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nalyzing the variability of
activation thermodynamic and solvent model
parameters†

Floyd L. Wiseman *a and Dane W. Scottb

The fundamental thermodynamic equation of chemical kinetics has recently been used to analyze rate data

from the hydrolysis reaction of tert-butyl chloride in the acetonitrile/water solvent system. Although this

study showcased the deeper level of insight afforded from the fundamental equation, at the time of the

publication no technique had been developed for analyzing the functional dependencies of the

activation thermodynamic and solvent model parameters. We have since developed a three-step

technique briefly described as follows. The first step includes conducting a linear regression analysis

using a linearized form of the fundamental equation to determine if the parameters are constant. The

second step includes a technique for evaluating the functional forms of the parameters if they are not

constant, and the third step includes a technique for constructing parameter grid equations. The three-

step analysis has been applied to some of the rate data from our studies on the tert-butyl chloride

hydrolysis reaction. The results show the intrinsic activation entropy and Kirkwood–Onsager parameter

depend on the electrostatic environment of the bulk solvent and the close-range interactions associated

with the solvation shell. Auxiliary topics also presented in this article include an analysis showing

mathematical expressions for intrinsic parameters cannot be evaluated, a discussion on the modeling

benefits of the fundamental equation, and presentation of an empirical expression that correlates the

solvent mole fraction term with the effect of the solvation shell.
Introduction

In some of our previous publications we have introduced and
discussed the fundamental thermodynamic equation of chem-
ical kinetics for binary solvents (the “fundamental equation” for
short),1–3 and recently used it to analyze the hydrolysis reaction
of tert-butyl chloride in the acetonitrile/water solvent system.4

This reaction was chosen because it has been well studied and
the accepted mechanism is simple, which is a desired feature
for interpreting rate data. The acetonitrile/water solvent system
was chosen as this system has been well studied. We studied the
reaction under isobaric/iso-mole fraction, isobaric/isodielectric,
and isobaric/isothermal conditions, and the analyses yielded
average values for the intrinsic activation entropy and solvent
model parameters (we dene these terms in the Theory section).
While this study provided a successful proof of concept, at the
time of the publication we had not developed a technique for
systematically analyzing functional dependencies for the
tment of Mathematics & Natural Science,
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ent of Chemistry, 325 Treasure Lane,
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the Royal Society of Chemistry
parameters. Since then, we have formulated and tested a three-
step technique that assesses whether the parameters vary, and
analyzes their functional forms if they do. In this article we
present this technique in detail, and apply it to some of the rate
data from the tert-butyl chloride hydrolysis studies. As we will
show, this three-step technique uncovers some fascinating
insight into the activation dynamics and how the two distinct
regions of the solvent (the solvation shell and the bulk solvent)
uniquely affect the reaction.

We briey describe the three-step technique as follows. The
rst step includes conducting a linear regression analysis using
a linearized form of the fundamental equation. If the plot is
linear, the parameters are constant and the analysis is
complete. If not, the process continues with the second step,
which includes a “two-point” analysis that evaluates the
parameters between all pairs of adjacent points in the data set.
This creates a set of values for the parameters that can be cast as
functions in any one of the domain variables. The nal step,
which is not always feasible for reasons we will discuss, includes
conducting layered polynomial regression analyses to generate
the parameter grid equations. This is the same technique used
to generate the binary solvent grid equations (basically an
equation of state). As the discussion unfolds, we use certain
terms and phrases that we dene as they are introduced.
RSC Adv., 2025, 15, 4111–4119 | 4111
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We also present three auxiliary topics that are not fully dis-
cussed in any of our previous publications. These include an
analysis that shows intrinsic parameters cannot be mathemat-
ically evaluated, a discussion of the modeling benets of the
fundamental equation, and the presentation of an empirical
expression that correlates the mole fraction term with the effect
of the solvation shell. These topics are not germane to the
primary intent of this article, and are presented in ESI† Sections
1–3, respectively.
Theory
Introduction and denitions

The fundamental thermodynamic equation of chemical
kinetics for a binary solvent is:1–3

dDG‡ ¼ DV ‡
T ;X ;3r

dP� DS‡
P;X ;3r

dT þ
�
vDG‡

vX

�
P;T ;3r

dX

þ
�
vDG‡

v3r

�
P;T ;X

d3r (1)

in which P, T, X (the mole fraction of either solvent component),
and 3r (the relative permittivity) comprise the complete set of
system (or state) variables. In referencing eqn (1) and other
activation thermodynamic equations, we will use the following
denitions. The differential terms on the right-hand-side of the
equation are the equation terms; DG‡, DV‡

T;X ;3r , and DS‡P;X ;3r are
activation thermodynamic parameters;�
vDG‡

vX

�
P;T ;3r

and
�
vDG‡

v3r

�
P;T;X

are the mole fraction and elec-

trostatic terms, respectively, and collectively they are the solvent
model terms; and�
v3r

vT

�
P;X

;

�
vX
vT

�
P;3r

;

�
v3r

vX

�
P;T

;

�
vP
vT

�
X ;3r

;

�
vP
vX

�
T ;3r

;

�
v3r

vP

�
T;X

, and

their reciprocals are solvent terms. The solvent terms are all
interrelated through the solvent grid equation, and are inde-
pendent of the reaction system provided the reactants are in
very small amounts.

When analyzing solvent effects, the solvent model terms are
replaced with either theoretical or empirical equations. Theo-
retical equations contain parameters that have structural
signicance, but the parameters associated with empirical
equations do not correlate with any structural feature. As they
yield more interpretive results, theoretical equations are
preferred and used if available.

Inasmuch as eqn (1) is a true thermodynamic equation, each
activation thermodynamic parameter or solvent model term
correlates an aspect of the activation process to a system vari-
able. The rst two right-hand-side terms correlate the intrinsic
activation volume, DV ‡

T ;X ;3r , with the pressure, and the intrinsic
activation entropy, DS‡P;X ;3r , with the temperature. An intrinsic
parameter is one in which all complementary variables are
constant. A complementary variable is any system variable other
than the one correlated with the activation parameter or solvent
model term (e.g. T, X, and 3r for DV

‡
T ;X ;3r ), and the primary vari-

able is the one that is correlated (e.g. P for DV‡
T;X ;3r ). The
4112 | RSC Adv., 2025, 15, 4111–4119
electrostatic term,
�
vDG‡

v3r

�
P;T;X

, correlates with the relative

permittivity, and as we will show later, the mole fraction term,�
vDG‡

vX

�
P;T ;3r

, correlates the mole fraction with the short-range

solvent–solute interactions associated with the solvation shell.
Eqn (1) has one more term than prescribed by the phase rule.

However, analyzing an electrostatic equation, or any other intrinsic
term in eqn (1), requires there be as many equation terms as
system variables. This critical point can be illustrated by dropping
the electrostatic term, which renders the following equation:

dDG‡ ¼ DV ‡
T ;XdP� DS‡

P;XdT þ
�
vDG‡

vX

�
P;T

dX (2)

As eqn (2) has no explicit relative permittivity term, it cannot
be used to analyze an electrostatic equation. However, eqn (2) is
related implicitly to the relative permittivity, as illustrated in the
following set of partial differential expressions:�

vDG‡

v3r

�
P;X

¼ �DS‡
P;X

�
vT

v3r

�
P;X

(3)

�
vDG‡

v3r

�
P;T

¼
�
vDG‡

vX

�
P;T

�
vX

v3r

�
P;T

(4)

�
vDG‡

v3r

�
T ;X

¼ DV ‡
T ;X

�
vP

v3r

�
T ;X

(5)

The implicit dependency vanishes if the solvent term is zero.
We can compare eqn (3)–(5) with the following correspond-

ing expressions from eqn (1):�
vDG‡

v3r

�
P;X

¼ �DS‡
P;X ;3r

�
vT

v3r

�
P;X

þ
�
vDG‡

v3r

�
P;T ;X

(6)

�
vDG‡

v3r

�
P;T

¼
�
vDG‡

vX

�
P;T ;3r

�
vX

v3r

�
P;T

þ
�
vDG‡

v3r

�
P;T ;X

(7)

�
vDG‡

v3r

�
T ;X

¼ DV ‡
T ;X ;3r

�
vP

v3r

�
T ;X

þ
�
vDG‡

v3r

�
P;T ;X

(8)

The electrostatic term,
�
vDG‡

v3r

�
P;T;X

, is the only explicit term

in relative permittivity, and is the only term that can be used to
model an electrostatic equation. As these equations all have two
right-hand-side terms, the electrostatic term, like any of the
terms in eqn (1), is always analyzed in conjunction with another
term.
The three-step analysis for generating the parameter
functionalities and the parameter grid equations

In the following subsections we outline the three-step analysis
in detail. But rst we briey discuss the experimental protocol
required for conducting the analysis.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Experimental protocol for generating the data required for
a three-step analysis

Conducting a three-step analysis requires rate data for which all
variables but one in the variable space are systematically varied.
The variable that is not systematically varied is functionally
related to the other variables via the appropriate solvent grid
equation. Our kinetic analyses always include a set of isobaric
experiments for which the temperature and mole fraction are
systematically varied. The experimental grid set for these
conditions can be represented using set notation as {Ti[Xj(3r,i,j)]}
or {Xi[Tj(3r,i,j)]}, in which 3r,i,j is related to Xj and Ti by the solvent
grid equation. As an example, suppose we conduct isobaric rate
measurements at four temperatures, and for each temperature
we conduct iso-mole fraction rate measurements at ve mole
fractions. The elements in the grid set are {T1[X1(3r,1,1), X2(3r,1,2),
X3(3r,1,3), X4(3r,1,4), X5(3r,1,5)]; T2[X1(3r,2,1), X2(3r,2,2), X3(3r,2,3),
X4(3r,2,4), X5(3r,2,5)]; T3[X1(3r,3,1), X2(3r,3,2), X3(3r,3,3), X4(3r,3,4),
X5(3r,3,5)]; T4[X1(3r,4,1), X2(3r,4,2), X3(3r,4,3), X4(3r,4,4), X5(3r,4,5)]}. If
we list the temperatures and mole fractions in ascending order,
then the variable space covers a temperature range from T1 to
T4, and a mole fraction range from X1 to X5. If X represents the
mole fraction for the solvent having the higher relative
permittivity, then the variable space covers a relative permit-
tivity range from 3r,4,1 to 3r,1,5.
Derivative expressions and the linearized plots

Analyzing a data set using eqn (1) entails generating a plot for
which two system variables (the domain variables) are varied,
and the other two are constant. The activation free energy plot
can be in terms of either domain variable. The complete set of
possible activation free energy plots for a binary solvent
includes: DG‡

P;T vs. X or 3r, DG
‡
P;X vs. T or 3r, DG

‡
P;3r vs. T or X,

DG‡
T;X vs. P or 3r, DG

‡
T ;3r vs. P or X, and DG‡

X ;3r vs. T or P. For
conducting an analysis, a series of plots are generated in
a systematic fashion as described in the previous subsection,
and the linearization technique, described in the following
paragraphs, is applied to each plot in the series.

We will use the isobaric/isothermal expression to illustrate
the linearization technique. The domain variables under these
conditions include the mole fraction and relative permittivity,
and so we will need solvent model equations. To model the
electrostatic term, we use the following Kirkwood–Onsager
equation:5,6

DG‡
P;T ;X ¼ �AQ

�
3r � 1

23r þ 1

�
(9)

in which A is a constant given by:

A ¼ NA

4p30
(10)

and Q is a convenient substitution parameter given by:

Q ¼ m2
T

r3T
�
Xm2

R

r3R
(11)

NA is Avogadro's number, 30 is the vacuum permittivity, mR is the
dipole moment for the reactant molecule designated R, rR is its
© 2025 The Author(s). Published by the Royal Society of Chemistry
radius, mT is the transition-state dipole moment, rT is its radius,
and the summation in eqn (11) is over the number of reactant
molecules. An empirical mole fraction equation that can be linear
or non-linear, and one that we have used in previous work is:2–4�

vDG‡

vX

�
P;T ;3r

¼ aXg (12)

in which a and g are the model parameters.
Treating Q as a constant, the derivative expression for�

vDG‡

vX

�
P;T

is:

�
vDG‡

vX

�
P;T

¼
�
vDG‡

vX

�
P;T ;3r

þ
�
vDG‡

v3r

�
P;T ;X

�
v3r

vX

�
P;T

¼ aXg � 3AQ

ð23r þ 1Þ2
�
v3r

vX

�
P;T

(13)

Treating all the solvent model parameters as constants, the
integrated equation within limits is:

DG‡
P;T ¼ DG‡

P;T ;0 þ
�

a

gþ 1

��
X gþ1 � X gþ1

0

�� 3AQð3r � 3r;0Þ
ð23r þ 1Þð23r;0 þ 1Þ

(14)

in which the subscript “0” denotes initial values. The mole
fraction and relative permittivity are related by the appropriate
form of the solvent grid equation, so eqn (14) can be cast solely
in terms of either domain variable. Dividing eqn (13) by Xg

yields the following linearized form of the equation:�
1

X g

��
vDG‡

vX

�
P;T

¼ a� 3AQ

Xgð23r þ 1Þ2
�
v3r

vX

�
P;T

(15)

Eqn (15) is analyzed by plotting
�

1
Xg

��
vDG‡

vX

�
P;T

vs.

� 3A

Xgð23r þ 1Þ2
�
v3r

vX

�
P;T

and conducting a linear t, for which

the slope is Q and the intercept is a. Expressions for
�
vDG‡

vX

�
P;T

are determined by tting the plots of DG‡
P;T vs. X with suitable

polynomials and evaluating the derivatives. A suitable poly-
nomial is one that has the lowest order possible and yields
a reasonably good t within the standard deviations of the data
points. We avoid higher order polynomials (generally fourth
order or higher) as they lead to erratic or oscillatory behavior.

The solvent term,
�
v3r

vX

�
P;T

, is evaluated using the appropriate

form of the solvent grid equation given by 3r = f3P,Tr(X). A pre-
determined value for g is required, and we will discuss how to
obtain this in a moment.

In addition to eqn (15), there are ve more independent
linearized equations. Using eqn (9) and (12) as the solvent
models, they are:�

1

X g

��
vDG‡

vX

�
T ;3r

¼ aþ DV ‡
T ;X ;3r

X g

�
vP

vX

�
T ;3r

(16)
RSC Adv., 2025, 15, 4111–4119 | 4113
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�
vDG‡

vP

�
T ;X

¼ DV ‡
T ;X ;3r

� 3AQ

ð23r þ 1Þ2
�
v3r

vP

�
T ;X

(17)

�
vDG‡

vP

�
X ;3r

¼ DV ‡
T ;X ;3r

� DS‡
P;X ;3r

�
vT

vP

�
X ;3r

(18)

�
vDG‡

vT

�
P;X

¼ �DS‡
P;X ;3r

� 3AQ

ð23r þ 1Þ2
�
v3r

vT

�
P;X

(19)

�
vDG‡

vT

�
P;3r

¼ �DS‡
P;X ;3r

þ aXg

�
vX

vT

�
P;3r

(20)

Eqn (16)–(20) are analyzed in the same fashion as eqn (15).
The slopes and intercepts from the linear ts of these equations
are: Q and a from eqn (15), DV‡

T;X ;3r and a from eqn (16), Q and
DV‡

T;X ;3r from eqn (17), DS‡P;X ;3r and DV‡
T;X ;3r from eqn (18), Q and

�DS‡P;X ;3r from eqn (19), and a and�DS‡P;X ;3r from eqn (20). If eqn
(12) is used to model the mole fraction term, a value for g must
be determined before analyzing eqn (15) and (16), or (20). One
method for doing this is to conduct a regression analysis using
the integrated expression, and either treat g as a tting
parameter or preassign a value that yields good regression
results.

The “two-point” technique for evaluating the functional
dependencies in terms of the domain variables

If the plot of the linearized equation is linear, then the
parameters are constant. If the plot is not linear, a “two-point”
technique, described as follows, can be used to evaluate the
functional dependencies for the parameters. Assume the acti-
vation thermodynamic and/or solvent model parameters are
constant between all sets of adjacent data points. Now consider
the representative linear expression, y = pi + psx, in which y and
x are the dependent and independent variables, respectively,
and ps and pi are the slope and intercept, respectively. The
values for ps and pi between any two adjacent points (designated
1 and 2) are calculated from the following equations:

ps ¼ y2 � y1

x2 � x1

(21)

pi = y1 − psx1 = y2 − psx2 (22)

The slopes and intercepts from this analysis are those for
the midpoint (i.e. x = 1

2(x1 + x2) and y = 1
2(y1 + y2)), and therefore

the (ps, pi) data set contains one less pair of terms than the (x,
y) data set used in the analysis. Of course, the parameters are
not exactly constant between adjacent points, so tighter
experimental grids should improve the precision of the
analysis.

To evaluate an integral equation, all parameters that vary or
that cannot be factored out must be incorporated into the
integrands. Moreover, all variable parameters must be cast in
terms of their primary variables. Hence, the proper integral
expression for eqn (15) (assuming g is constant) is:
4114 | RSC Adv., 2025, 15, 4111–4119
ðDG‡
P;T

DG
‡

P;T ;0

dDG‡
P;T ¼ DG‡

P;T � DG‡
P;T ;0

¼
ðX
X0

aðX ÞXgdX � 3A

ð3r
3r;0

Qð3rÞd3r
ð23r þ 1Þ2 (23)

The functional forms for a(X) and Q(3r) are determined
from polynomial ts of the set of values from the two-point
analyses. Generally, the integral expressions are numerically
evaluated.

If a parameter is not constant, then it must explicitly depend
on either or both domain variables. We can understand this
better by investigating all the possible functionalities for one of
the parameters. For instance, consider Q(3r) in eqn (23), for
which the differential equation with respect to 3r is:�

vQ

v3r

�
P;T

¼
�
vQ

vX

�
P;T ;3r

�
vX

v3r

�
P;T

þ
�
vQ

v3r

�
P;T ;X

(24)

Even though Q(3r) is cast solely in terms of 3r, it can still
depend on X. If Q depends solely on 3r, then only the second
right-hand-side term in eqn (24) is non-zero. If Q depends
solely on X, then only the rst right-hand-side term, which is
implicit in 3r, is non-zero. If Q depends on both variables, as
may likely be the case, then both terms are non-zero. We note
here that a two-point analysis cannot be used to analyze the

intrinsic terms

 �
vQ
vX

�
P;T ;3r

and
�
vQ
v3r

�
P;T ;X

!
.

The accuracy of a two-point analysis can (and should) be
tested by expressing the experimental values for DG‡ and the
integrated equation in terms of the same domain variable, and
plotting them on the same graph for comparison.

Using layered polynomials to generate the parameter grid
equations

The last step is generating the parameter grid equations, and
presenting an example is the best way to describe this step.
Suppose we conduct several iso-mole fraction experiments at
several temperatures under isobaric conditions and determine
that Q is not constant, and that second-order polynomials give
good ts for the Q vs. X plots. The polynomial for the rst
temperature is:

Q1 = a1X
2 + b1X + c1 (25)

in which a1, b1, and c1 are the regression parameters. The
general expression for any temperature is:

Qi = aiX
2 + biX + ci (26)

in which i goes from one to the number of temperatures. Now
suppose the set of tting parameters represented by ai, bi, and ci
can all be tted in terms of temperature using second-order
polynomials, i.e.:

ai ¼ a
0
1T

2 þ b
0
1T þ c

0
1 (27)
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ra07211a


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/1
8/

20
26

 6
:2

9:
47

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
bi ¼ a
0
2T

2 þ b
0
2T þ c

0
2 (28)

ci ¼ a
0
3T

2 þ b
0
3T þ c

0
3 (29)

Combining eqn (26) with eqn (27)–(29), and dropping the
subscript i yields the following isobaric grid equation:

QP ¼
�
a
0
1T

2 þ b
0
1T þ c

0
1

�
X 2 þ

�
a

0
2T

2 þ b
0
2T þ c

0
2

�
X þ a

0
3T

2

þ b
0
3T þ c

0
3

(30)

Eqn (30) has two layers of polynomials (the rst in X and the
second in T), and applies only within the variable space used in
the experimental grid. The parameter grid equations can be put
in terms of any two of the system variables using the appro-
priate forms of the solvent grid equation. For example, X can be
replaced with 3r using the isobaric form of the solvent grid
equation given by X = fXP(T,3r), for which the expression
becomes:

QP ¼
�
a
0
1T

2 þ b
0
1T þ c

0
1

��
f XP ðT ; 3rÞ

	2 þ �a0
2T

2 þ b
0
2T

þ c
0
2

�
f XP ðT ; 3rÞ þ a

0
3T

2 þ b
0
3T þ c

0
3 (31)

As previously discussed, the polynomial orders should be as low
as possible and still yield good regression results. If some other
type of equation is used, it should have as few parameters as
possible and be as functionally simple as possible. A grid
equation is only as precise as the least precise polynomial t
used to generate it, and the polynomial ts are only as precise as
the data used in the ts.
Three-step analysis for the tert-butyl chloride hydrolysis
reaction in the acetonitrile/water system

In this subsection we show results of the three-step analysis
applied to the isobaric/iso-mole fraction rate data from our

recent publication.4 Fig. 1 shows the plots of
�
vDG‡

vT

�
P;X

vs.

� 3A

ð23r þ 1Þ2
�
v3r

vT

�
P;X

for ve water mole fractions ranging

from 0.660 to 0.790. Clearly, the plots are not linear, partic-
ularly above Xwater = 0.700. A two-point analysis was con-
ducted for all the data sets and the results are plotted as Q vs.

3r and DS‡P;X ;3r vs. 3r in Fig. 2 and 3, respectively. Relative

permittivity is chosen for these plots rather than temperature
because the parameters are probably more strongly depen-
dent upon relative permittivity, and the functional behaviors
of the parameters are more easily explained in terms of
relative permittivity. The plots are tted using suitable poly-
nomials, and the regression values are shown in the insets in
Fig. 2 and 3. The integral equation incorporating these
polynomials, in which 3r is replaced with 3r(T) in the
temperature integral, is:
© 2025 The Author(s). Published by the Royal Society of Chemistry
ðDG‡
P;X

DG
‡

P;X ;0

dDG‡
P;X ¼ DG‡

P;X � DG‡
P;X ;0

¼
ðT
T0

�
a
0
3rðTÞ þ b

0	
dT þ

ð3r
3r;0

ða3r2 þ b3r þ cÞd3r
ð23r þ 1Þ2

(32)

The functional forms for 3r(T) are given in ref. 4. Fig. 4 shows
the graphs of the integrated equations, which are analyzed
numerically, along with plots for the activation free energies
from ref. 4. As can be seen, the graphs track the data plots quite
well.

Abrupt changes in the slopes and vertical (y axis) positions of
the plots are observed at certain mole faction intervals in
Fig. 1–3. These abrupt changes are reected in the polynomial
regression constants shown in the insets in Fig. 2 and 3. As
these constants cannot be tted well with polynomials
(in Xwater) lower than fourth order, and fourth order poly-
nomials lead to oscillatory behavior, accurate parameter grid
equations cannot be generated for this system. But on the
upside, these sudden shis have some intriguing ramications
that we discuss below.

As s side note, the activation thermodynamic and solvent
model parameters have not been constant for the reaction
systems we have studied so far. Not enough reactions and
solvent systems have been analyzed to determine if this trend is
general, but if it is, the implications may be game changing.
Activation parameters are traditionally treated as constant in
routine analyses. However, if these parameters are not generally
constant for most reaction systems, as we strongly suspect may
be the case, then a paradigm shi in how condensed-phase rate
data is analyzed and interpreted may be in order.

Although we will not delve deeply into the implications of the
results presented here, as this is not the primary intent of this
article, we do make a few observations to illustrate the insight
possible with a three-step analysis. As we have already identi-
ed, the plots in Fig. 1–3 exhibit sudden shis within certain
mole fraction intervals. These shis do not necessarily suggest
there are discontinuous changes occurring in the solvent
structure at certain mole fractions. It is more likely that
signicant, but monotonic structural changes are occurring
within very narrow intervals at certain mole fractions. The fact
that the sudden shis in the slopes and the vertical positions
occur concurrently for Q and DS‡P;X ;3r shows these parameters
are subject to the same solvent effect. Spectroscopic evidence
indicates there are signicant structural changes that occur at
certain mole fractions for the acetonitrile/water system,7–10 but
supposedly very little change occurs within the mole fraction
range used in our studies. This suggests that the mole fraction
interval effects on Q and DS‡P;X ;3r are not associated with struc-
tural changes occurring in the bulk solvent.

The following discussion briey explores possible explana-
tions for the positive slopes of the plots, and the sudden shis
that occur in the slopes and vertical positions at certain mole
fraction intervals. Variability in the activation thermodynamic
and solvent model parameters indicates structural changes are
RSC Adv., 2025, 15, 4111–4119 | 4115
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Fig. 1 The plots of

�
vDG‡

vT

�
P;X

vs. � 3A

ð23r þ 1Þ2
�
v3r

vT

�
P;X

and linear fits for the hydrolysis of tert-butyl chloride in the acetonitrile/water system for

the following water mole fractions: 0.660 (C), 0.700 (∎), 0.730 (:), 0.760 (A), and 0.790 (−). The rate and solvent data used to calculate the

x- and y-axes terms are in ref. 4. The values for Q and DS‡P;X ;3r , which are the slopes and intercepts, respectively, are shown in the inset, and the

correlation coefficients are all 0.997. D is the Debye unit and Å is an Angstrom. The average values for Q and DS‡P;X ;3r are 10 D2 Å−3 and 0.6 J K−1

mol−1, respectively, in close agreement with the values in ref. 4.

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/1
8/

20
26

 6
:2

9:
47

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
occurring in the transition state as the solvent changes. We can
illustrate this by considering the behavior of Q in Fig. 2. Q
increases with the transition-state dipole moment (eqn (11)),
and therefore correlates with the degree of the charge separa-
tion and C–Cl bond length in the transition state. Hence, the
monotonic increase of Q with relative permittivity as depicted in
Fig. 2 reects these transition-state structural changes.

The effects from mole fraction changes are not nearly as
smooth. Specically, small shis in Q occur between Xwater =
0.660 and 0.700, and between 0.730 and 0.760, but much larger
shis occur between 0.700 and 0.730, and between 0.760 and
0.790. The larger shis are not due to electrostatic effects, as is
evident from the plots in Fig. 2, but instead to very sensitive
structural changes within the solvation shell. The transition
state may become signicantly more solvated with water
molecules, or the solvation-shell molecules may reorient more
efficiently within these intervals.11–13 Either of these can stabi-
lize the developing charges and cause the C–Cl bond to
lengthen. As seen by comparing Fig. 2 and 3, the large shis in
Q within these mole fraction intervals correlate with the large
shis in DS‡P;X ;3r . These changes are accompanied by corre-
sponding increases in DH‡

P;X ;3r , so that DS‡P;X ;3r and DH‡
P;X ;3r

largely compensate each other. This is reected in the nominal
effects of the mole fraction on DG‡

P;X as indicated in Fig. 4. As
Xwater increases, the C–Cl bond lengthens and the transition
4116 | RSC Adv., 2025, 15, 4111–4119
state becomes more structurally similar to the intermediate
state (the separated carbocation and chloride ion). The fact that
the shis in Q and DS‡P;X ;3r between 0.760 and 0.790 are smaller
than those between 0.700 and 0.730 is consistent with this idea.

Correlations among the activation entropy, enthalpy, and
free energy are well documented for many types of reactions,11–16

but for equations such as eqn (1) that include solvent model
terms, correlations can include solvent model parameters as
well. The tight correlation between Q and DS‡P;X ;3r serves to
illustrate this. Among other things, these close correlations
undergird the interpretations that we draw from the analysis,
and create condence in the efficacy of the analysis.
Comparison with the traditional analysis

Equating the activation free energy to the electrostatic free
energy leads to the following traditional expression11,17

lnðkÞ ¼ lnðk0Þ þ
�
AQ

RT

��
3r � 1

23r þ 1

�
(33)

in which k0 is the rate constant for 3r = 1. Rate data is analyzed

by plotting ln(k) vs.
3r � 1
23r þ 1

(the Kirkwood function). Fig. 5 shows

the plot for the isobaric/isothermal data from ref. 4 and the
linear regression analysis using eqn (33). Clearly, the plot is not
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Plots ofQ vs. 3r using data from the two-point analyses for the following water mole fractions: 0.660 (C), 0.700 (∎), 0.730 (:), 0.760 (A),
and 0.790 (−). The data is fitted with second-order polynomials (Q= a3r

2 + b3r + c). The regression values from the fits are shown in the inset, and
the correlation coefficients are all 0.9999999. For each plot, the temperatures range from 22.5 °C for the point furthest to the right to 47.5 °C for
the point furthest to the left.

Fig. 3 Plots of DS‡P;X ;3r vs. 3r using data from the two-point analyses for the following water mole fractions: 0.660 (C), 0.700 (∎), 0.730 (:), 0.760
(A), and 0.790 (−). The fits are linear (DS‡P;X ;3r = a03r + b0). The regression values from the fits are shown in the inset, and the correlation coef-
ficients are all 1.00000000. For each plot, the temperatures range from 22.5 °C for the point furthest to the right to 47.5 °C for the point furthest
to the left.

© 2025 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2025, 15, 4111–4119 | 4117
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Fig. 4 Plots of DG‡
P;X vs. 3r and graphs of the integrated equations from eqn (32) for the hydrolysis of tert-butyl chloride in the acetonitrile/water

system for the following water mole fractions: 0.660 (C), 0.700 (∎), 0.730 (:), 0.760 (A), and 0.790 (−). For each plot, the temperatures range
from 20.0 °C for the points furthest to the right to 50.0 °C for the points furthest to the left.

Fig. 5 The plot of ln(k) vs.
Að3r � 1Þ

½RTð23r þ 1Þ� and the linear regression

analysis using eqn (33) for the hydrolysis reaction of tert-butyl chloride

in the acetonitrile/water solvent system under isobaric/isothermal

conditions. The temperature is 35.0 °C, and the water mole fraction/

relative permittivity ranges from 0.620/49.7 to 0.790/59.1. The slope

from the regression analysis is 38.6 D2 Å−3, the intercept is −445, and

the correlation coefficient is 0.996.
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linear, which in fact is generally the case for these types of
plots.18,19 Moreover, the slope (Q) for the plot is 38.6 D2 Å−3,
which is unrealistically large.
4118 | RSC Adv., 2025, 15, 4111–4119
It is common knowledge that eqn (33) does not account for
the effect of the solvation shell. Hence, we expect isobaric/

isothermal plots of ln(k) vs.
3r � 1
23r þ 1

to be linear only in the case

that the solvation shell has little or no effect on the reaction.
However, any reaction that is affected by the bulk electrostatic
environment is almost assuredly affected by the solvation shell
as well, and so an analysis using eqn (33) is not generally ex-
pected to lead to meaningful results.

Most plots of ln(k) vs.
3r � 1
23r þ 1

for reactions in single and

binary solvent systems exhibit extensive scatter and very poor
correlations of the slope with the Kirkwood function.20–24

Moreover, the conventional thought is the transition-state
dipole moment is constant for a given reaction in a wide
range of solvents. We have shown that for the hydrolysis of tert-
butyl chloride, Q is quite sensitive to the solvent environment.
We expect this to be a general trend at least for reactions in
which the ionic characters of the reactant and transition states
are different.

Given all that we have presented in this article, we submit
that rate data in binary solvents cannot be accurately analyzed
apart from eqn (1).

Summary

The activation parameters associated with the fundamental
equation of chemical kinetics may or may not be constant over
an experimental variable space. Due to compensatory effects of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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the system variables on the reaction rates, obtaining good
regression results when the parameters are kept constant is not
an indication that these parameters are actually constant. This
article introduces a novel three-step technique that systemati-
cally assesses whether the parameters are constant, and
provides a method for evaluating the functional dependencies if
they are not. This technique includes: (1) determining if the
data follows a linear trend using the regression results from
a linearized form of the fundamental equation, and if not, (2)
evaluating the activation parameters between all sets of adja-
cent points in the data set, and if possible, (3) constructing
parameter grid equations over the experimental variable space.

The fundamental equation contains intrinsic solvent terms
that uniquely account for the bulk-phase electrostatic effect,
and for the close–range interactions associated with the solva-
tion shell. These terms are used to model solvent equations.
Unlike empirical equations, the parameters associated with
theoretic equations, such as the Kirkwood–Onsager equation,
have structural signicance. Evaluating the functional depen-
dencies for these parameters, now made possible by the three-
step technique introduced in this article, can provide much
deeper insight into the solvent-dependent structural features of
the reaction system.

As a proof of concept, we applied the three-step technique to
some of the rate data for the hydrolysis of tert-butyl chloride in
the acetonitrile/water binary system presented in a recent
publication. The analysis showed strong functional dependen-
cies for the Kirkwood–Onsager parameter and the intrinsic
activation entropy, and provided clear evidence for the corre-
lation between the solvent relative permittivity and the C–Cl
bond length in the transition state. The analysis also revealed
some interesting effects from the solvation shell that could not
have been uncovered without the three-step analysis.

Data availability

The data used for the analyses presented in this article are
available upon request. Refer all inquiries to Dr. Floyd L.
Wiseman, at fwiseman@bmc.edu.
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