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This research examines the synthesis of CozsO4—MWCNTs nano-hybrid structures and their incorporation

into PVDF polymer

nanocomposite thin films via the solution casting method. The study

comprehensively characterizes the structural, thermal, and electrical properties of the resulting

nanocomposites using techniques such as SEM, XRD, FTIR, TGA, TDA, DSC, and

impedance

spectroscopy. XRD confirmed the crystalline structure and phase transition of the PVDF/CozO4-—
MWCNTs nanocomposites, while FTIR analysis revealed the presence of a- and B-phases of PVDF. TGA,

TDA, and DSC results revealed enhanced thermal stability, highlighting the potential for high-

temperature applications. Notably, the dielectric properties significantly improved at 0.5 wt% CozO4 and
0.3 wt% MWCNTSs. The electrical conductivity of the nanocomposites increased with higher nano-hybrid
content, owing to strong interactions between the PVDF polymer and nano-fillers. This work provides
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insight into the development of advanced nanocomposites with superior thermal and electrical

properties, which could be used in electronic and energy storage devices. The novelty of this study lies
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1 Introduction

Polymer nanocomposites are the result of addition of organic or
inorganic nano-fillers into the polymers."” Polymer nano-
composites are a new class of macromolecules that have
received significant attention over pure polymers due to their
enhanced physical properties, such as thermal, mechanical,
and electrical performance.* The physical characteristics of
polymers are further improved by using many functional
nanomaterials which are employed as reinforcements in poly-
mer nanocomposites, particularly functionalized carbon
nanotubes®® which impart specific characteristics like high
aspect ratio, high mechanical strength, unique thermal
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in the effective combination of CozO4, and MWCNTs to enhance the properties of PVDF, offering
a promising material for future industrial applications.

stability/decomposition and electrical properties to the polymer
nanocomposites to get ideal nano-materials with significantly
enhanced properties such as toughness, solvent resistance,
optical properties, and electrical and thermal conductivity.>™*
The characteristics of the nanomaterials, ie., the chemical,
mechanical, thermal and electrical properties could be signifi-
cantly improved upon fabrication of hybrid membranes.>™**
Organic/inorganic hybrid nanocomposites are becoming more
important in the present time as thin polymer membranes. The
unusual versatility of the hybrid nanomaterials is largely
dependent upon the selection of polymers and fillers available
to researchers."*®

Poly (vinylidene fluoride) (PVDF) is considered a well-
known material for adoption in piezoelectric and pyroelec-
tric materials.’*”** From a scientific point of view, PVDF is one
of the most studied polymeric materials, mostly used in the
fields of storage devices such as capacitors, water purifying
devices, microwave transducers, sensors, and energy harvest-
ing systems.””?* In pure form, PVDF has poor thermal and
electrical properties and the improvement in these properties
and piezoelectricity is still challenging.*»*® The addition of
nano-fillers to PVDF enhances the piezo and pyroelectric
performance.*® This behavior is mainly contributed by the
polar B-phase, rather than the a-phase, as the polar B-phase is
the functional phase which imparts the highest dipole
moment resulting in high piezoelectricity.?”*®* One-
dimensional (1D) nanostructures in the form of fibers,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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wires, tubes, and rings have attracted a lot of attention due to
their infinite applications in electronics, catalysis, drug
delivery, and antibacterial and antioxidant properties.>*°
Previously, various dimensional nanostructures of Co;0, have
been synthesized, such as nanoparticles,* nanofibers,***?
nanowires and nanotubes.**?” Among these nanostructures,
1D cobalt oxides (Co30,) have received much attention and
growing interest.*®*° 1D Co3;0, is technologically a very
important metal oxide due to its applications in catalysts, as
anode materials in lithium-ion batteries, sensors, and elec-
trical and electronic devices.*”*'*** Multiwall carbon nano-
tubes (MWCNTS) are also very attractive materials due to their
high specific area, chemical resistance, high mechanical
strength, and unique electrical and thermal properties."***> It
will be interesting to study the combined properties of Co;0,4-
MWCNTs blend with PVDF.

In the present study, we try to see the impact of the
combined effect of Co;0,-MWCNTSs nanostructures on the
crystallinity and thermal and electrical behaviors of PVDF.

2 Experimental
2.1 Materials

The powdered form of poly (vinylidene fluoride) (M,, ~ 534 000 g
mol "), polyvinylpyrrolidone (PVP) (M,, - 1300000 g mol %),
tetrahydrofuran (THF), nitric acid (HNOj), sulphuric acid
(H»S0O,), cobalt nitrate hexahydrate [Co(No3)]. Multiwall carbon
nanotubes (MWCNTSs) were utilized after its functionalization
as reported.*® The MWCNTs were purified by calcination at 500 ©
C for 15 minutes to eliminate the impurities such as metals and
amorphous carbon. The rest of the chemicals used in the
fabrication of nanocomposites were consumed without sub-
jecting to additional purification protocols.

2.2 Synthesis of 1D Co3;0, nanostructure

The one-dimensional (1D) nanostructures of Co;0, were
synthesized using an electrospinning technique as described
by.*® Cobalt nitrate hexahydrate (Co(NOs),-6H,0, 1.5 g) was
dissolved in 10 mL of tetrahydrofuran (THF) under constant
stirring for 1 hour to form a cobalt precursor solution. Poly-
vinylpyrrolidone (PVP, 1.2 g) was added to the solution and
stirred continuously for 5 hours to form a homogeneous PVP-
cobalt solution. The electrospinning setup consisted of a 5 mL
syringe filled with the solution, which was connected to a syringe
pump. The syringe pump was linked to a high-voltage power
supply and a stainless-steel needle. The needle was positioned
15 cm from a collector surface covered with aluminum foil. A
voltage of 15 kV was applied to initiate the electrospinning
process. Nanowires of Co;0, were collected on the surface of the
collector as the solution was electrospun into fibers. After elec-
trospinning, the collected nanowires were carefully scraped off
using a spatula and stored in a glass vial for further processing.
To remove the PVP, the nanowires were calcined in a furnace at
600 °C for 2 hours, allowing the formation of Co;0, nano-
structures. The calcination process was conducted under air

atmosphere with a ramp rate of 5 °C min™".

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

2.3 Procedure for MWCNTSs functionalization

MWCNTs were functionalized by the following standard
protocol as reported.*®

2.4 Synthesis of Co;0,-MWCNTSs/PVDF nanocomposites
membranes

Two separate solutions were prepared to synthesize Co0304-
MWCNTs/PVDF nanocomposite membranes. The Coz04—
MWCNTs solution was prepared by dispersing a specified amount
of C0;0,-MWCNTs in 10 mL of tetrahydrofuran (THF) and sub-
jecting the mixture to sonication for 2 hours. Simultaneously, the
PVDF dispersion was prepared by dissolving the required amount
of polyvinylidene fluoride (PVDF) in THF, followed by constant
stirring for 2 hours at room temperature. The two prepared
solutions were then combined and subjected to further sonica-
tion for 3 hours to ensure a uniform dispersion. After sonication,
the mixture was refluxed at a constant temperature of 70 °C for 7
hours to promote better integration of the Co;0,-MWCNTs
nanostructures into the PVDF polymer. The dispersion was then
sonicated for an additional 3 hours to achieve an even better
distribution of the nanostructures. The resulting nanocomposite
mixture was carefully poured into a Petri dish and placed in an
oven at 70 °C for 6 hours to completely remove the solvent. The
Co030,-MWCNTs/PVDF nanocomposite membrane was then ob-
tained as the final product.

For the synthesis of nanocomposites with varying MWCNT
content, functionalized multi-walled carbon nanotubes
(MWCNTs) were added in three different weight percentages
(Wt%) of 0.1, 0.15, and 0.3 wt% relative to the total polymer
weight. Similarly, 1D Co;0, nanowires were also added in weight
percent of 0.1 wt%, 0.3 wt% and 0.5 wt% with keeping constant
quantity of PVDF polymer. Total ten nanocomposites
membranes were prepared ie. PVDF blank film, PC1CNT1
(0.1 wt% Co030, + 0.1 wt% CNTSs), PC1CNT1.5 (0.1 wt% Co0;0, +
0.15 wt% CNTs), PCICNT3 (0.1 wt% Co0;0, + 0.3 wt% CNTS),
PC3CNT1 (0.3 wt% Co030,4 + 0.1 wt% CNTs), PC3CNT1.5 (0.3 wt%
C030, + 0.15 wt% CNTs), PC3CNT3 (0.3 wt% C0304 + 0.3 wt%
CNTSs), PC5CNT1 (0.5 wt% C0;0, + 0.1 wt% CNTs), PCICNT1.5
(0.5 wt% C030, + 0.15 wt% CNTs) and PC5CNT3 (0.5 wt% C0;0,
+ 0.1 wt% CNTs). A detailed description of all the PVDF nano-
composites membranes has been given in Table 1.

Table 1 Details description of Coz04 and MWCNTs wt% in the
resulted nanocomposites

Code PVDF (wt%) C0,0, (Wt%) MWCNTs (wt%)
PVDF 100 0.0 0.0
PC1CNT1 99.8 0.1 0.1
PC1CNT1.5 99.75 0.1 0.15
PC1CNT3 99.6 0.1 0.3
PC3CNT1 99.6 0.3 0.1
PC3CNT1.5 99.55 0.3 0.15
PC3CNT3 99.4 0.3 0.3
PC5CNT1 99.4 0.5 0.1
PC5CNT1.5 99.35 0.5 0.15
PC5CNT3 99.2 0.5 0.3
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2.5 Characterization of the Co;0, and PVDF/Co;0,-
MWCNTSs nanocomposites

The nanostructures of CozO, were characterized by various
physical techniques such as transmission electron microscope
(TEM), X-rays diffraction (XRD), Fourier transformed infrared
(FTIR), and electrospinning. While the PVDF nanocomposites
films containing hybrid Co;0,~-MWCNTSs nanostructures were
characterized and analyzed by FTIR, XRD, Thermo-gravimetric
analysis (TGA), Thermal differential analysis (TDA), Differen-
tial scanning calorimetry (DSC) and Direct current (DC)
conductivity. Xpert pro. of Cu-based X-rays source which
produce radiation of Ka. type (A: 1.542 A). XRD pattern was used
for crystal analysis of nanocomposite films. FTIR spectrometer
in wavelength range of 4000-400 cm ™" was used to achieve FTIR
spectra of the resulting nanocomposite films. The TEM analyzer
(Model-JSM 6490) was used to study and analyzed the 2D
structural morphology of Co;0, nanowires. The TGA analyzer
(Model-TGA 7) was carried out in a heating range of about 20-
800 °C at heating rate of 5 °C min~" using nitrogen environ-
ment. The TDA data was obtained from TGA data using differ-
ential technique. DSC analyzer was carried out in temperature
range 0-200 °C, at heating rate of ~10 °C min~ ' was used to
obtain the DSC data. The electrical properties of the PVDF-
nanocomposites were measured by using inductance-L, capac-
itance-C, and resistance-R (LCR) meter. The data of electrical
conductivity of the films were obtained by applying silver (Ag)
paste on both sides of the films. The silver (Ag) paste was ach-
ieved as a result of well mixing of silver-metal in isoamyl acetate
solvent. The prepared silver paste was then applied on the pure
PVDF and PVDF/Co;0,~-MWCNTSs nanocomposites to measure
the conductivity behaviors of the resulting nanocomposite
membranes.”” The two terminals of the LCR meter were con-
nected to the two ends of the thin films containing silver paste
and the program was run to measure the DC-conductance and
dielectric loss of the prepared nanocomposite membranes.

View Article Online
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3 Results and discussion
3.1 Analysis of Coz;0, nanowires

The surface morphology of the cobalt oxide nanowires was
carried out by the TEM microscope which confirmed the
formation of one-dimensional Co;0, nanostructures illustrated
in low and high magnifications, Fig. 1(a) and (b). The external
surface of 1D Coz;0, nanowires looks grainy, compact and also
rough at the corner. The rough edges arise during removal of
solvent and PVP which result in the grains filling the space and
make the surface rough. The length of nanowires exceeded over
1 pm while their diameters range in between 194 nm and
104 nm respectively as labelled in the given TEM micro-images.

The electrospun cobalt oxide nanowires obtained after
calcination were characterized by powder XRD, FTIR spectros-
copy and TEM. The XRD pattern of Co;0, as labelled in Fig. 2(a)
which was analyzed for phase changes and crystal structure via
the X'Pert HighScore software. The diffraction pattern of the
cobalt oxide nanowires corresponded to Co;0, crystalline phase
which matched perfectly with the diffraction PDF file No. 01-
076-1802. The crystalline phase Co;0, is cubic crystal system
represented by space group Fdzm and space group number 227
respectively. The reflections of the Co;0, XRD pattern appeared
at 26 = 19.02°, 31.31°, 36.90°, 38.60, 44.88°, 55.74°, 59.45°,
65.34°, 77.47° and the respective miller indices are (111), (222),
(311), (222), (400), (422), (511), (411), and (533), respectively. The
XRD pattern showed that there are no impurities in it nor any
residues of the PVP due to high temperature and the XRD
pattern is solely assigned to Co;0O, phase.

The FTIR spectrum of 1D Co;0, crystalline is given in
Fig. 2(b), which confirms the formation of the crystalline Co;0,
nanowires. The FTIR spectrum show two prominent peaks
appearing at different absorption position at 26 of 534 cm ™,
and 652 cm . The peak appear at position 534 cm™" is allo-
cated to the strong stretching vibration of Co-O (where Co exist
as Co®") occupying the octahedral corners of the corresponding

Fig. 1 TEM micrograph of cobalt oxide-nanostructures (a) low, and (b) high magnification, respectively.
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Fig. 2 X-rays diffraction pattern (a), and FTIR spectrum (b) of CozO4 nanowires.

cubic spinel lattice while the absorption peak at 652 cm ™' is
allocated to the stretching Co-O bond vibration (where Co exist
as Co®") occupying the tetrahedral corners of the spinel
lattice.*®*

3.2 Structural analysis of PVDF nanocomposites with
C03;0,-MWCNTSs nanostructure

The crystallinity of PVDF nanocomposites were evaluated using
the PXRD pattern to see the combined impact of hybrid nano-
material containing Coz;O0,~MWCNTover the crystallinity of
PVDF films. The PVDF nanocomposite membranes have
different content of hybrid Co;0,-MWCNTSs nanostructures as
listed in Table 1. Fig. 3 shows the XRD patterns of the pure
PVDF and Co3;0,-MWCNTs/PVDF nanocomposite membranes
in the range of 5°-80° 2. XRD graphs of pure PVDF shown two
absorption bands located at 26 of 20.5° (100) and 39.45° (211),
respectively. The peak at 20.5° showed the alpha phase of PVDF
while the absorption peak at 26 of 39.45° refers to the gamma

B~ phase o — phase

PC5CNT1.5

PC5CNT1
PC3CNT3

N PC3CNT1.5

VA,

Intensity (a.u)

PC3CNT1

PC1CNT3
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Fig. 3 XRD patterns of PVDF and its nanocomposites with CozO4
nanowires and multiwall carbon nanotubes (MWCNTSs).

© 2025 The Author(s). Published by the Royal Society of Chemistry

phase of PVDF.*® After the addition of Co;0,-MWCNTSs nano-
structures with different weight percentages (wt%), the nano-
composites show different peaks from the pure PVDF. The
diffractograms of the resulting nanocomposite membranes
shown two absorption peaks, one peak exists at 20.5° with less
intense and other peak exist at 39.45° of 26 which nearly van-
ished in all samples, while the peak for B-phase showed higher
intensity as compared to pure PVDF. This shown that upon
addition of Co3;0,~MWCNTSs, a significant result regarding
conversion of o- and y-into B-phase PVDFs occurred.

The XRD pattern of PCICNT1 nanocomposite showed only
one peak at position 20.2° (110) showing little deviation from
the peak of pure PVDF, which exist at 20.5° degree showing
reflection for (100). The XRD pattern of PCICNT1.5 nano-
composites, the main peak at 26 position of 20.5° in case of pure
PVDF has greatly reduced and two additional bands appeared at
26 position of 7.60°, which is of high intensity and 16.45° is of
low intensity. The new peaks appeared because adding nano-
fillers in the resulting nanocomposites causes the correspond-
ing B-phase formation. Furthermore, the peak intensity for o-
phase PVDF decreases continuously with respect to increasing
concentration of Co;0,~MWCNTSs nanostructures in the nano-
composites (Fig. 3). In the case of PC1ICNT3 nanocomposite, the
XRD pattern showing three low intensities peaks at 26 of 13.2°,
22.27° and 37.40° respectively. Similarly, in case of PC3CNT1,
the XRD diffraction showed three peaks at 26 position of 20.3°,
25.9° and 36.7°. The new peaks appeared in the case of
PC1CNT3 and PC3CNT1 nanocomposites showing strong
interfacial interaction between nano-fillers and PVDF polymer,
corresponding to the formation of active polar B-phase PVDF.
Furthermore, the XRD pattern of PC3CNT1.5 and PC3CNT3
nanocomposites showed two peaks appear at 20.3° and 36.7° of
2. The peak at 26 of 20.3° is of high intensity while peak at
36.7° is of less intensity. Furthermore, in case of PC5CNT1
nanocomposite, three peaks appeared in the XRD pattern at 26
position 16.3°, 20.3° and 36.7° of low intensity, followed by
PC5CNT1.5 and PC5CNT3 nanocomposites, where two same
and distinctive peaks appear at 26 position of 20.3° and 36.7°

RSC Adv, 2025, 15, 8740-8749 | 8743
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respectively. The reflection plane (110/200) in the XRD analysis
of the resulting nanocomposites of PVDF which are corre-
sponding to the polar B-phase PVDF. From the XRD data, it can
be concluded that upon addition of nano-filler, there occurs
transformation of nonpolar a into polar f-phase PVDF in the
nanocomposites, crystallinity of the resulting nanocomposites
also improved.**

3.3 FTIR analysis

FTIR analysis of the PVDF nanocomposites with hybrid nano-
structures was carried out to see the impact of the nano-filler
and co-filler on the crystallinity and morphology of the pure
PVDF hybrid nanocomposite membranes. The FTIR spectra of
blank PVDF and its nanocomposites loaded with various wt%
hybrid nanostructures of Coz;0,~MWCNTs as described in
Fig. 4. The FTIR spectrum of pure PVDF showed different
absorption bands allocated at position 479 em™*, 515 cm™?,
600 cm ™!, 840 cm ', 876 cm™!, 1166 cm ™', and 1400 cm ™!
respectively. These are corresponding to the literature reported
elsewhere.”> However, in our case upon the loading of Co;0,-
MWCNTSs nanostructures, there occurs transformation of
nonpolar « into more active polar B-phase PVDF and the peaks
for nonpolar o and weak polar y-phase PVDF appears to be
weakened or disappeared, and some additional peaks appeared
at position of 563 cm™ ", 660 cm ™', 1275 cm ™' respectively. The
appearance of new peaks corresponds to the development of -
phase PVDF.* The results obtained from FTIR data showed
good agreement with the XRD results. The crystal behavior of
PVDF polymer was improved upon the loading of Co0;0,-
MWCNTs in all nanocomposites. The FTIR results shown that
the peaks intensities for B-phase PVDF was found to be
increased with enhanced concentration of Co;0,~MWCNTSs
nanostructures in the resulting composites. Furthermore, by
increasing the concentration of Co;0,-MWCNTSs, the polar -

phase formation was also increased of the PVDF
nanocomposites.
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Fig. 4 FTIR curves of blank PVDF and PVDF nanocomposites with
different wt% of Coz0O4 and functionalized MWCNTs nanostructures.
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3.4 Thermal analysis of the PVDF/C03;0,-MWCNTSs
membranes

The thermal analysis of PVDF nanocomposites with
Co30,-MWCNTSs nanostructures was carried out in order to see
the effect of the hybrid Co;0,-MWCNTSs materials on the thermal
stability and thermal decomposition of the resulting nano-
composite films. The films were heated at constant rate of 10 °©
C min~ " in the range of 25-600 °C. The thermograms of the pure
PVDF and PVDF/Co;0,~-MWCNTs nanocomposites presented in
Fig. 5 showed that pure PVDF has shown one step degradation
after 340 °C which showed that PVDF is stable up to 340 °C. The
total weight loss calculated is 66%. The thermal behavior of the
films was also studied displaying one step degradation same as
pure PVDF. However, a significant variation was found in the
thermal behavior of PVDF/C0o;0,-MWCNTSs nanocomposites in
comparison to pure PVDF. The TGA results showed that the onset
temperature (Tonser) and ending temperature (Te,q) of the nano-
composites are higher than pure PVDF in all the resulting
nanocomposite films. The thermograms shown that thermal
stability of PVDF increases continuously upon the addition of
Co0;0,-MWCNTs nanostructures. A significant increase was
observed in thermal behavior of the PVDF polymer upon the
addition of nano-fillers reported previously in the literature.*>
The thermal stability of the prepared nanocomposite membranes
increases with enhancing concentration of nano-fillers, which
are presented in Fig. 5(a-c). The Ty Was increased to
401 °C (PCICNT1), 440 °C (PC1CNT1.5), 449 °C (PC1CNT3),
421 °C (PC3CNT1), 443 °C (PC3CNT1.5), 450 °C (PC3CNT3),
440 °C (PC5CNT1), 423 °C (PC5CNT1.5) and 452 °C (PC5CNT3)
upon formation of PVDF/C0;0,-MWCNTSs nanocomposite films
with different concentration of Co;0,~MWCNTSs nanostructures,
respectively. This shift in the onset of the degradation process
towards higher temperature due to the use of higher wt% of nano-
fillers could be attributed to the strong attraction of the PVDF
chains with the nano-fillers. The reason for the improvement in
the thermal stability versus thermal decomposition could be due
to increased concentration of nanocomposites which avoid the
escaping of the degraded product during heating which limiting
the continuous degradation of the PVDF. However, in this case,
the strong interfacial attraction between the PVDF and Coz;04-
MWCNTSs nanostructures may be responsible for withdrawing the
heating. The TGA pattern shows that increase wt% of the hybrid
nano-fillers (Co;0,-MWCNTs) increases both the Tyse and Tepg-

The differential thermal analysis (DTA) data of the resulting
nanocomposites have been abstracted from the TGA data,
which are presented in Fig. 6(a—c). The peak temperature (T})
for all the nanocomposite films were evaluated and found that
the value of T}, increases continuously upon the addition and
concentration of fillers (Co;0,) and co-fillers (MWCNTSs)in
different wt%.

Furthermore, the differential scanning calorimetry (DSC) of
the PVDF nanocomposites with Co;0,~-MWCNTSs were per-
formed in temperature range up to 200 °C at constant heating
rate of 20 °C min'. The purpose of this study was to study the
effect of the loading C0o;0,-MWCNTs nanostructures on the
phase change of PVDF in its nanocomposites. The melting

© 2025 The Author(s). Published by the Royal Society of Chemistry
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temperature (Ty,) of PVDF in the resulting nanocomposites
increases upon the incorporation and concentration of fillers
(Co30,4) and co-fillers (MWCNTS) as compared to pure PVDF as
presented in Fig. 7(a-c). However, the increase in T, of the
prepared films is very small and less significant but these
increase in Ty, occurred because of loading and concentration
of the fillers in various weights. Addition of Co;0,-MWCNTsS,
a significant effect regarding conversion of PVDF phases is
resultant to the phase change from non-polar o-into techno-
logically important f-phase PVDF. This can also be achieved by
better dispersion of fillers in the polymer matrix.>»** The DSC
graphs show a clear trend in the case of higher concentration of
fillers.

3.5 Electrical properties of PVDF nanocomposite films

DC conductance of the synthesized PVDF/Co3;0,-MWCNTs
nanocomposites were studied and measured using an imped-
ance spectroscopy. The pertinent data of the electrical proper-
ties are given in Fig. 8(a and b). The DC conductance of the
synthesized PVDF nanocomposite films were measured in the
frequency range 1 x 10° Hz to 1 x 10° Hz at room temperature.
The DC conductance shown by pure PVDF is very low, which
decreases by increasing the frequency (Fig. 8(a)). Similarly, the
DC conductance of the synthesized PVDF nanocomposites
loaded with hybrid nano-fillers (Co3;0,-MWCNTs) in

© 2025 The Author(s). Published by the Royal Society of Chemistry

different wt% showed a good result in most cases. All the
samples showed higher DC conductance as compared to pure
PVDF which is initially increasing very quickly with enhancing
frequency and then decreased with increasing frequency.*>® The
DC conductance of synthesized nanocomposites with C0;0,-
MWCNTs hybrid fillers depend on both the concentration and
distribution of these fillers within the matrix. In samples with
higher filler loadings, the conductive network formed by the
Co;0, and MWCNTs facilitating electron mobility through
a continuous conductive pathway. This network formation
allowed electrons to hop between conductive particles, signifi-
cantly enhancing the overall conductivity of the composite. In
contrast, samples with lower filler concentrations, the conduc-
tive fillers are not close enough to form a continuous path,
resulting in poor connectivity between conductive regions and
a low probability for electron hopping. Additionally, the distri-
bution and possible aggregation of fillers in these samples
could contribute to the observed minimal changes in conduc-
tivity, as non-uniform dispersion can inhibit the formation of
an effective conductive network. Similarly, the higher DC
conductance of PVDF nanocomposites in case of more contents
of fillers showed direct relation between DC conductance and
concentration of fillers in the synthesized films. The higher
conductance values could be attributed to the strong interaction
between fillers and PVDF on one hand, and on the other hand,
increasing the formation of polar B-phase of PVDF in its
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nanocomposites.®® Similarly, a noticeable increase in conduc-
tance was observed with the addition of Co;0,~-MWCNTS, sug-
gesting that the hybrid nanostructures facilitated charge
transfer within the composite matrix. However, it is important
to note that part of the increased conductance may be attributed
to electrode effects, particularly the interaction between the
composite material and the electrode surfaces during
measurement.

Similarly, the dielectric loss of the synthesized films was
measured at room temperature (Fig. 8(b)). The dielectric loss of
pure PVDF and its nanocomposites with Co;0,-MWCNTs were
plotted as a function of frequency, depicted in Fig. 8(b). The
resultant loss of blank PVDF and the prepared films constantly
decreases with enhancing frequency (Hz). There was observed
no strong fluctuation in the loss of the films. The reason for this
might be the Maxwell-Wagner-Siller (MWS) polarization effect,
due to strong polarization on the surface of PVDF polymer upon
fillers incorporation.

4 Conclusions

The present study proves the successful transformation of the
non-polar a-phase of PVDF into the technologically important
B-phase by reinforcing the polymer with 1D hybrid Co;04~
MWCNTs nanostructures. The CozO, nanowires were synthe-
sized through an electrospinning technique, while the func-
tionalized MWCNTs were used to improve distribution and
interaction with the PVDF matrix. The resulting PVDF/C030,-
MWCNTs nanocomposites were characterized using various
techniques, including XRD, FTIR, TGA, TDA, DSC, and imped-
ance spectroscopy. XRD analysis confirmed the improvement in
crystallinity, and FTIR spectroscopy verified the presence of the
polar B-phase PVDF. Thermal analyses (TGA, TDA, and DSC)
showed that the addition of Co;0,-MWCNTs significantly
enhanced the thermal stability of the nanocomposites, with an
increase in both thermal resistance and decomposition
temperatures. While the findings of this study contribute to the
development of high-performance PVDF nanocomposites,

© 2025 The Author(s). Published by the Royal Society of Chemistry

several limitations should be acknowledged. The trans-
formation efficiency from the a-phase to the B-phase could vary
depending on the concentration and morphology of the nano-
structures, which permits further optimization.

For future studies perspectives, it is recommended to
investigate the effects of varying the ratio of Co3;0, to MWCNTs,
as well as the influence of different hybrid nanostructures on
the phase transformation and mechanical properties of the
composites. Moreover, exploring the long-term stability and
practical applications of these PVDF/Co;0,-MWCNTSs nano-
composites in real-world devices, such as sensors and actuators,
will provide deeper insights into their potential for industrial
use. Further work should also focus on scalability and cost-
effectiveness in fabricating large-scale nanocomposite films,
to evaluate their commercial viability. Due to enhanced thermal
and electrical properties, the synthesized membranes could be
used in many electronic devices such as sensors and capacitors.
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