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proach to broad band emission
modeling, and automated configurational diagram
construction†

Andrii Shyichuk * and Eugeniusz Zych

In this paper, we propose a novel approach to broad emission band modeling. The ground state and the

excited state of the emitter are represented as two continuous parabolic manifolds, where energy is

proportional to the square of a certain geometrical coordinate (E = kx2). The emitting level population is

described by Boltzmann distribution, with absolute temperature as a parameter. Depending on the offset

between the two parabolas and their curvatures (force constants) both symmetric and asymmetric

Gaussian-like band shapes can be produced. Also proposed is a simple algebra that maps the input

energy axis values of the experimental spectrum to the values of the geometrical (configurational)

coordinate. The resulting band shape can be compared to the experimental one via least-squares fitting

of the model parameters. Its usefulness in spectrum decomposition (deconvolution) is demonstrated

using a few examples (doped inorganic phosphors; d–d, f–d and charge transfer transitions). Presence of

absolute temperature in the definition of the model provides a potential for its use in primary

luminescence thermometry.
1 Introduction

Transition metal cations are an essential part of many photo-
luminescent materials. Those include complexes with organic
ligands, metal–organic frameworks, inorganic (crystalline
powder) phosphors, and laser crystals. In all of them, several
kinds of electronic transitions occur. Characteristic narrow
bands, oen called lines, originate from spin-forbidden tran-
sitions: 4f4 4f in most lanthanide (3+) or (2+) cations and d4

d in d-blockmetals. Along the narrow features, different types of
broad bands can occur. Those include intracongurational d4

f transitions in lanthanides (Ce3+, Pr3+, Tb3+ Eu2+, and Sm3+

likely being the most classic examples), spin-allowed d 4

d bands, as well as charge transfer bands (typical cases are O2−

/ Eu3+, O2− / Ce4+, O2− / V5+, O2− / Mn7+, O2− / Mn4+

but also others). The width of the latter is highly sensitive to the
coordination surrounding chemistry and geometry, as well as to
temperature.

The broad bands can be quite different in both shapes and
widths and are referred to simply as “broad” in the literature. If
the specic origin of such a band is known – these bands are
referred to as (ligand to metal) charge-transfer (CT, LMCT),1–3 f–
d transitions,2,3 metal-to-metal charge transfer (MMCT),4 inter-
valence charge transfer,5–7 etc. General terminology for these
ry, 14 F. Joliot-Curie, 50-506 Wrocław,
l

tion (ESI) available. See DOI:

the Royal Society of Chemistry
bands, such as “log-normal”8 and “asymmetric Gaussian”9 is
used, and this already shows that the community has not
established precise and accurate terminology for such absorp-
tion, excitation or luminescent components of spectra. This is
surprising as transitions generating such broad bands play
a vital role in tailoring the overall properties of luminescent
materials and compounds.

A typical approach to band shape analysis involves sepa-
rating the band into constituent components. Each component
of a band shape is thought to originate from an individual and
distinct spectroscopic entity (for inorganic phosphors – a crys-
tallographic site). The number of constituents of the analyzed
band is taken to correspond to the number of sites. Oen, the
components are taken to be of Gaussian shape. The traditional
name for this process is deconvolution, although it does not
involve a convolution (a very well dened term in mathematics)
of components but a mere sum. Convolution is dened as the
integral of the product of the two functions aer one is reected
about the y-axis and shied. The integral is evaluated for all
values of the shi, producing the convolution function. The
“decomposition” term is used in, e.g. ref. 8.

The use of Gaussian bands contains several fundamental
problems. Firstly (as will be shown below), a Gaussian band
with its vertical symmetry axis is not a good t for an asym-
metric band (with different slopes in its high- and low-energy
sides). Secondly, the Gaussian band shape is used with no
regard for it being physically justied. Gaussian band shape
corresponds to specic mechanisms of atomic line broad-
ening10 – natural broadening due to Heisenberg uncertainty of
RSC Adv., 2025, 15, 17405–17419 | 17405
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the transition energy, Doppler broadening, and pressure/
proximity broadening. At low temperatures of several kelvins,
lanthanide(III) 4f4 4f transitions in inorganic matrices (e.g. ref.
11 and 12) are characterized by band widths in the order of tens
of GHz, or several cm−1, or hundreds of meV. However, bands
typically occurring in phosphors are usually much broader –

sometimes as broad as hundreds of nanometers or several eVs.
Any model for such bands must also include geometrical
(chemical) broadening mechanisms. The emitters in phosphors
are subjected to deformations by lattice vibrations that
constantly change the geometry of the emitter surround. What
occurs as a single broad band in a spectrum originates in fact
from an ensemble of sites (quantum oscillators/emitters) of
multiple different (albeit similar) geometries. The resulting
distribution of transition energies in such an ensemble may or
may not follow a normal distribution and thus does not have to
result in a Gaussian band shape.

This paper addresses these problems and provides a mathe-
matical description of broad bands of any kind in electronic
spectra that is still relatively simple and physically much less
simplied than routinely used decomposition. The shape of
symmetric, slightly asymmetric, and strongly asymmetric broad
bands can be achieved in terms of the same basic algebra.
Moreover, several important features can be extracted from the
experimental data by tting the experimental band using our
approach. This method can be applied to both broad and
narrow bands and appears superior to Gaussian decomposition
(commonly called deconvolution). Correspondingly, a general
term for the band shape is proposed: a biparabolic band.

With the proposed methodology, for any experimental
absorption, excitation, or emission spectrum, the correspond-
ing energy level diagram (a conguration coordinate diagram)
can be constructed, taking advantage of the few parameters
provided by the t. Although the examples in this paper are all
focused on emission bands, most of the conclusions would also
be valid for independent analysis of absorption or excitation
spectra. Basically, as long as a transition can be described by
a single parabolic manifold of initial states with the corre-
sponding populations, and a single parabolic manifold of nal
states – this approach will work. Hence, there is no need to
specically address absorption analysis. However, in order to
fully utilize the potential of biparabolic decomposition, one
should use multispectral tting. For example, the optimization
process must look for a set of levels that satisfy both the exci-
tation and emission spectra in question. Such analysis is an
interesting topic on its own and deserves a dedicated paper.

2 The approach fundamentals

Let us consider a model system consisting (for simplicity) of an
atom in a solid. The atom is treated explicitly, while the solid is
represented by a certain embedding environment (e.g., point
charges; the particular kind is irrelevant). Any lattice vibrations
in such a system distort the surroundings of the atom, resulting
in some changes in its energy levels. Commonly, the surround
would be deformed by a fully symmetric (breathing) vibrational
mode. Here, no particular mode is assumed; merely an arbitrary
17406 | RSC Adv., 2025, 15, 17405–17419
deformation is considered. In more physical terms, the defor-
mation can be viewed as a certain average of multiple vibrations
of a lattice that contains this particular impurity/atom and is
thus not completely symmetric (in respect to the symmetry of
the perfect host crystal). The atom and its ligands are not viewed
as a harmonically oscillating system but rather as an ensemble
of geometries the lattice oscillations generate. The geometries
change into each other slowly enough for the electrons to
occupy the respective equilibrium states at every particular
geometry (i.e. adiabatic approximation is assumed). The atoms
are thus considered not moving at any given conguration
coordinate point.

Then, let us assume that the total energy E1 of the model
system in its ground state is a quadratic function of a congu-
rational coordinate x. The intention of this paper was not to
answer the question of “Why is that dependence quadratic?”,
but to show that a quadratic dependence, in particular, allows
the reproduction of a certain band shape. Nevertheless, chem-
ical bond energies exhibit quadratic dependence on the bond
lengths at the proximity of the equilibrium length. The defor-
mations of the model atom surround can be viewed as simul-
taneous deformations of all of the atom bonds.

To reduce the number of parameters, E1 minimum can be at
x = 0, while E1(x = 0) can be zero as well. Then:

E1(x) = ax2 (1)

Consequently, let us assume that the total energy E2 of the
model system in a certain excited state is another quadratic
function of the same congurational coordinate. Its minimum
may or may not be at x = 0, while its minimum energy is
necessarily not the same as E1 minimum. The coefficient at x2

for E2 may differ from that of E1. Thus:

E2(x) = b(x − c)2 + d (2)

With these four parameters dening two parabolae, the 2/

1 transition (emission) energy as a function of x is given by:

Eem(x) = E2(x) − E1(x) = b(x − c)2 + d − ax2

= b(x2 − 2cx + c2) + d − ax2

= (b − a)x2 − 2bcx + bc2 + d (3)

Thus, the nal version of eqn (3) describes the energy
difference (the transition energy) between the two energy levels
as a function of the conguration coordinate x and four
parameters dening both parabolas (Fig. 1). While eqn (3)
provides a dependence of the energy difference on an arbitrary
x, any experimental spectrum comes with a dened set of energy
values at which the respective intensity is measured. In other
words, every spectrum has its own abscissa values. Thus, to
reproduce an experimental band using eqn (3), a set of x values
must be found that produce energy differences corresponding
to the experimental data points – for a given set of parameters a,
b, c, d. In other words, the Eem = f(x) function must be trans-
formed into the corresponding x = g(Eem) function.

Using theWolfram Alpha online engine, the inverse function
is found to be:
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 An example of two parabolae with the visualizations of the
underlying parameters (as used in eqn (4) and (8)). The scales were
selected to emphasize the Gaussian-like shape at the E2 parabola
representing the Boltzmann probabilities from eqn (12).
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x ¼ �bc� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abc2 þ ad � aEem � bd þ bEem

p

a� b
(4)

The± sign in eqn (4) indicates the existence of two x= g(Eem)
functions – the one with the plus and the one with the minus.
Due to the shape of the parabolas, the same energy difference
can occur at two different values of x, and eqn (4) reects this
property. Consequently, the following spectrum generation uses
both x = g(Eem) functions.

Eqn (4) will not work for all possible values of a, b, and c. In
the (a = b, c = 0) case, the parabolas have identical curvatures
and are not offset in respect to each other along x. The corre-
sponding energy difference will thus always be equal to d, and
the respective spectrum is a Dirac's delta function, the purest
idealized spectral line. With (a = b, c s 0), eqn (4) will still not
work due to division by zero in the a − b part. The whole
calculation must be adapted for this particular case:

Eem
a=b(x) = E2(x) − E1(x) = b(x − c)2 + d − ax2

= b(x2 −2cx + c2) + d − ax2

= (b − a)x2 − 2bcx + bc2 + d = −2bcx + bc2 + d (5)

Eem
a=b(x) − bc2 − d = −2bcx (6)

xa¼b ¼ bc2 þ d � Eem
a¼b

2bc
(7)

Thus, the complete procedure for mapping Eem to x involves
three different solvers that conditionally depend on the values
of a, b, and c: Dirac's delta if (a = b, c = 0); eqn (7) if (a = b, c s
0); eqn (4) otherwise.

In eqn (7), the congurational coordinate x is a linear func-
tion of the transition energy Eem of the spectrum (provided that
a = b). The resulting band is dened solely by the distribution
shape of the excited manifold populations. In the case of
Boltzmann distribution, the shape is Gaussian.
© 2025 The Author(s). Published by the Royal Society of Chemistry
Now, eqn (4) and (7) can be relabeled so that the parameters
gain physical meanings. The parameter a is the ground state
parabola curvature and is double the value of the second
derivative of E1 with respect to x. In the physical–chemical
sense, parameter x should correspond to some deformation of
the central atom bonds. Then, parameter a is double the value
of the collective force constant of the deformation corre-
sponding to x. The same goes for b and E2. Thus, a and b can be
relabeled k1 and k2, respectively. The factor of two is ignored for
simplicity, as the x coordinate value is arbitrary: its sole purpose
is to generate two parabolic manifolds. The parameter c is the
excited state parabola abscissa offset in the units of x and is
relabeled to xO, (similarly to the classical Pekarian formula13

from vibrational analysis), and d is a minimum-to-minimum
energy difference between the two states, DEmm.

With the given Eem vector (a sequence, a set) of experimental
spectrum energy values, x (as produced by x = g(Eem) function)
is a vector of the same size. Eqn (4) and (7) now read:

x ¼ �k2xO � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2xO

2 þ ðk1 � k2ÞDEmm þ ðk2 � k1ÞEem

p

k1 � k2
(8)

xk1¼k2 ¼ k2xO
2 þ DEmm � Eem

k1¼k2

2k2xO

(9)

The x = g(Eem) function is essential as it allows mapping any
experimental emission spectrum energy axis to the values of x –
given the four parameters that dene the parabolas. In other
words, for any experimental spectrum with arbitrary values of
the energy axis – those values can be mapped analytically to the
transition energies between the two sets of energy levels repre-
sented by the parabolas. With no need to interpolate, the
equations can be wrapped into an efficient tting function,
producing a spectrum from the input parameters and the given
energy axis. Such a function can be used as any other band-
shape function in spectrum decomposition (deconvolution)
into principal components.

Noteworthy, parabolas are also present in the classical
vibrational analysis, where they represent potential energy of
a harmonic oscillator. Due to the quantum nature of the oscil-
lator, it can only assume certain (discrete) vibrational energy
levels that give rise to vibronic progression. I.e. only selected
points on the parabola correspond to the observed transitions.
Such an approach assumes that electronic oscillations and
mechanical oscillations of atom positions are coupled. On the
contrary, we presume Born–Oppenheimer approximation:
lattice vibrations merely produce a set of geometries and do it
slowly enough for the electrons to comply with the geometries
as if the latter were static. In other words, each parabola
represents a certain continuous manifold of (innitely many)
states.

To simulate an emission spectrum, both the transition
energies and emitting level population are required. The latter
corresponds to emission intensities (photon counts) via multi-
plication by a constant. Let us assume that aer a single elec-
tron is excited from the ground to the excited state, the excited
state manifold lives long enough to achieve thermal
RSC Adv., 2025, 15, 17405–17419 | 17407
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equilibrium within its space of states. The said space energy
levels are, by construction, described by a parabola. The less-
energetic levels thermally populate the more energetic ones.
The integral population of the levels in the excited state mani-
fold is unity – due to a single electron being excited. To simulate
the thermal population of the particular levels, Boltzmann
distribution is used (Fig. 1). It is justied here due to the
assumed thermal equilibrium condition. Other options are
possible, and the band shape would change accordingly. The
selection of the population distribution model does not affect
the overall conclusions (below) regarding the biparabolic band
shape and will not be analyzed in this work.

Note that the parabola states are not vibronic states in the
classical (Pekarian) sense. When vibronic states are considered,
the continuous parabola represents a harmonic potential, while
the vibronic levels are discrete states on the said potential. In
the spectroscopically relevant range of energies and x values,
there is (typically) no more than a dozen vibrational levels that
give rise to vibronic progressions. In biparabolic band, the
distribution of states within manifolds is assumed to be (quasi)
continuous. In other words, the spacing between energy levels is
innitesimal, and there can be a huge number of them – giving
rise to a smooth band and no vibronic progression. The pop-
ulation of i-th state (within the excited manifold) is given by:

pi ¼ e�DEi=ðkBTÞ

PN

j¼1

e�DEj=ðkBTÞ
(10)

where kB in Boltzmann constant. The DEi values correspond to
the xi congurational coordinate values that, in turn, corre-
sponds to a given experimental spectrum in the form of two

vectors of Iexpi and Eexpi values. Note that the
PN

j¼1 iterates over

all of the values of the manifold, E or x. A particular DEi value is
the energy difference between E2 minimum (E2(x= xO)= DEmm)
and E2(xi) (Fig. 1, eqn (10)):

DEi = E2(xi) − E2(x = xO)

= k2(xi − xO)
2 + DEmm − DEmm = k2(xi − xO)

2 (11)

pi ¼ e�k2ðxi�xOÞ2=ðkBTÞ

PN

j¼1

e�k2ðxj�xOÞ2
�
ðkBTÞ

(12)

Substituting the values from eqn (8) into eqn (12) (and given
the parameters k1, k2, xO, DEmm), it is possible to predict the
intensity of the emission, assuming that Ii = pi. This assump-
tion is quite crude, as the spontaneous emission intensity has
(by Fermi's golden rule) a power dependence on the transition
frequency. That dependence can be taken into account via
spectrum processing. Typically, spectra are measured as
a function of wavelength. Such spectra must be converted into
intensity as a function of transition energy via the Jacobian
transformation.14 In order to obtain actual line shapes, the next
conversion step is to divide the emission spectrum by transition
frequency to the third power. With such a form of the spectrum,
the Ii = pi assumption is legit.
17408 | RSC Adv., 2025, 15, 17405–17419
Summarizing, eqn (8)–(12) provide a simple and straight-
forward routine to t any luminescence broad band peak with
the minimum of ve t parameters plus temperature. The
parabolae are dened by four parameters as above, and the
resulting band shape must be multiplied by another parameter
to match the experimental spectrum amplitude/intensity. The
temperature can either be frozen (set to the experimental value
for the spectrum at hand) or allowed to be a t parameter. The
second option might be helpful as a temporary measure in
establishing the guess values for the other parameters. I.e., we
found it is much simpler to achieve a t with variable temper-
ature and then change the temperature to the experimental
value – as compared to setting the experimental temperature
from the beginning. If needed, the resulting band shape can be
convoluted with a Gaussian or a Voigt function to account for
additional (non-thermal) broadening. The broadening param-
eters can be either xed or tted, as suits the particular purpose
and experimental case.

3 Properties of the biparabolic peak

In Fig. 2, two examples of the biparabolic peaks are shown. Both
peaks integrate to unity. The two differ in the value of xO: in
panel (d), the upper curve is more shied to the larger x values,
its xO is larger. As the result of this shi, the peak in panel (c) is
lower in its maximal amplitude, more broad, and is located at
lower energies in respect to the peak in panel (a). Note the big
difference between the maximum position (13 000 cm−1 in
panel (a) and 9000 cm−1 in panel (c)). Both peak maxima do not
correspond to the minimum-to-minimum energy difference
between the curves (14 000 cm−1). In other words, unlike
traditional “ladder-like” Jabloński diagrams, the spectral peak
maximum does not map directly to the corresponding energy
level difference. The energy level difference between the two
parabolas is not a single value but a set of values. In principle,
one can safely map spectral bandmaxima to energy levels only if
the bands are narrow (atomic-like) – or rather, if the bandwidth
in the units of energy is much smaller than the corresponding
transition energy. Typical conguration coordinate diagrams
with offset parabolas (that actually date back to the paper by
Pekar13,15) illustrate this very clearly. Nevertheless, the ladder-
like diagrams are still commonly used for spectroscopic
bands of any widths. With the example in Fig. 2, we illustrate
potential inconsistencies that can be introduced by mapping
broad band peaks to energy differences of discrete levels that
are, technically speaking, innitely narrow. The Pekarian/
Huang–Rhys approach, however, does not work if the vibronic
structure is not visible.

The dark vertical lines in panels (b) and (d) of Fig. 2 shade
the area where the energy differences between the two curves
map to the emission band. The darker the line, the larger is the
corresponding population of the initial state, which relates to
higher intensity of the transition. (The lines actually blur
together and for the visible gradient.) The minimum of the
excited state curve corresponds to the maximum of population
(and maximum of the intensity), but not to the maximum
energy difference of the resulting emission band.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Two examples of the biparabolic peakwith different offsets (a and c) and the corresponding configuration diagrams (b and d). Vertical lines
in panels (b and d) are darkened proportionally to the corresponding emitting (upper) level population. Parameters correspond to eqn (8)–(12).
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In Fig. 3, the dependence of the biparabolic peak on the
values of k2 (the excited state curvature) is visualized. In panels
(a) and (b), the extreme case is analyzed, where the offset value
is very small (xO = 0.001), and the upper level curvature is
smaller than the lower level curvature (k2 < k1). In such cases,
the maximum of transition (E2− E1) energy difference is located
at almost the same value of x as is the upper level energy
minimum. Both the increase and decrease of x correspond to
the reduction of the transition energy in respect to the
maximum. Correspondingly, the band extends to the lower-
energy side. The higher-energy side of the emission band
exhibits an abrupt stop. In the real system, that would have
been the position of a zero-phonon line, likely of a Gaussian or
a Voigt shape. A smaller value of k2 (“soer” excited state
dependence on x, panel (a) in Fig. 3) corresponds to a broader
band, but the abrupt edge is present anyway.

Asymmetric side bands with one side much steeper than the
other one can be seen in e.g. Fig. 6c and 7 of the work by Wigger
et al.,16 as well as in the work by Feldman et al.17 However, those
experimental spectra also contain zero-phonon lines, and it is
quite hard to tell if the abrupt stop is present there or not. On
the other hand, the decomposition of spectrum of Fe3+ in
© 2025 The Author(s). Published by the Royal Society of Chemistry
Ca8Mg(SiO4)4Cl2 (CASI) (Section 4.4) does exhibit a biparabolic
band with an abrupt stop. The abrupt-edge biparabolic bands
shown in Fig. 4 do look very confusing, but one must remember
that zero-phonon lines are not shown in that gure. In a real
spectrum, zero-phonon line will hide the edge.

With the larger offset of parabolas (xO = 0.03, panels (c) and
(d) in Fig. 3), the band may become smooth and Gaussian-like
on both sides – depending on the broadening caused by the
excited parabola's curvature. The total emission band is far
from Gaussian shape, however. Lower values of k2 (broader
bands) might correspond to a certain presence of the abrupt
edge in the high-energy side of the band (panel c in Fig. 3). As
the difference between k2 and k1 becomes smaller, the band
becomes less asymmetric and narrower, resembling a Gaussian
band. Noteworthy, the Gaussian character in this case stems
from the use of the Boltzmann distribution, which in itself
corresponds to the iconic bell-shaped curve. Changing the
distribution would change the character of the biparabolic band
slopes, but the band would still exhibit the asymmetry origi-
nating from the parabolas' mutual offset.

In Fig. 4, panels (a) and (b), the dependence of the bipar-
abolic peak on the x offset (xO = 0.03–0.09) is visualized for
RSC Adv., 2025, 15, 17405–17419 | 17409
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Fig. 3 Selected examples of the biparabolic peak with different offsets (a and c) and the corresponding configuration diagrams (b and d).
Parameters correspond to eqn (8)–(12).
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several characteristic examples. The increase in xO from 0.03 to
0.09 results in a broader and more symmetric band with a lower
peak intensity, while the parabola curvatures undergo no
change. Yet again, the curves integrate to unity. Alternatively, as
the value of k2 approaches the value of k1 (Fig. 4, panels (c) and
(d)), the increase in k2 (with the xed offset) also results in
a narrower and more symmetric band. Clearly, the parameters
in the biparabolic curve provide a wide range of exibility in
terms of the band shape. Noteworthy, as in earlier cases, the
relative change in the peak-intensity in Fig. 4a is associated with
the change of the bands' width – as the integral intensity
remains unity. Any non-radiative relaxation must increase with
increasing xO as the crossover barrier to the ground state
decreases. This type of deexcitation would obviously increase
with growing temperature. In other words, in a real material at
temperatures at which the competing non-radiative relaxation
starts playing its role, peak amplitude would further decrease.

When analyzing photoemission band shapes, it is typical to
use decomposition into Gaussian bands.8,14 In Fig. 5, a theoret-
ical (simulated) biparabolic band (k1 = 1 × 106, k2 = 2 × 105, xO
= 0.08, DEmm = 19 000, T = 300) is approximated with 1, 2, 3 or
4 Gaussian bands. One component does not provide
17410 | RSC Adv., 2025, 15, 17405–17419
a satisfactory t (panel (a)), and the discrepancy between the
symmetric Gaussian band and the asymmetric biparabolic
band is obvious. Two Gaussians, panel (b), are still not enough
for the same reasons. With three (c) and four (d) components,
the t looks good, or at least good enough for most purposes.
However, the result of such a decomposition – if it was an
experimental spectrum being tted – would most likely be
(incorrectly) interpreted as the presence of several emitting
species. Here, by construction, there is only one chromophore –
albeit with variable (deformation-dependent) transition ener-
gies. Thus, the use of a biparabolic band would eliminate the
seeming multiplicity of the emission components. As it is
known, a simpler theory that provides the correct t to the data
is a better theory. Thus, a decomposition of an experimental
spectrum into a single biparabolic band (6 parameters
including amplitude, interpreted as one chromophore) is
superior to the decomposition of the same spectrum into three
Gaussian bands (9 parameters including amplitudes, inter-
preted as three chromophores). We will yet deal with this by
analyzing recorded spectra.

One also needs to consider the situation, where multiple
chromophores are erroneously interpreted as one. It is possible
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Selected examples of the biparabolic peak with different offsets and curvatures (a and c) and the corresponding configuration diagrams (b
and d). Parameters correspond to eqn (8)–(12).
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in principle, but it actually seems rather dubious. For it to
happen with even two chromophores, the parameters for the
corresponding biparabolic bands must be identical, which
would mean the same chemical surround, the same bond
length, same transitions. All this factors added up make the
supposed two emitters the same emitter. The resolution
requires additional experiments, e.g., measure decay times at
several wavelengths within band, do a temperature-dependent
series of spectra and decay times.

The need for the several Gaussian components to approxi-
mate a biparabolic band is simple: Gaussian band has a mirror
symmetry at its maximum and cannot, in principle, be a good
match for any band lacking such symmetry. An asymmetric
function can be approximated with a sum of symmetric func-
tions, but the number of the required components can techni-
cally be innite – the classical examples being the Fourier
transform (that maps an arbitrary signal into a sum of sine
waves) and the Tailor series expansion. As a counter-example,
a special case of a symmetric biparabolic band that is exactly
a Gaussian band will be shown below. Consequently, the
biparabolic band is more general.
© 2025 The Author(s). Published by the Royal Society of Chemistry
As addition to the spectrum decomposition feature(s), the
biparabolic band always comes with a corresponding cong-
uration coordinate diagram. The approach, however, has
a drawback. It is very likely that a biparabolic t does not
provide a unique solution for a given spectrum. Potentially,
many bands with different parameters might correspond to
equally good ts. Thus, it is an open question of whether the
resulting conguration diagrams are physically feasible. On
the other hand, the same problem is with the decomposition of
a spectrum into a sum of Gaussian or Voigt proles. Depend-
ing on the initial guess and the number of components,
multiple equally good, mathematically, solutions can be ob-
tained. The problem is not unsolvable – it just lies outside the
scope of this particular paper. Unlike Gaussian decomposi-
tion, however, the biparabolic one always comes with a corre-
sponding congurational diagram that can be tested for
correspondence to reality via additional experiments and
criteria. For instance, ab initio calculations might provide
insight into the expected values of the k1 and k2 force
constants. Chemical intuition and experience should also be
helpful in selecting a more reasonable result.
RSC Adv., 2025, 15, 17405–17419 | 17411
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Fig. 5 Decomposition of a biparabolic band (black line) into 1, 2, 3 and 4 Gaussian components. Residuals (red dashed) are scaled by the
specified factors.
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4 Experimental examples
4.1 A single biparabolic band decomposition example

In Fig. 6, an experimental emission spectrum of HfGeO4: 0.2%
Ti recorded with a 320 nm excitation at 100 K, data from ref. 18
is tted using the biparabolic approach (eqn (8)–(12)). It is
noteworthy that the achieved tted temperature (99.929 K) is
very close to the experimental one. The whole spectrum is
reproduced by a single biparabolic peak with impressive accu-
racy. The corresponding congurational coordinate diagram
features a rather large x offset (see panel b) and a “so” excited
state (k2 < k1) – both typical for charge transfer bands, in line
with the conclusion in the source paper.18 Excited states of d-
block metals are expected to be more spatially spread (in
terms of the corresponding electron density) compared to their
ground states. The overlap integral between such states and the
ligand orbitals is larger than in the latter case. This aspect is
addressed explicitly in the last section of this paper. The larger
is the overlap integral, the less sensitive it would be to the
thermal changes in bond length. Consequently, the excited
state energies are expected to be less sensitive to the changes in
17412 | RSC Adv., 2025, 15, 17405–17419
bond length than the ground state energy. In other words, the
excited state parabola having smaller force constant is perfectly
in line with the general physical–chemical reasoning.

The residual in Fig. 6a is a bit wavy, meaning that the t
might be somehow incomplete. On the other hand, the
magnitude of the wavy pattern is comparable to the noise,
indicating that the overall t quality is high. With Gaussian
decomposition (panels (c–e)), such a residual would result in
the temptation of adding another Gaussian to the decomposi-
tion in order to get a numerically better t. Indeed, as Fig. 6
panels (d) and (e) illustrate, a t with three Gaussian bands does
result in a atter residual. However, even two, not to say three,
Gaussian bands are unjustied in the case of luminescence of
HfGeO4: 0.2% Ti. The chemistry of the materias does not
support the presence of two or three emissions related to the
dopant. With a biparabolic band, such a temptation is balanced
out by the clarity of the t result. The tted curve sits well on the
experimental data, and the solution is simple, elegant, and
physically sound. The biparabolic t requires six independent
parameters to optimize (amplitude, temperature, k1, k2, xO and
DEmm) and so does the two-Gaussian t (midpoint, amplitude
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 A biparabolic band fitted to an experimental emission spectrum of HfGeO4: 0.2% Ti at 100 K (a), data from ref. 18, and the corresponding
configuration diagram (b). The same data fitted with two (c) and three (d and e) Gaussian bands is shown as well, with the corresponding widths of
the components. In panel (b), only the part of diagram corresponding to the shown spectrum is displayed.
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and width for both components). Being numerically similar, the
biparabolic t is also more physical. It assumes a certain model
and shows its feasibility, while the Gaussian bands are quite
abstract.

In the mentioned biparabolic band t, the temperature was
a variable parameter. While it was possible to simply freeze it at
the experimental value, keeping it as a variable parameter has
some benets. Another degree of freedom improves t stability:
the t is less sensitive to the guess (i.e. the initial values can be
less accurate) and the result is achieved in fewer steps. Variable
temperature is also a sanity control. The experimental value of
the temperature showing up naturally in the t procedure
argues that the underlying model is realistic – or at least more
realistic than the one requiring frozen temperature.

The three Gaussian decompositions shown in Fig. 6c–e
introduce another ambiguity. The result depends strongly on
the number of components and the use of a vertical (y, inten-
sity) offset. The same y = f(x) band shape can be decomposed in
two ways: either as the sum of Gaussian bands or as the sum of
Gaussian bands plus a single parameter – the offset, which
shis the whole function vertically. Suppose the offset degree of
freedom is absent. In that case, there is a tendency for some of
© 2025 The Author(s). Published by the Royal Society of Chemistry
the Gaussian bands to become very broad (much broader than
the whole tted experimental band) and thus act similarly to the
offset by shiing the entire curve upwards. In principle, the
intensity offset should always be included – the presence of
experimental noise results in the zero-intensity background
being measured above zero on the intensity axis. In particular,
with vertical (y, intensity) offset and two components, one gets
band positions of 16 285.9 and 17 955.7 cm−1 (Fig. 6c), while
with three components the bands are centered at 15 873.3, 16
174.4, and 17 842.1 cm−1 (Fig. 6d). Without the vertical offset,
the three-component t results in bands at 2988.3, 16 246.7,
and 18 220.0 cm−1 (Fig. 6e). The only common property of the
ts in Fig. 6c–e is the presence of twomain bands, while it is not
clear which band positions to accept as “correct”.
4.2 A two biparabolic band decomposition example

In Fig. 7a, another broad emission band (Al2O3: 0.1% Eu2+ at
300 K, 440 nm excitation, data from ref. 19) is tted with two
biparabolic peaks, as just one was distinctly not enough. In
general, two biparabolic peaks can have independent parame-
ters. However, here it was assumed that emission can originate
RSC Adv., 2025, 15, 17405–17419 | 17413
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Fig. 7 Two biparabolic bands fitted to an experimental emission spectrum of Al2O3: 0.1% Eu2+ at 300 K (a), data from ref. 19, and the corre-
sponding configuration diagram (b). Gaussian fit of the same band with three (c) and four (d) components. In panel (b), only the part of diagram
corresponding to the shown spectrum is displayed.
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from two different excited states of the same emitter. In that
case, the bands share the ground state curvature (the k1
parameter) and the temperature. The two excited state param-
eters and the two x offsets were varied. The result is a perfect
match with a physically sane picture of the excited states – the
higher one is more “so” (less sensitive to geometry distor-
tions), in line with the nature of Eu2+ 5d/ 4f emission. Higher
excited states can be expected to be more spatially diffuse
(somewhat less localized). The total number of parameters in
such a model is 10: A1, A2, k1, k2

1, k2
2, xO

1, xO
2, DE1, DE2, T. A t

of a slightly lower quality can be achieved with 2 Gaussians
(total of 6 parameters). The wavy pattern in the residual clearly
indicates an incomplete t (Fig. 7c). The higher quality t is
achievable with 3 Gaussians (9 parameters), one of which has to
have a negative amplitude, which is unphysical.
4.3 An example of decomposition with both biparabolic and
Gaussian bands

In Fig. 8a, a more complicated example of a broad band is
shown. In the emission spectrum of Ga2O3: 1% Cr3+ at room
temperature (excited at 442 nm, data from ref. 20), sharp peaks
17414 | RSC Adv., 2025, 15, 17405–17419
overlap with the broad bands. The latter was tted with two
biparabolic bands that again shared k1 and T. The sharp peaks
were tted with Gaussians, resulting in a very satisfactory
agreement with the measured narrow features. The task could
have been considered complete: the Gaussians represent
“narrow, atomic-like” bands that underwent the same broad-
ening as the levels corresponding to the broad bands. That,
however, poses the question of how to show the “narrow peaks”
in the conguration coordinate diagram. Would at lines do? If
so, and given a non-linear ground state in the diagram – at
which energy? The answer can be brought by the smart use of
biparabolic peak, which is reversely compatible with Gaussian
bands. Setting k2 = k1 and varying the offset and energy differ-
ence, any Gaussian band can be reproduced exactly (due to the
use of Boltzmann distribution in the band generation). Such ts
produce curves that are slightly offset copies of the ground state
shape – these are shown as the grey lines in Fig. 8b. From the
diagram, it is very clear that the orange curve and the grey
curves correspond to the same chromophore. The narrow bands
are single-phonon (Pekarian) vibronic bands, while the broad
band comes from a different broadening mechanism. As the
two lines share many overlapping points, they can populate
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Two biparabolic bands and a set of Gaussian peaks fitted to an experimental emission spectrum of Ga2O3: 1% Cr3+ at room temperature,
data from ref. 20, and the corresponding configuration diagram. The grey lines in panel (b) correspond to the Gaussian peaks from panel (a), see
text. Two kinds of Gaussian fit (c and d) of the same band, see text.
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each other in many ways. The green band in Fig. 8b corresponds
to an excited state of a different nature. In particular, given the
similarities between the k2 values of the two bands, and basi-
cally the same DEmm, Cr

3+2 E / 4A2 spin-forbidden transition
likely corresponds to the less-offset orange parabola, and Cr3+

spin-allowed 4T2 / 4A2 corresponds to the more offset green
parabola. This conclusion comes from the distinct pressure (i.e.
bond length) sensitivity of the position of the broad band, as
observed in the source paper. All of the mentioned bands share
the ground state and thus originate from the same emitter. In
other words, despite the clear two-component nature of the
broad band, both constituents can be reasonably attributed to
the same chromophore (Cr3+).

It is worth noting that in the process described above,
Gaussian bands were tted to the narrow peaks, and then
biparabolic bands where tted to the Gaussian bands. Is if of
course possible to t the biparabolic bands to the narrow peaks
directly. However, as more parameters must be varied at the
same time, such an option is computationally heavier and more
prone to errors and overtting. Fitting a Gaussian rst clears out
a lot of experimental noise, while tting a biparabolic band to
a noise-free Gaussian is always very rigid, unambiguous and fast.
© 2025 The Author(s). Published by the Royal Society of Chemistry
A traditional Gaussian decomposition was also attempted in
this case, using the narrow bands from the biparabolic t as the
starting point. Several broad Gaussian peaks were added. The
resulting decomposition contains a very broad component
centered at 10 634 cm−1, i.e., at the edge of the energy scale
(Fig. 8c). Given its width, the component is likely articial and
acts as a vertical offset. However, this solution is very stable.
Trying to remove this component or replace it with something
more sensible results in changes in the narrow component part
– some of the narrow components become broad at the cost of
certain small features not being reproduced anymore (Fig. 8d).
On the other hand, adding components to the decomposition
seen in Fig. 8d results in the decomposition from Fig. 8c. In
other words, the 10 634 cm−1 broad componentmust be present
to achieve a good t.

All three decompositions indicate the presence of narrow
bands around 14 500 cm−1, as well as a semi-broad band at
about 14 000 cm−1. However, both Gaussian decompositions
result in overestimation of the number of components of the
primary broad band. With biparabolic bands, there is clearly
only one main broadband chromophore (emission site). From
the Gaussian decompositions, the number of chromophores
RSC Adv., 2025, 15, 17405–17419 | 17415
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appears to be either two or three, depending on the interpre-
tation of the rst component on the lower-energy side. With the
use of biparabolic bands, such ambiguity is not present. The
bands in the presented biparabolic interpretation have
a “hardness” parameter k2 that can be compared to calculations
(either ab initio or some sort of crystal/ligand eld theory). One
only needs to do the calculations for a set of geometries simu-
lating a deformation.4–7,21 With such calculations, band nature
can be identied exactly.

4.4 A biparabolic band photoemission at very low
temperature (12 K)

The experimental examples shown in Fig. 6–8 are characterized
by temperatures quite far from 0 K. In all of them, one can
speculate that broad bands are formed by strong thermal
broadening of vibronic bands,22 or that many thermally excited
vibrational modes are acting on the activator simultaneously.
Fig. 9 shows the emission spectrum of Fe3+ in Ca8Mg(SiO4)4Cl2
(CASI) at 12 K. With such a low temperature, one cannot explain
the broad band (more than 1000 cm−1 width) by thermal
broadening of a single line. In particular, the E2 range, which is
produced by Boltzmann distribution at 12 K, eqn (12), and the
one corresponding to the biparabolic curve in Fig. 9, is only
175 cm−1. Correspondingly, the E2 parabola in Fig. 9b looks like
a at line, while the curvature of the ground state parabola is
mostly responsible for the broadening of the band.

The spectrum in Fig. 9 is a very noteworthy case. On the one
hand, the vibronic progression is clearly visible. On the other
hand, so is the biparabolic component. Despite the relatively
low temperature, two emission mechanisms are active simul-
taneously. During some of the emission events, the electron
transition in question exhibits coupling to lattice vibrations,
and the vibronic sidebands are produced. However, during
other emission events, the coupling is not present, and the
emission seemingly occurs between two parabolic manifolds,
giving rise to the broad band. Undoubtedly, only one chromo-
phore is present: the biparabolic band breaks abruptly right at
the zero-phonon line position.
Fig. 9 A biparabolic band and a set of Gaussian peaks fitted to an experim
data from ref. 23, and the corresponding configuration diagram (b).

17416 | RSC Adv., 2025, 15, 17405–17419
The authors of the referenced paper23 do not interpret the
sidebands as originating from different vibrational levels of the
same oscillator. On the contrary, they attribute each sideband to
a different Ramanmode. In other words, the traditional Huang–
Rhys vibronic coupling (a single coupled electron-phonon
system, multiple emission lines) is not assumed in the inter-
pretation of this spectrum. Rather, independent couplings of
the chromophore to several vibrations are assumed,23 in line
with the multi-mechanism single-chromophore interpretation
presented here.

4.5 The role of orbital overlap in the parabola curvature

With the congurational diagrams produced by the biparabolic
tting, several questions arise. Why is the emission manifold
parabola shied, and why is it shied towards larger x? Why are
the excited manifold parabolas characterized by lower force
constants than the ground state manifold parabolas, i.e., why is
k2 < k1? The nature of x shi between the parabolas can be
deduced as follows. In Eu2+, the 5d orbital is empty and can thus
accept electron pairs from ligand O. The 4f–5d excitation results
in additional electrons in 5d orbitals that repel the ligand
electron density. Consequently, the optimal bond length for
such an excited state is larger compared to the ground state. In
Ti4+, the excited state involves electron transfer from oxygen to
titanium, causing an increase in both 3d orbital population and
bond length. In Cr3+ and Fe3+, excitation from lower 3d orbitals,
which experience a weaker crystal eld, to higher 3d orbitals,
which experience a stronger crystal eld, also increases ligand
repulsion and leads to bond elongation. Thus, for all of the
cases above, the excited state parabola minimum is expected to
correspond to larger bond lengths (larger x) than the ground
state parabola minimum.

The answer to the k2 < k1 question can be provided by
analyzing overlap integrals between oxygen 2p atomic orbitals
and the 4f, 5d, and 3d orbitals of the activator cations. To
perform the analysis, PySCF Python code24–26 and atomic natural
orbitals relativistic core-corrected (ANO-RCC27–29) large basis
sets were used. The test system contained the activator ion at
ental emission spectrum of Fe3+ in Ca8Mg(SiO4)4Cl2 (CASI) at 12 K (a),

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Overlap integral betweenO 2pz and Eu 4fz3, Eu 5dz2, Ti 3dz2, Cr 3dz2, Fe 3dz2 atomic orbitals, as a function of distance r between O and Eu/
Ti/Cr/Fe (a). Relative sensitivity of the overlap integral to r (b), jdS/drj/S.
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the origin and the oxygen atom on the z-axis, some distance r
away from the activator. The distance was changed, and the
overlap integral (designated int1e_ovlp in PySCF) was calculated
at each r. The orbitals of interest were O 2pz, Ti/Cr/Fe 3dz2, Eu
5dz2, and Eu 4fz3.

In Fig. 10, two sets of data are presented. The data on the
right are the relative sensitivities of the integrals with respect to
r, calculated as jdS/drj/S. The latter parameter shows how much
(as a fraction of S) the S changes (at a given r) as a function of r.
The relative rate of change is the dening property, not the
absolute rate of change (the derivative). Let us consider an
example. Under a certain deformation, orbital overlap 1
changed by 1%, while orbital overlap 2 changed by 10%. Clearly,
the latter difference would result in more pronounced changes
in the respective orbital energies. The overlap integral is largest
for Eu 5d (in its chemically relevant range of r above 2.2 Å), and
gets lower in the Ti 3d, Cr 3d, Fe 3d, Eu 4f sequence. The
sensitivities clearly exhibit a trend opposite to that of the over-
lap integrals. In other words, the larger is the overlap integral,
the less sensitive it is to the changes in the bond length. This
conclusion is made by comparing the ve orbitals, but it also
holds true for each of them: smaller values of the overlap
correspond to the larger values of the sensitivity.

A broader excited state parabola indicates a smaller sensitivity
of the respective state to geometrical changes (i.e. smaller k).
From Fig. 10b, it can be concluded that Eu 4f orbitals are themost
sensitive (more narrow parabolas, narrow bands), 3d metals are
less sensitive (broader parabolas, wider peaks), and Eu 5d orbitals
are the least sensitive in this group (even broader parabolas, even
wider peaks). Note that this observation correlates well with the
spatial spread of the orbitals. The 4f orbitals are the most local-
ized, the 3d orbitals have a larger effective radius, and the 5d
orbitals are even larger. Within the 3d group, in the Fe–Cr–Ti
series, the sensitivity decreases, the overlap integral increases,
and the orbital/atomic/ionic radii increase. Summarizing, a larger
overlap integral between the activator ion excited state orbitals
and the ligand orbitals results in lower sensitivity of the activator
excited state properties to changes in ligand distance (bond
length) – hence, the respective parabola is broader.
© 2025 The Author(s). Published by the Royal Society of Chemistry
5 Conclusions

In this paper, we present a method to decompose complex
broad emission bands using simple algebra. Provided is
a rigorous band shape (biparabolic band) that can be used in
decomposition/deconvolution using least-squares tting. An
addition to every biparabolic band is, by construction,
a conguration coordinate diagram that matches the band.
Both symmetric (Gaussian, atomic-like, f–f, d–d) and asym-
metric (f–d, charge-transfer, organic chromophore) spectral
bands can be reproduced. The algebra intrinsically contains
temperature and is thus potentially useful for primary lumi-
nescence thermometry. It is also shown that traditional
decomposition with Gaussians is prone to errors due to
potential misinterpretation and false data creation. The bipar-
abolic band is more intuitive and safer in interpretation, as it
provides a visual aid: the corresponding conguration diagram.
The latter can be easily linked to theoretical calculation of any
sort: multicongurational, density functional theory, crystal/
ligand eld theory, etc.. The only requirement for the theory is
to provide a set of energy levels as a function of a coordination
geometry – which typical physical–chemical theories do.

A crucial strong side of the biparabolic band model is that it
directly makes experimentally testable assessments. It connects
macroscopic spectral properties (band shape, width, and posi-
tion) to microscopic properties – temperature (explicitly) and
sensitivity to bond length changes (via force constants k).
Experimentally, the respective data can be collected via high-
pressure spectroscopy at different pressure and temperature
values. The connection to theoretical calculation is
straightforward.
Data availability

The data supporting this article have been included as part of
the ESI.† In particular, data corresponding to Fig. 5–9 are
included. Note that the experimental spectra are published here
with the permission of the respective corresponding authors of
the papers that originally feature the data.18–20,23 Any further
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reuse of the said data must be agreed upon with those authors.
The ESI† also contains Python scripts relevant to this paper. All
of them contain the function (subroutine) mentioned in the
text, the one that produces the biparabolic band shape. The
respective code can be used as is, modied, refactored and
adapted as needed, as long as the source paper (this paper) is
properly cited in all products and publications that use (or rely
upon) the presented idea.
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Poland; Chalmers University of Technology in Gothenburg,
Sweden), Paulina Bukowska (nee Bolek, University of Wrocław,
Poland), Natalia Majewska (University of Gdańsk, Poland),
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