the over-tting problem that causes
high conformational sensitivity (see Fig. 15) and some extreme
outliers (see Fig. 10). The QDR-DDEC6, ADCH, and CM5
methods performed well on this metric and avoid extreme
outliers in RRMSE. As shown in Fig. 15, the QDR-DDEC6 and
CM5 methods give a good combination of RRMSE accuracy and
low conformational sensitivity.

In addition to approximately reproducing the electrostatic
potential surrounding a material, net atomic charges are also
important descriptors of the chemical states of atoms in
materials. A key consideration is whether the charge assign-
ment method works for dense solids. Because dense crystalline
solids lack a van der Waals surface, ESP tting methods that
optimize the net atomic charge values to approximately
© 2025 The Author(s). Published by the Royal Society of Chemistry
reproduce the QM-computed electrostatic potential outside
a material's van der Waals surface do not work for dense crys-
talline solids.

Another key consideration is whether the method explicitly
partitions the material's electron cloud into atom-in-material
electron density distributions that sum up to the material's
total electron density distribution (see eqn (1)). This is
extremely important for two reasons. First, it naturally places
bounds on the range of values the net atomic charges can have.
Because electron density partitioning approaches assign a non-
negative number of electrons to each atom in the material, they
assign a net atomic charge #+7.0 to the nitrogen atom in
N@C60. In stark contrast, ESP ttingmethods sometimes assign
chemically impossible values to the net atomic charges. For
example, as shown in Table 10, the MK method assigned the
chemically impossible values of 8.70–10.75 to the net atomic
charge of the nitrogen atom in N@C60. Second, some electron
density partitioning methods provide access to many chemical
descriptors beyond net atomic charges, such as atom-in-
material multipoles,42,43,51,52 bond orders,37,38 overlap pop-
ulations,59,126 atomic spin moments,37,65 short-range repulsion
parameters,17–19 polarizabilities and dispersion coeffi-
cients,20,21,56,127,128 etc.31

Table 12 lists the computed CM5, DDEC6, QDR-DDEC6,
Hirshfeld, and QTAIM net atomic charges for the sodium
chloride crystals illustrated in Fig. 16. This is a challenging test
set, because some of these dense crystalline solids are under
extremely high pressures. Such extremely high pressures
shorten the bond lengths. Because the CM5 correction to the
Hirshfeld charges decays exponentially with increasing
distance,75 for highly compressed bonds the CM5 correction
sometimes exceeds chemically reasonable values. For example,
as shown in Table 12, the CM5 charge on the sodium atom in
some of the compressed sodium chloride crystals exceeded
+1.0, which means that some of the Na core electrons were
mistakenly assigned to other atoms in the material. Our
computational tests as well as prior literature75,129 showed the
CM5 method oen performs well for typical bond lengths and
typical coordination numbers, which are close to the conditions
for which the CM5 method was parameterized. However, for
compressed bond lengths (see Table 12) or unusually high
coordination numbers (e.g., Cs@C60 molecule in ref. 32), the
CM5 method sometimes assigns some of the core electrons to
the wrong atom in a material.

We re-iterate that the QDR-DDEC6 charges are not a chem-
ical correction to the DDEC6 charges, nor are the QDR-DDEC6
charges intended to better represent the chemical states of
atoms in materials compared to the DDEC6 charges. Rather, the
QDR-DDEC6 charges are intended to improve the electrostatic
potential representation by partly resorbing the atom-in-
material dipole and quadrupole terms into the point-charge
term when the polyatomic multipole expansion is truncated at
the monopole order. Previous work showed that among a set of
charge assignment methods intended to represent a broad
range of chemical and electrostatic properties related to the
charges of atoms in materials, the DDEC6 charges were the
most representative (i.e., most conuent).35,36 That work did not
RSC Adv., 2025, 15, 23223–23265 | 23253
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Fig. 15 Pareto plot illustrating trade-offs between the accuracy for reproducing the electrostatic potential (median RRMSE plotted on x-axis) and
the conformational sensitivity (rms charge deviation plotted on y-axis) for several methods that assign atomic charges in nonperiodic materials.

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 9

/1
4/

20
25

 4
:3

2:
54

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
include the QDR-DDEC6 charges which were not yet developed
at the time. In Table 11, the QDR-DDEC6 charges have a higher
Sa value than the DDEC6 charges, and thus are more conuent
amongst that descriptor group, which focuses primarily on
charge assignment methods intended to approximately repro-
duce the electrostatic potential surrounding materials. Hence,
we interpret the DDEC6 charges as approximating the chemical
states of atoms in materials, while the QDR-DDEC6 charges
slightly improve the corresponding atom-centered point-charge
models for approximating the electrostatic potential
surrounding materials.
23254 | RSC Adv., 2025, 15, 23223–23265
6. Discussion

Here, we discuss the issues of cloud penetration, polarization,
and dipole moments when modeling nonbonded interactions
in classical forceelds. Each of these issues have some unusual
properties that require clarication.

Ringrose et al. previously showed that forceelds using
DDEC3, DDEC6, and MBIS nonpolarizable point-charge models
without cloud penetration can be optimized to accurately
reproduce the liquid densities and heats of vaporization of
small organic molecules containing various functional
groups.13 This does not imply that polarization and/or charge
penetration effects are negligible. Rather, it means that the
average impact of those effects can be effectively absorbed into
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 12 CM5, DDEC6, QDR-DDEC6, Hirshfeld, and QTAIM net atomic charges of sodium chloride crystals. QTAIM results from ref. 32. We
computed the CM5, DDEC6, QDR-DDEC6, and Hirshfeld charges from the electron density files generated in ref. 32

Atom type Number of atoms CM5a DDEC6a QDR-DDEC6a Hirshfelda QTAIMa

Cmmm-Na2Cl crystal at 180 GPa
Na(1) 2 0.693 (0.690) 0.317 (0.338) 0.202 (0.221) 0.107 (0.104) b

Na(2) 2 0.855 (0.862) 0.546 (0.565) 0.482 (0.499) 0.116 (0.123) b

Na(3) 4 2.200 (2.167) 0.848 (0.846) 0.935 (0.934) 0.205 (0.172) b

Cl(1) 4 −2.975 (−2.943) −1.280 (−1.298) −1.277 (−1.294) −0.316 (−0.285) b

Cmmm-Na3Cl2 crystal at 280 GPa
Na(1) 2 1.436 (1.437) 0.953 (0.888) 0.968 (0.906) 0.179 (0.180) 0.780 (0.560)
Na(2) 4 2.492 (2.460) 0.870 (0.872) 0.832 (0.809) 0.235 (0.204) 0.643 (0.291)
Cl(1) 4 −3.210 (−3.179) −1.346 (−1.316) −1.316 (−1.262) −0.325 (−0.294) −1.033 (−0.571)

Imma-Na2Cl crystal at 300 GPa
Na(1) 8 2.180 (2.152) 0.813 (0.790) 0.830 (0.806) 0.205 (0.178) 0.676 (0.317)
Cl(1) 4 −4.359 (−4.305) −1.625 (−1.580) −1.660 (−1.612) −0.410 (−0.356) −1.351 (−0.633)

P4/m-Na3Cl2 crystal at 140 GPa
Na(1) 4 1.016 (1.020) 0.803 (0.774) 0.796 (0.764) 0.131 (0.135) b

Na(2) 1 1.147 (1.150) 0.954 (0.904) 0.954 (0.909) 0.187 (0.190) b

Na(3) 1 0.400 (0.404) −0.307 (−0.221) −0.388 (−0.308) −0.028 (−0.024) b

Cl(1) 4 −1.402 (−1.409) −0.965 (−0.945) −0.938 (−0.915) −0.171 (−0.177) b

P4/mmm-Na3Cl crystal at 140 GPa
Na(1) 1 0.224 (0.229) −0.244 (−0.196) −0.300 (−0.254) −0.017 (−0.013) 0.060 (b)
Na(2) 2 0.641 (0.644) 0.475 (0.479) 0.455 (0.456) 0.075 (0.078) 0.531 (b)
Cl(1) 1 −1.506 (−1.516) −0.706 (−0.761) −0.609 (−0.658) −0.133 (−0.143) −1.122 (b)

P4/mmm-Na2Cl crystal at 120 GPa
Na(1) 1 1.084 (1.088) 0.925 (0.889) 0.917 (0.885) 0.184 (0.189) 0.756 (b)
Na(2) 1 0.183 (0.187) −0.239 (−0.201) −0.277 (−0.246) −0.023 (−0.019) 0.041 (b)
Na(3) 2 0.623 (0.625) 0.485 (0.487) 0.474 (0.468) 0.072 (0.074) 0.511 (b)
Cl(1) 2 −1.256 (−1.263) −0.827 (−0.832) −0.793 (−0.788) −0.152 (−0.159) −0.909 (b)

Pm3-NaCl7 crystal at 200 GPa
Na(1) 1 1.763 (1.771) 0.896 (0.871) 0.888 (0.863) 0.107 (0.114) 0.883 (0.652)
Cl(1) 1 0.056 (0.056) 0.202 (0.196) 0.255 (0.244) 0.101 (0.101) 0.090 (0.088)
Cl(2) 6 −0.303 (−0.304) −0.183 (−0.178) −0.190 (−0.184) −0.035 (−0.036) −0.162 (−0.123)

Pm3m-NaCl crystal at 140 GPa
Na(1) 1 1.237 (1.242) 0.964 (0.912) 0.964 (0.912) 0.189 (0.194) 0.862 (0.673)
Cl(1) 1 −1.237 (−1.242) −0.964 (−0.912) −0.964 (−0.912) −0.189 (−0.194) −0.862 (−0.673)

NaCl crystal at ambient pressure
Na(1) 1 0.425 (0.424) 0.858 (0.847) 0.858 (0.847) 0.210 (0.207) 0.840 (0.829)
Cl(1) 1 −0.425 (−0.424) −0.858 (−0.847) −0.858 (−0.847) −0.210 (−0.207) −0.840 (−0.829)

Pm3n-NaCl3 crystal at 200 GPa
Na(1) 2 1.780 (1.788) 0.960 (0.907) 0.960 (0.907) 0.138 (0.145) 0.913 (0.653)
Cl(1) 6 −0.593 (−0.596) −0.320 (−0.302) −0.320 (−0.302) −0.046 (−0.048) −0.304 (−0.218)

Pnma-NaCl3 crystal at 40 GPa
Na(1) 4 0.735 (0.737) 0.841 (0.850) 0.838 (0.847) 0.114 (0.116) 0.815 (0.770)
Cl(1) 4 −0.446 (−0.447) −0.589 (−0.595) −0.579 (−0.586) −0.151 (−0.152) −0.530 (−0.501)
Cl(2) 4 −0.046 (−0.046) 0.054 (0.055) 0.054 (0.056) 0.062 (0.062) −0.030 (−0.028)
Cl(3) 4 −0.244 (−0.245) −0.306 (−0.310) −0.312 (−0.317) −0.026 (−0.027) −0.255 (−0.242)

a Values listed for 2 frozen Na core electrons; values in parentheses for 10 frozen Na core electrons. b QTAIM NACs cannot be reported because
QTAIM analysis yields more compartments than atoms.
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the forceeld parameterization protocol. Specically, the point
charges and/or Lennard-Jones parameters can be ne-tuned via
scaling relationships to effectively absorb the average
© 2025 The Author(s). Published by the Royal Society of Chemistry
polarization and/or charge penetration effects by optimizing the
forceeld to reproduce experimental liquid densities and heats
of vaporization.13
RSC Adv., 2025, 15, 23223–23265 | 23255
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Fig. 16 Sodium chloride crystal structures. The lines mark the unit cell boundaries (reproduced with permission from ref. 32).
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Without loss of generality, the electrostatic cloud penetra-
tion energy between atom A and atom image b can be conve-
niently decomposed into the following three contributions:

(1) The neutral electric charge distribution
ðNcloud_model

A @~RA � rcloud_model
A ½~rA�Þ electrostatically interacting

with the atomic point charge qB@~Rb.
(2) The neutral electric charge distribution

ðNcloud_model
B @~Rb � rcloud_model

B ½~rb�Þ electrostatically interacting
with the atomic point charge qA@~RA.
23256 | RSC Adv., 2025, 15, 23223–23265
(3) The neutral electric charge distribution
ðNcloud_model

A @~RA � rcloud_model
A ½~rA�Þ electrostatically interacting

with the neutral electric charge distribution
ðNcloud_model

B @~Rb � rcloud_model
B ½~rb�Þ.

Here, rcloud_model
A ½~rA� is any model that approximately repro-

duces the electron density of atom A in its tail region:

for large rA : rcloud_model
A ½~rA�z rA½~rA� (91)

The number of electrons in the cloud model for atom A is
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Ncloud_model
A ¼

þ
rcloud_model
A ½~rA�d3~rA (92)

The neutral electric charge distribution
ðNcloud_model

A @~RA � rcloud_model
A ½~rA�Þ contains the positive point

charge value Ncloud_model
A located at the nuclear position of atom

A plus the diffuse negatively charged electron cloud
rcloud_model
A ½~rA�. Here, qB@~Rb denotes a point charge of value qB
located at the nuclear position of atom image b, where qB is the
net atomic charge assigned by any particular charge assignment
method (e.g., DDEC6, MBIS, etc.).

rcloud_model
A ½~rA� is typically modeled by the spherically

symmetric exponential distribution14,32

rcloud_model
A ½rA� ¼ exp½aA � bArA� (93)

When using DDEC6 atomic population analysis, the electron
cloud parameters (aA, bA) for atom A are computed by linear
regression of ln[ravgA [rA]] over a suitable range of rA values in
atom A's tail region.130 When using MBIS population analysis,
rcloud_model
A [rA] equals the most diffuse MBIS Slater function
(aka the MBIS valence Slater function) located on atom A.14,19

Because they have relatively small spatial extents, the MBIS core
Slater functions contribute negligibly to the cloud penetration
energy.14,19

As shown by our computed results for the DDEC6 and MBIS
population analysis methods including cloud penetration, the
contributions (1) and (2) listed above are negligible at common
inter-atomic separation distances. At shorter than equilibrium
inter-atomic separation distances, one could damp the elec-
trostatic interaction between qA and qB to approximate contri-
butions (1) and (2) at short distances.131

What our computed results for the DDEC6 and MBIS pop-
ulation analysis methods including cloud penetration did not
show is that contribution (3) listed above is negligible at
common inter-atomic separation distances. Notably, contribu-
tion (3) is the interaction between two neutral electric charge
distributions. Here, the term ‘neutral electric charge distribu-
tion’ means a charge distribution whose net integrated electric
charge is zero.

When parameterizing classical forceelds, the damped
dispersion energy, the short-range cloud penetration energy,
and the short-range repulsion energy can be combined into an
effective dispension model potential (dispension = damped
dispersion + cloud penetration + short-range repulsion). The
Lennard-Jones potential132 is an example of a dispension model
potential. More sophisticated (and hopefully more accurate)
dispension model potentials can also be conceived.133 We are
not proposing that cloud penetration effects be neglected when
parameterizing classical forceelds, but rather that they be
included in the dispension model potential parameterization.
This strategy is simpler than more complicated approaches19,46

that include a separate cloud penetration potential in the
parameterized classical forceeld. This is an important aspect
of our proposed forceeld parameterization approach, which is
still a work in progress.
© 2025 The Author(s). Published by the Royal Society of Chemistry
We now discuss ways to include polarization effects in
electrostatic models used to construct classical forceelds.
These polarization effects can be included either explicitly or
implicitly.134 Please see several reviews3,26,28,135 and a special
issue136 for a thorough discussion of this topic.

Truncated conjugate gradient (TCG) and extended
Lagrangian approaches have been developed to provide trac-
table dynamics of the interacting polarization during MD
simulations.137–139 One of us introduced the computationally
robust and linear-scaling failsafe conjugate residual (FCR)
algorithm that readily solves the full polarization equations
even for millions of atoms; however, this approach would be
computationally expensive since it needs to be performed at
every MD timestep.20

On the other hand, nonpolarizable forceelds are moder-
ately difficult to accurately parameterize but computationally
cheap to use. To obtain reasonably accurate results, nonpolar-
izable xed-charge forceelds must be parameterized to include
the average polarization effect(s), and many strategies have
been developed to do this.39,140,141 A typically effective approach
is to use atom-centered point-charge values that are approxi-
mately halfway between those for a molecule in vacuum and
a molecule in the condensed (e.g., liquid) phase.134,140–142 MD
calculations containing explicit solvent molecules could be
performed to simulate the molecule in the condensed (e.g.,
liquid) phase.134,140 Alternatively, one could simulate the mole-
cule using an effective solvent model such as a polarizable
continuum model (PCM) that places the molecule in a cavity
surrounded by an effective dielectric constant (e.g., k = 4).39,143

We prefer a ‘polarlite’ approach to including polarization
effects in classical forceelds. This approach incorporates
polarization without ‘back polarization’.144,145 In other words,
the polarizability of each atom interacts with the permanent
atomic charges and permanent atomic multiple moments (e.g.,
permanent atomic dipole moments) of the other atoms (except
those in {excludedA}) but the induced dipoles do not interact
with other induced dipoles.145,146 We believe this will make it
easier to automate polarlite forceeld parameterization
compared to nonpolarizable forceeld parameterization,
because explicitly incorporating atomic polarizabilities into the
forceeld should allow the gas-phase (vacuum) values of the
permanent atom-in-material charges, dipoles, and polarizabil-
ities to be used. Here, {excludedA} is the set of atoms (e.g., 1–2,
1–3, and (optionally) 1–4 neighbors) whose nonbonded inter-
actions with atom A are excluded from the parameterized
forceeld.

In general, the QM-computed molecular dipole moment
includes contributions from both the atom-in-material charges
and the atomic dipoles. Some charge assignment methods
optimize the atom-in-material charges to ‘strictly’ reproduce the
molecular dipole moment, which means the summed contri-
bution to the molecular dipole moment from the atomic dipoles
(if any) is exactly zero. The ADCHmethod studied in this work is
an example of such an approach. Constraints can be added to
the electrostatic potential tting methods (e.g., CHELPG, MK,
RESP) to ‘strictly’ reproduce the molecular dipole moment;147

however, this is not done most of the time. Recently, other
RSC Adv., 2025, 15, 23223–23265 | 23257
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methods have been published including ADCHa-I and multi-
pole constrained MBIS. The ADCHa-I method involves an
interpolation between Hirshfeld and Iterative Hirshfeld76 and
optimizes charges to reproduce the molecular dipole moment.16

The multipole constrained MBIS method optimizes the
assigned atomic charges and/or atomic dipoles to ‘strictly’
reproduce the molecular dipole and/or molecular quadrupole
moment.94 All of those approaches are subject to some caveats;
for example, atom-centered point-charges in a planar molecule
cannot exactly reproduce any out-of-plane dipole moment
component such as might occur if the molecule is placed in an
external electric eld. Some initial published tests of those
methods gave encouraging results for approximately repro-
ducing molecular electrostatic potentials.16,94

One canmake the argument that the atom-in-material dipole
moment is an important property that should not necessarily be
exactly zero even when using a hypothetical ‘perfect’ charge
partitioning approach. In Section 5.3 above, the BN nanotube
example illustrated the importance of including atomic dipoles
in the electrostatic model. In previous work, Richter et al.
showed that QM-computed infrared (IR) peak intensities for
out-of-plane vibrations are precisely reproduced by geometry-
dependent atomic charges plus atomic dipoles computed
using quantum theory of atoms in molecules (QTAIM49,50),
Hirshfeld, and DDEC6 methods147 (note that this would also be
true for MBIS and other stockholder partitioning approaches).
They showed these IR peak intensities for out-of-plane vibra-
tions were not approximately reproduced by the ADCH and
constrained CHELPG point-charge models for which the atomic
charges were optimized to exactly reproduce the molecular
dipole moment.147

Accordingly, the goals of our QDR scheme are that the atom-
in-material dipole moments should be small in magnitude (but
not necessarily zero) and that they should be approximately
balanced so that the point-charge-only model approximately
(albeit not strictly) reproduces the molecular dipole moment.
We believe this same goal could be used to design improved
stockholder-partitioning schemes. The cMBIS_c-d scheme of
ref. 94 does something similar to this, except that it imposes the
constraint that the point-charge-only model strictly reproduces
the molecular dipole moment.

7. Conclusions

Some key advantages of electron density partitioning
approaches were mentioned in the Introduction. Electron
density partitioning approaches are preferable, because they
allow a host of valuable atom-in-material properties to be
computed. Among the three stockholder partitioning methods
studied here, overall the DDEC6 method performed substan-
tially better than the Hirshfeld method and slightly better than
the MBIS method. Hirshfeld charges are typically too small in
magnitude.75–77

Electrostatic-potential (ESP)-tted charges typically per-
formed well with relatively low median values of the RMSE and
RRMSE. They also exhibited 3rd quartile (i.e., 75% of values)
that were relatively low compared to the other approaches.
23258 | RSC Adv., 2025, 15, 23223–23265
However, occasionally the single-frame ESP-tted methods
yielded gigantic RRMSE values, and this indicates that such
approaches are occasionally plagued by over-tting problems
for materials containing buried atoms. In agreement with prior
studies, we found that multiframe ESP-tted charges, which
minimize the RMSE simultaneously across multiple geometric
conformations of a material, are more robust than single-frame
ESP charges optimized for an individual geometry.29

ESP-tted charges require a van der Waals surface enclosing
the material's electron density distribution. Consequently,
those charge assignment methods do not work for dense
nonporous solids under high pressures. As shown in Table 12,
well-designed electron-density partitioning methods can assign
atomic charges for such materials so that core electrons are
properly retained on each corresponding host atom.

The ADCH method includes adjustments to the Hirshfeld
atomic charges to reproduce the molecular dipole moment.86

The CM5 method includes empirical charge adjustments to the
Hirshfeld atomic charges to approximately reproduce reference
molecular dipole moments.75 Both of these methods performed
reasonably well for molecular systems. The CM5 method also
performed reasonably well for the nanoporous crystals. The
ADCH method was not tested here for the periodic crystals,
because it has not yet been implemented in the soware
programs we used to perform charge analysis for the periodic
crystals.

In this work, we introduced a new quadrupole-dipole-
resorption (QDR) method that has the following advantages:

(1) The main goal of the QDR method is to adjust the atom-
centered point-charge values so that they more accurately
reproduce the electrostatic potential surrounding the material.
This is done by partly resorbing the atomic dipole and quad-
rupole moments into the point-charge values. For molecules,
this also improves the accuracy of the point-charge model for
reproducing the molecule's total dipole and traceless quadru-
pole moments.

(2) Our QDR method uses stockholder-partitioned net
atomic charges, AIM dipole moments, AIM quadrupole
moments, and overlap populations as inputs. The AIM dipole
and quadrupole moments are partly resorbed using loss func-
tions that minimize deviations between the QDR atomic
charges and the stockholder-partitioned AIM charges while also
partly resorbing atomic dipoles and/or quadrupoles into the
atomic charge values.

(3) Since it is related to an underlying electron-density par-
titioning method (e.g., DDEC6), this QDR scheme retains access
to a host of AIM properties including bond orders, polarizabil-
ities, dispersion coefficients, electron cloud parameters, atomic
spin moments, etc.

(4) Compared to multiframe ESP-tting charge assignment
schemes, this QDR method is computationally cheaper and has
the advantage that it can be applied to individual geometries of
a material instead of requiring an ensemble of geometries to
compute the atomic charge values. Compared to single-frame
ESP-tting charge assignment schemes, this QDR method
exhibits much better conformational transferability of the
assigned atomic charge values. Moreover, both the multiframe
© 2025 The Author(s). Published by the Royal Society of Chemistry
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and single-frame ESP-tting methods are highly sensitive to the
choice of grid points; for example, CHELPG and MK atomic
charges may be substantially different for the same molecule.

(5) Our QDR scheme provides a convenient approach to
extending electrostatic models for classical forceelds beyond
the atom-centered point-charge models. Since it yields the
residual atomic dipole and quadrupole moments for each atom
in the material, if and where needed the electrostatic model
could be conveniently extended by including atom-centered
dipole moments and/or offsite charges (e.g., BN nanotube and
homodiatomics). Our results showed that in nearly all cases, it
would not be necessary to extend the electrostatic model beyond
the atomic charges + atomic dipoles order, because the atomic
quadrupoles are nearly completely resorbed into the atomic
charges + atomic dipoles terms.

(6) Our approach is designed to be used in classical force-
elds that include explicit polarization. Since implicitly polar-
ized forceelds rely to some extent on error cancellation, we
believe that using explicit polarization could make classical
forceelds easier to accurately parameterize.

A key question is whether the current atom-centered point-
charge models have reached the best achievable tradeoff
between conformational sensitivity and accuracy for reproduc-
ing the electrostatic potential surrounding individual confor-
mations of a material. This tradeoff was visualized using the
Pareto plots shown in Fig. 15. Amongst current point-charge
models, the QDR-DDEC6, CM5, and DDEC6 methods gave the
best combination of conformational sensitivity and accuracy for
reproducing the electrostatic potential surrounding individual
conformations across the nonperiodics dataset.

While the DDEC6 method performed reasonably well across
a broad range of material types, the following evidence suggests
that it is slightly over-polarizing on average: (i) the DDEC6
point-charge model over-estimated the molecular dipole
moments by 9% on average, (ii) the conformationally-averaged
DDEC6 atomic charges were 9% larger in rms magnitude than
the MF-CHELPG charges and 16% larger than the MF-MK
charges, and (iii) the raincloud plots showed that the DDEC6
point charges have a slightly broader distribution of electro-
static potential RMSE and RRMSE values than the CM5 point
charges.

On the other hand, the CM5 charges are under-polarized on
average. For the nonperiodics dataset, the CM5 method had
a rms charge transfer magnitude that was 29% smaller thanMF-
CHELPG and 25% smaller than MF-MK, and the CM5 point-
charge model under-estimated the molecular dipole moments
by 4.6% on average. As shown in Table 11, the MBIS charges are
more over-polarized than DDEC6 charges. For the nonperiodics
dataset, the MBIS method had a rms charge transfer magnitude
that was 26% larger than MF-CHELPG and 33% larger than MF-
MK. As shown in Table 8, the MBIS point-charge model over-
estimated the molecular dipole moments by 16.7% on average.

The QDR-DDEC6 charges xed most of these issues;
however, the rms charge transfer magnitude of the QDR-DDEC6
method was 6% higher than the MF-CHELPG atomic charges
and 12% higher than the MF-MK charges. Moreover, the QDR-
DDEC6 point-charge models applied to the nanoporous
© 2025 The Author(s). Published by the Royal Society of Chemistry
crystals exhibited broader electrostatic RRMSE distributions
than the REPEAT and RESP ESP-tted point-charge models.
This strongly indicates that the QDR-DDEC6 point charges are
slightly over-polarized (by approximately ∼10%) on average.

In this work, all of the atom-centered point charge models
did not perform as well as one might hope for in some mate-
rials. In the nonperiodic materials, even the better-performing
approaches exhibited some outliers with RRMSE > 1 values
for some geometric conformations of some materials. This
detailed analysis of many performance metrics indicates that
even better-performing charge assignment methods could
potentially be developed in future work.

Moreover, onemay recommend going beyond atom-centered
point-charges by including atom-centered point dipoles (or off-
site charges) in the electrostatic model. Atomic multipoles have
been included in some prior works such as the AMOEBA
forceeld and QTAIM-based forceelds.3,25,42,51,52 Off-site
charges have been included for some molecules in some prior
forceelds.13,39,66,67,148 Notably, for some materials (e.g., BN
nanotube, homodiatomics, some atom types149 in organic
compounds, etc.) including atomic dipoles (or off-site charges
or other multipoles) is required to accurately reproduce the
electrostatic potential surrounding the material.

A key advantage of electron-density-partitioning approaches
is that they provide a way to improve the electrostatic model by
including atomic dipoles. Including permanent atomic dipoles
(and/or atomic quadrupoles) in electrostatic models for exible
forceelds is challenging due to their directional orientation.150

Since DDEC electron density partitioning has a number of
advantages,31,34,37 we recommend that future work explore the
possibility of developing electrostatic models for exible force-
elds that include QDR-DDEC atom-centered point charges
plus atom-centered point dipoles. Tests performed in this work
for individual geometric conformations (see Fig. 9, 12, and 15)
indicate substantial reductions in the electrostatic RMSE and
RRMSE when QDR-DDEC6 atomic dipoles are included.
However, future work is required to rene automated atom-in-
material dipole orientation across multiple geometric confor-
mations as required for their use in exible forceelds.

Data availability

The ESI† includes supporting data les. An embeddable
program containing a subroutine for computing the QDR
charges is also provided in the ESI.† Standalone programs for
computing the QDR charges and electrostatic potential RMSE
and RRMSE are available for download from ddec.source-
forge.net (http://ddec.sourceforge.net).123
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