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filing of host–pathogen
interactions: differential effects of Gram-positive
and Gram-negative bacterial secretomes on THP-1
macrophage metabolism

Alaa Abuawad,a Manuel Romero,†b Sandra Martinez Jarquin,c

Amir M. Ghaemmaghami d and Dong-Hyun Kim *ce

Infectious diseases present substantial health and economic challenges worldwide. The increasing

prevalence of multidrug-resistant bacteria in both community and hospital settings has emerged as

a global health issue that necessitates innovative strategies for prompt diagnosis and treatment.

Metabolomics, which provides comprehensive insights into the biochemical alterations of cellular

phenotypes, has emerged as a valuable approach for studying host–pathogen interactions and

identifying novel therapeutic targets. In this study, untargeted liquid chromatography-mass spectrometry

(LC-MS)-based metabolite profiling was employed to investigate the differential effects of the secretome

from Gram-positive S. aureus SH1000 and Gram-negative P. aeruginosa PAO1 on THP-1 macrophages.

The results revealed that both bacterial secretomes modulate several key metabolic pathways, including

alanine, aspartate and glutamate metabolism; sphingolipid metabolism; glycine and serine metabolism;

glycolipid metabolism; and tryptophan metabolism. Distinct metabolic trends were observed between

the two secretomes: S. aureus induced an accumulation of asparagine and L-formylkynurenine,

alongside depletion of glycine-related intermediates (e.g. sarcosine, guanidinoacetate), whereas P.

aeruginosa altered creatine levels and reduced asparagine and L-kynurenine. Notably, shared effects

were also identified, with both secretomes demonstrating similar significant effects (FDR < 0.05 and VIP

> 1) on arginine and proline metabolism in THP-1 macrophages. These findings highlight both shared

and unique pathogen-specific metabolic responses, offering preliminary insights into host metabolic

reprogramming triggered by exemplar Gram-positive and Gram-negative bacteria. These results provide

a foundation for future studies to explore bacterial pathogenesis and to identify therapeutic strategies

against resistant infections.
Introduction

Infectious diseases represent major health and economic
challenges worldwide and have constantly featured amongst the
top 10 causes of death globally.1,2 The emergence of multiple
drug-resistant bacteria in the community and hospital has
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become a worldwide concern, as resistant bacterial infections
are associated with longer hospitalisation and an increase in
the mortality rate.3 Therefore, there is an urgent need for
innovative and more efficient diagnostic and treatment
approaches.4

Staphylococcus aureus (S. aureus), an archetypal Gram-
positive bacterium, represents a major human pathogen. It is
an opportunistic bacterium normally colonising the skin and
the respiratory tract causing a wide range of infectious
diseases.5 On the other hand, Pseudomonas aeruginosa (P. aer-
uginosa) is an opportunistic Gram-negative bacterium that can
cause a serious infection in individuals with compromised
immune defence systems. They are leading causes of many
serious diseases such as bacteraemia, skin and so tissue
infections, urinary tract infections and respiratory tract infec-
tions.6 Given the severity of the infections caused by these two
types of bacteria and the antibiotic resistance they display, there
has been a substantial interest in understanding their
RSC Adv., 2025, 15, 40607–40618 | 40607
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pathobiology. A few studies have shown that the pathogenicity
of bacteria is multifactorial and caused by various virulence
factors such as toxins, enzymes, and adhesins, as well as the
production of secondary metabolites.7,8 A wide range of viru-
lence factors enable the bacteria to avoid the immune system.
Nevertheless, the immune system can recognise different
features of pathogens by specic surface receptors called
pathogen recognition receptors (PRRs). For instance, Toll-like
receptors (TLRs) play a crucial role in triggering immune
responses against bacteria.9 Historically, immunology has
predominantly focused on immune signalling pathways due to
their pivotal role in activating and regulating immune cells in
response to pathogens. Early research prioritised under-
standing the complex mechanisms involving cytokines and
surface receptors, leading to a substantial body of knowledge on
these interactions. In contrast, the eld of immunometabolism,
which explores the relationship between metabolic processes
and the function and fate of immune cells, has only recently
gained signicant attention. Emerging studies have revealed
the profound metabolic changes immune cells undergo to meet
the energy and biosynthetic demands of activation and differ-
entiation.10 Despite its importance, immunometabolism
remains less explored compared to signalling pathways. This
disparity stems from the complexity of the numerous metabolic
pathways involved, coupled with the fact that each immune cell
type exhibits distinct metabolic proles that vary dynamically
depending on stimulation and environmental cues.10,11

Furthermore, immunometabolism is an inherently interdisci-
plinary eld, requiring the integration of diverse disciplines,
which presents unique challenges in research design and
methodology.12

Macrophages are effector immune cells that play a critical
role in innate and adaptive immunity13 and are characterised by
the expression of a wide range of PRRs, most popularly, TLRs.9,13

Lipopolysaccharide (LPS), a component of the outer membrane
of Gram-negative bacteria, is recognised by TLR4, whereas lip-
oteichoic acid (LTA) and peptidoglycan (PG) from the Gram-
positive bacterial cell wall are recognised by TLR2.14 Given
that Gram-negative and Gram-positive bacteria engage with
different sets of TLRs that are linked to different signalling
pathways, it is not surprising that different bacterial infections
have distinct immunological proles. However, less is known
about the metabolic responses of immune cells to different
types of a bacterial infection.

The emergence of antibiotic-resistant bacteria in both
hospital and community settings urges the development of
innovative approaches for diagnosis and treatment. Currently,
culturingmicroorganisms from blood or other body uids is the
most used for bacterial infection diagnosis. Molecular tests
have been increasingly used in clinical laboratories, but not as
a part of routine practice due to the high cost. However, routine
tests, while cheaper, are time-consuming with low accuracy and
sensitivity which could provide erroneous information, espe-
cially in patients with immunodeciency.15 These drawbacks of
routine tests have led to an increased effort to identify disease-
specic biomarkers that can be used in the prediction of the
nature and severity of bacterial infections. Such biomarkers can
40608 | RSC Adv., 2025, 15, 40607–40618
potentially lead to early diagnosis and selection of the optimal
treatment at an early stage, hence improving health outcomes.16

For instance, Wunderink et al. demonstrated that procalcitonin
is mainly produced in response to bacterial infections and is
considered to be a diagnostic biomarker to differentiate
between viral and bacterial infections.17 However, a single
metabolite biomarker can be an intermediate in more than one
metabolic pathway. Moreover, the most challenging mission is
to differentiate between infectious diseases caused by different
strains of bacteria. Therefore, novel approaches are needed to
improve the microbiological readout. In this context, in the last
few years, the research has moved from focusing on a single
biomarker to a biosignature encompassing a set of reliable
markers.18

Liquid chromatography (LC)-mass spectrometry (MS)-based
metabolomics has been used widely for disease diagnostic
biomarker discovery due to its sensitivity and powerful quan-
tication ability of low molecular metabolites in biological
samples.19 The technique has been successfully employed in
bacterial infection studies by discovering the biomarkers and
the changes in the metabolic pathways upon infection.20,21 For
example, Müller et al. applied non-targeted metabolomics to
HEP-2 cells in response to Chlamydia pneumoniae infection,
demonstrating signicant alteration in various metabolisms
upon infection which could be potential biomarkers for diag-
nosis and drug target.20 In another metabolomics study,
Antunes et al. investigated the impact of Salmonella on the
murine immunological response, revealing that many metabo-
lites signicantly changed in response to Salmonella infection.22

Furthermore, Fischer et al. successfully employed LC-MS-based
metabolomics to identify biomarkers for decompensated
cirrhosis, particularly in patients with overlapping bacterial
infections. Their study revealed that the primary metabolic
pathways affected in decompensated cirrhosis were those
related to lipid metabolism, with N-oleoyl ethanolamine
emerging as the most promising biomarker for diagnosing
bacterial infections.23 In another metabolomics study, Liu et al.
proled serum samples from syphilis patients, and identied
trimethylamine N-oxide as a potential biomarker for syphilis
diagnosis.24

Due to the crucial pro-inammatory role of macrophages in
ghting bacterial infections,13 investigation of macrophages
response to bacterial extracellular secreted molecules (sec-
retome) using a metabolomics approach may have a dual
benet in the study of bacterial infections: (i) in a diagnostic
role by revealing potential biomarkers and (ii) by increasing the
chance for novel therapeutics by targeting relevant pathways.

Unlike conventional research that primarily investigates
whole bacteria or intracellular factors, our study focuses on the
bacterial secretome, encompassing the extracellular factors that
directly impact host cell proles. This approach allows us to
examine the unique metabolic and immune responses elicited
by extracellular components.

In contrast to previous studies that oen generalise ndings
across bacterial types, our research identies distinct metabolic
pathways altered by Gram-positive S. aureus and Gram-negative
P. aeruginosa. Specically, we highlight how the unique receptor
© 2025 The Author(s). Published by the Royal Society of Chemistry
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pathways of TLR2 and TLR4, respectively, drive differential
immune responses and metabolic perturbations.25,26 These
ndings provide a more accurate representation of macrophage
polarisation during infection, which differs signicantly from
polarisation induced by lipopolysaccharide (LPS) alone into
a pro-inammatory phenotype.27,28

Additionally, our study employs untargeted metabolic
proling to explore the immunometabolism of these infections,
addressing challenges inherent in this approach. While most
previous studies have used alternative models rather than
immune cells20,22–24 or have relied on targeted metabolomics
that assess a limited number of metabolites,27 our work
provides a comprehensive analysis of metabolic alterations
during bacterial infections.

In this study, we performed LC-MS-based metabolite
proling to investigate the impact of the secretome from the
spent culture media of the Gram-positive S. aureus SH1000 and
Gram-negative P. aeruginosa PAO1 on THP-1 macrophages. This
approach has the potential to provide novel diagnostic insights
and may facilitate the development of new therapeutic strate-
gies for bacterial infections.
Materials and methods
Materials

THP-1 cell line was purchased from ATCC, USA. RPMI-1640
medium foetal bovine serum (FBS), phosphate buffered saline
(PBS), 2 mM L-glutamine, 100 U ml−1 penicillin, 100 mg ml−1

streptomycin and tryptic soy broth (TSB) were purchased from
Sigma-Aldrich, UK. 0.2 mm sterilised lters were purchased
from Sartorius, UK. Methanol and acetonitrile were purchased
from Fisher Scientic, UK. All solvents were LC-MS grade.
Methods
Cell culture and differentiation

Human THP-1 cells were cultured and differentiated as previ-
ously described.29 Briey, THP-1 cells were grown in T75 tissue
culture asks using RPMI 1640 supplemented with 10% heat-
inactivated fetal bovine serum (FBS), 1% L-glutamine, and 1%
penicillin-streptomycin. Cells were then incubated at 37 °C and
5% CO2. THP-1 cells were differentiated into näıve macrophage
states (M0) by treatment with phorbol-12-myristate-13-acetate
(PMA) at a nal concentration of 50 ng ml−1. Macrophage
hallmarks and morphology were examined as described previ-
ously.30 Six million cells were seeded per ask (T25 tissue
culture ask), and then the cells were treated with six ml of
PMA-containing media with a nal concentration of 50 ng ml−1

of PMA and incubated for 24 h.
Bacterial culture and cell treatment with bacterial secretome

P. aeruginosa PAO1, P. and S. aureus SH1000 in tryptic soy broth
(TSB) were grown in 50 ml of culture media in 250 ml conical
asks with shaking (200 rpm) at 37 °C. Aer 18 h of incubation,
spent culture media were centrifuged, and supernatants were
recovered and lter sterilised. 10% (600 ml) of spent culture
© 2025 The Author(s). Published by the Royal Society of Chemistry
media for each bacteria (S. aureus SH1000 and WT P. aeruginosa
PAO1) were used to treat macrophages with incubation for 24 h
(henceforth referred to as S-S-M and P-S-M, respectively).
Untreated M0 was set as a control. Six biological replicates of
each condition were prepared.

Sample preparation and metabolite extraction

Aer incubation for 24 h, the media were removed. The cells
were then washed once with pre-warmed PBS (37 °C) and 500 ml
pre-cooled methanol at −48 °C using dry ice was used for
quenching and metabolite extraction. The cells were harvested
using a plastic scraper whilst being kept on ice and the extracts
were transferred into pre-cooled fresh 2 ml tubes (4 °C). The cell
extracts were vortexed for 1 h at 4 °C and centrifuged at 16
100×g for 10 min at 4 °C. Aer the centrifugation, the super-
natants were dried under vacuum and reconstituted with 70 ml
methanol, and then stored at−80 °C prior to LC-MS analysis. To
assess the instrument performance, a quality control (QC)
sample was prepared by mixing an equal volume of all the
samples and PCA analysis was performed to ensure the system
suitability (SI Fig. 1).

Analytical methodologies

LC-MS-based metabolite proling was performed on an Accela
system coupled to an Exactive MS (Thermo Fisher Scientic,
Hemel Hempstead, UK) operating with electrospray ionisation
(ESI) running in the negative (ESI−) and positive (ESI+) modes
as previously described in.31 Briey, the spray voltage was 4500 V
(ESI+) and 3500 V (ESI−), the capillary voltage was 40 V (ESI+)
and 30 V (ESI−), and tube lens voltage was 70 V for both modes
and skimmer voltage was 20 V (ESI+) and 18 V (ESI−). The
temperature for capillary and probe was maintained at 275 °C
and 150 °C, respectively. Chromatographic separation was
carried out using ZIC-pHILIC (4.6 × 150 mm and 5 mm particle
size, Merck Sequant). The mobile phase was composed of
20 mM ammonium carbonate in water (solvent A) and 100%
acetonitrile (solvent B). Metabolites were separated according to
a linear gradient as follows: 0–15 min (20% A), 15–17 min (95%
A), and 17–24 min (20% A) at 300 ml min−1

ow rate. The
injection volume was 10 ml and the column was kept at 45 °C.

Data processing and metabolite identication

To process raw data obtained from LC-MS (with representative
total ion chromatograms shown in SI Fig. 2), XCMS and
mzMatch were used for untargeted peak-picking and peak
matching, respectively.32,33 IDEOM was performed for putative
metabolite identication and noise ltering with default
parameters.34 Briey, RT for identication of authentic stan-
dards was 5%, RT for identication for calculated RT was
50%, ppm for mass identication was 3 ppm. Metabolites were
identied with four levels of condence; level 1 (L1) identica-
tion was based on matching the accurate masses, MS/MS frag-
mentation and retention times of the detected metabolite peaks
with those of 250 authentic standards which were co-analysed
with the samples under identical experimental conditions,
level 2 (L2) identication was based on matching the accurate
RSC Adv., 2025, 15, 40607–40618 | 40609
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masses and retention times (two orthogonal data) of the
detected metabolite peaks with those of the authentic stan-
dards, level 3 (L3) identication was carried out when the pre-
dicted retention times were employed due to the lack of
standards and level 4 (L4) identication was based on unam-
biguously assigned molecular formulas but insufficient
evidence exists to propose possible structures. The identica-
tion criteria were according to the metabolomics standards
initiative.35–37

Pre-processed data were analysed by performingmultivariate
and univariate analysis. OPLS-DA was carried out by SIMCA-P
v13.0.2 (Umetrics, Umea, Sweden) as a supervised multivariate
model. This multivariate analysis was used as the rst step for
visualising data with sample classes and evaluating the meta-
bolome differences between M0 and P. aeruginosa or S. aureus.
Cross-validation is a key method used to evaluate the perfor-
mance and reliability of a model. In SIMCA, this process is
summarised through various quality metrics, with R2 and Q2

being the most widely used in metabolomics. Both metrics
range from 0 to 1, with R2 = 1 signifying a perfect t of the
model to the data and Q2 = 1 indicating awless predictive
ability. For a model to be considered robust, it is generally
recommended that both R2 and Q2 exceed 0.5.38 Additionally,
the OPLS-DA models were validated using a permutation test.
The key mass ions representing potential biomarkers were
determined based on their variable importance of projection
(VIP) values obtained from two-way orthogonal comparisons.
Mass ions with VIP values greater than one were considered as
discriminant biomarkers. Univariate analysis was also per-
formed in parallel with multivariate analysis to identify signif-
icant mass ions. T-test with FDR correction was performed
using Metaboanalyst39 to determine the signicantly changed
mass ions between M0 and S-S-M or P-S-M. MetaboAnalayst and
KEGG database were used to analyse and visualise the affected
pathway.
Results and discussion
Characterisation of macrophages

To visualise cell morphology, differentiated THP-1 cells were
stained with DAPI for nuclear visualisation and uorescently
labelled phalloidin to detect F-actin laments. Immunouo-
rescence staining was also performed to assess the expression of
surface markers calprotectin and mannose receptor (MR).
Consistent with previously reported morphological character-
istics, the cells exhibited a rounded macrophage-like shape (SI
Fig. 3A) and expressed both calprotectin and MR (Fig. 3B),
conrming successful differentiation into näıve (M0) macro-
phage states.30
Multivariate analysis

In order to investigate and visualise the inherent metabolic
differences between the macrophages challenged with the
bacterial secretomes (S-S-M or P-S-M), OPLS-DA was performed
for comparison with the untreated macrophages as a control
(M0). In Fig. 1A, the OPLS-DA scores plot shows a tight
40610 | RSC Adv., 2025, 15, 40607–40618
clustering of six replicates within each group. Furthermore,
a clear separation is shown betweenM0 and S-S-M or P-S-M with
R2 and Q2 values of 0.863 and 0.996, respectively, demonstrating
an acceptable and valid model.38 This result shows two impor-
tant points: rstly, there is a change in the metabolic proles of
macrophages upon the exposure to the bacterial secretome and
secondly, there is a clear separation between S-S-M and P-S-M.
These ndings reect host metabolic responses to the specic
secretomes tested in this study, rather than generalised Gram-
positive versus Gram-negative signatures. To investigate which
metabolites contributed to the separation between groups, two-
way comparisons of OPLS-DA were performed as shown in
Fig. 1B and C. The features were ranked according to their VIP
values and those with VIP > 1 were considered as potential
biomarkers. Multivariate analysis was accompanied by t-test
with FDR correction. Most signicantly changed features with
VIP > 1 and FDR < 0.05 were selected as potential characteristic
metabolites.

As can be seen in Fig. 1B, the OPLS-DA scores plot shows
a clear separation between M0 and P-S-M with R2 and Q2 values
of 0.848 and 0.999, respectively. A permutation test conrmed
the validity of the constructed model (SI Fig. 4A). Of 501 iden-
tied metabolites (SI Table 1), 75 metabolites were signicantly
changed in response to the exposure of the secretome from P.
aeruginosa (SI Table 2) based on the criteria (i.e. VIP > 1 and FDR
< 0.05). Similarly, in Fig. 1C, the OPLS-DA scores plot shows
a clear separation between M0 and S-S-M with R2 and Q2 values
of 0.846 and 0.998, respectively, demonstrating an acceptable
and valid model.38 Further validation using a permutation test
showed the validity of the constructedmodels (SI Fig. 4B). Based
on the combination of multivariate and univariate analyses, 83
metabolites (VIP > 1 and FDR < 0.05) were identied as key
metabolites in response to the exposure of the secretome from
S. aureus (SI Table 3). Building on the uni- and multivariate
analyses that identied key metabolites for P-S-M and S-S-M, the
data were imported into MetaboAnalyst for pathway analysis to
determine the metabolic pathways involved in each condition.
Pathway analysis

To further identify the metabolic pathways that were signi-
cantly altered upon the exposure of the bacterial secretome,
a comprehensive pathway analysis was performed using Meta-
boAnalyst, as illustrated in Fig. 2A and B. These data show that
the signicant number of altered metabolites caused by the
exposure to the bacterial secretome are relevant to amino acid
metabolism as can be clearly seen in Fig. 2. Amino acid
metabolism is very important for the host cells to enhance the
immune defence against pathogens. L-tryptophan, L-arginine
and L-asparagine are the main amino acids which the pathogen
competes with the host cells for.40 Disturbance of amino acid
pathways has been noticed as a cell adaptation in bacterial
infections. Therefore, targeting these pathways in the host has
recently been highlighted as a novel approach to manipulate
bacterial infections.41

The arginine and proline metabolism pathway in Fig. 2A and
B showed the most signicant alteration in response to the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 OPLS-DA scores plots of macrophage extracts after the treatment with the sectretome of S. aureus (S-S-M) and P. aeruginosa (P-S-M),
and their corresponding untreated control (M0). (A) OPLS-DA scores plot of S-S-M, P-S-M and M0 (R2 = 0.863 and Q2 = 0.996). (B) Two-way
orthogonal comparison between P-S-M and untreated M0 (R2 = 0.838 and Q2 = 0.999). (C) Two-way orthogonal comparison between S-S-M
and untreated M0 (R2 = 0.842 and Q2 = 0.998). M0 (dark blue squares), P-S-M (red triangles), and S. aureus (light blue stars) n = 6.
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exposure of the secretomes from S. aureus and P. aeruginosa
infection. This could be due to the signicant decrease in the
level of L-1-pyrroline-3-hydroxy-5-carboxylate, creatinine, L-
glutamate 5-semialdehyde, L-citrulline and phosphocreatine,
which are intermediates in the arginine and proline metabo-
lism, in both S. aureus and P. aeruginosa secretomes treated
macrophages (Fig. 3). L-Arginine is considered a non-essential
amino acid at the whole organism level, but it is important to
be supplemented in certain diseases such as gastritis, ulcers,
hypertension, and cardiovascular diseases. It is produced from
© 2025 The Author(s). Published by the Royal Society of Chemistry
de novo arginine biosynthesis or cellular protein breakdown.42

Metabolic exibility and interconvertibility are well recognised
for L-arginine since it can be interconverted with a range of
other amino acids such as L-glutamate and L-proline. In addi-
tion, it is involved in the synthesis of metabolites such as
creatine, phosphocreatine, polyamines, nitric oxide and urea
cycle metabolites.43 Normally, L-arginine is a substrate of two
main enzymes, arginase and inducible type 2 nitric oxide syn-
thase. It can be metabolised by arginase to produce ornithine
and urea or oxidised by iNOS to produce L-citrulline and nitric
RSC Adv., 2025, 15, 40607–40618 | 40611
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Fig. 2 A summary of pathway analysis by MetaboAnalyst. The top pathways were ranked by the gamma-adjusted p-values for permutation per
pathway (Y-axis) and the total number of hits per pathway (X-axis). The colour graduated from white to yellow, orange and red as the values of
both x and y increase, red circles the most significantly changed metabolic pathway, and the pale yellowish are the least significantly changed
metabolites. (A) Metabolic pathways significantly changed in P. aeruginosa sectretome treated macrophages. (B) Metabolic pathways signifi-
cantly changed in S. aureus sectretome treated macrophages.
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oxide (NO). Therefore, the competition of arginase with the
iNOS is well studied for its activity in decreasing the production
of NO. In addition to this competition, arginase was reported to
inhibit the expression of iNOS, again limiting the production of
NO.43 NO is a pivotal element of the immune response and is
one of the most important antimicrobial agents of the host's
rst line of defence.44 Pathogenic bacteria adapt several mech-
anisms targeting arginine to protect itself against the immune
system of a host cell. For instance, arginase diverts arginine
away from iNOS to subvert an antimicrobial effect of macro-
phages.40 Moreover, pathogens upregulate the activity of argi-
nase to decrease the availability of arginine as a substrate for
iNOS. The arginase produced by bacteria can also similarly
compete with iNOS to mammalian arginase to prevent NO
production as a strategy of the bacteria to survive.43 The bacte-
rial arginase was reported to be recruited to deplete L-arginine
in macrophages.45 The depletion of L-arginine will consequently
decrease the production of L-ornithine which is hydrolysed by
ornithine aminotransferase followed by 1-pyrroline-5-
carboxylate dehydrogenase to produce L-glutamate. Also, L-
ornithine produces L-citrulline by ornithine carbamoyl trans-
ferase. A similar effect on the arginine and proline metabolism
pathway was expected, as both S. aureus and P. aeruginosa have
been reported to predominantly induce the expression of argi-
nase in host cells and tissue over iNOS. This activation of
arginase enhances the metabolism of L-arginine through the
arginase pathway, thereby reducing the availability of L-arginine
as a substrate for iNOS. Consequently, this limits the produc-
tion of NO.46–48 Targeting the precursors such as L-arginine and
L-ornithine by bacteria can explain the decrease in the level of
40612 | RSC Adv., 2025, 15, 40607–40618
intermediates such as L-citrulline, L-glutamate and other rele-
vant metabolites (L-1-pyrroline-3-hydroxy-5-carboxylate, creati-
nine, L-glutamate 5-semialdehyde and phosphocreatine). This
represented a potential pathway to target therapeutically by
inhibiting arginase and increasing NO production to combat
the infections with S. aureous and P. aeruginosa. This was
successfully applied by Mehl. et al. where they demonstrated an
increase in the production of NO due to inhibiting arginase
during P. aeruginosa pneumonia infection in mice,47 Pang et al.
also showed that enhanced expression of arginase has been
inhibited by the metabolite biomarkers resulting in killing of S.
aureus, in addition to enhance the metabolite-induced phago-
cytic activity against S. aureus.46 Glutathione is the most abun-
dant low molecular weight thiol, and it plays a crucial role in
confronting the oxidative stress of the cells resulting from
bacterial infection-induced ROS production. The ratio of
glutathione and glutathione disulphide (the oxidized form)
represents the main redox balance in human cells.49 Our results
showed that glutathione was signicantly decreased whereas
glutathione disulphide signicantly increased in response to
the exposure of the secretomes from S. aureus and P. aeruginosa
(Fig. 3). This perturbation in the redox state indicates the
oxidative stress condition of infected macrophages.50 Also, the
one-carbon pathway has emerged as a key metabolic pathway in
cell proliferation and immune functions. However, maintaining
the redox balance and sustaining immune cell proliferation are
crucial to confront oxidative stress or hypoxia that can be
induced in the case of bacterial infections. It contributes to the
production of NADPH and glutathione as it provides a source of
the methyl group required for the synthesis of glutathione and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Significantly changed metabolites involved in amino acid metabolism in both P-S-M and S-S-M with the same trend (decrease or
increase). L-1-Pyrroline-3-hydroxy-5-carboxylate, creatinine, L-glutamate 5-semialdehyde, L-citrulline and phosphocreatine represent arginine
and proline metabolism. L-Serine from glycine, serine and threonine metabolism. n = 6, data are presented as mean ± SEM. Statistical signifi-
cance was assessed using FDR correction. ns: not significant (p < 0.05), **p < 0.01, ***p < 0.001).
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purines, and DNA methylation.51 The production of glutathione
from glycine occurs in all cell types.52 The signicant decrease
in glycine (SI Tables 2 and 3) could explain the signicant
reduction of glutathione, indicating the redox imbalance and
oxidative stress condition. A reduction in the availability of
glycine was reported as a result of inammation stimuli.53 Also,
Fang et al. suggested that glycine may become a limiting factor
for the synthesis of glutathione.49

Glycine, serine, and threoninemetabolism were amongst the
most signicantly altered amino acids upon the treatment with
the secretomes from S. aureus and P. aeruginosa (Fig. 2A and B).
Glycine and serine are non-essential amino acids that are
involved in the synthesis of nucleic acids, proteins, and lipids as
precursors for these processes. Serine is converted to glycine
using the enzyme, serine hydroxymethyltransferase.51 This
reaction plays a crucial role in the one-carbon pathway by
supplying a methyl group required for the synthesis of proteins,
glutathione and nucleotides. In a recent study, Ma et al.
© 2025 The Author(s). Published by the Royal Society of Chemistry
demonstrated that serine availability can serve as a checkpoint
metabolite, indicating efficient immune response of primary T
cells54 which emphasises the pivotal role of this pathway in the
immune response against challenging pathogens such as
bacteria. Our data showed signicant elevation of serine in S-S-
M and P-S-M (Fig. 3). Glycine can potentially enter the folate
cycle by donating one carbon through the glycine cleavage
process.51

Interestingly, sarcosine, guanidinoacetate and creatine
(Fig. 4) were signicantly decreased in S-S-M, but not in P-S-M.
Sarcosine is produced from glycine by the enzyme glycine N-
methyltransferase [KEGG 2.1.1.20] or from creatine by the
enzyme creatinase [KEGG 3.5.3.3]. Guanidinoacetate is also
produced from glycine by the enzyme glycine amidino-
transferase [KEGG 2.1.4.1], and then converted to creatine by
the enzyme guanidinoacetate N-methyltransferase [KEGG
2.1.1.2].
RSC Adv., 2025, 15, 40607–40618 | 40613
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Fig. 4 Amino acids relevant differentially and significantly changed metabolites in P-S-M and S-S-M. Sarcosine, guanidinoacetate and creatine
represent glycine, serine and threonine metabolism. O-Acetylcarnitine, and L-asparagine represent alanine and aspartate metabolism, L-
kynurenine and L-formylkynurenine represent tryptophan metabolism. n = 6, data are presented as mean ± SEM. Statistical significance was
assessed using FDR correction. ns: not significant (p < 0.05), **p < 0.01, ***p < 0.001).
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A signicant decrease in these three metabolites could be
attributed to the implication of glycine in one-carbon metabo-
lism by donating one carbon to the folate cycle producing more
purines and coordinating with glutathione and NADPH
biosynthesis, thus maintaining redox balance.51 The crucial role
of glycine and serine in maintaining redox balance was reported
in cancer metabolism as well where the uptake of glycine and
serine increased.51,55 However, insignicant changes in sarco-
sine and guanidinoacetate levels and a signicant increase in
creatine level were shown in P-S-M implying a differential
impact of the secretomes of S. aureus or P. aeruginosa on
macrophages. The difference in the metabolic responses of
macrophages to the secretomes of S. aureus or P. aeruginosa can
be applied in identifying more selective therapeutic targets in
a certain pathway for each bacterial infection.
40614 | RSC Adv., 2025, 15, 40607–40618
Another pathway that was altered signicantly and differ-
entially upon the bacterial secretome is alanine, aspartate, and
glutamate metabolism (Fig. 2A and B). O-Acetyl carnitine was
signicantly decreased in S-S-M but was increased in P-S-M
(Fig. 4). Conversely, asparagine was signicantly increased in
S-S-M but decreased in P-S-M (Fig. 4). Asparagine is a major
nitrogen source for the pathogens that infect the skin and
human throat. It induces pathogen proliferation and expression
of genes including those which are related to metabolism,
virulence and growth.56 The different asparagine levels observed
in response to the two secretomes may indicate distinct
macrophage responses to each species and the different strat-
egies that these bacteria use to survive.

Tryptophan metabolism showed a signicant perturbation
through a signicant increase in tryptophan in both S-S-M and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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P-S-M. Interestingly, L-formylkynurenine showed a signicant
increase in S-S-M but not in P-S-M, while L-kynurenine showed
a signicant decrease in P-S-M but not in S-S-M (Fig. 4). Tryp-
tophan is an essential amino acid required for metabolic
functions and protein synthesis. It cannot be produced in the
body; therefore, it must be supplied in the form of proteins. In
the last decades, more focus was directed on the role of tryp-
tophan as an intermediate in the immune system, but its role
still not fully understood. However, tryptophanmetabolism and
inammatory responses are thought to be associated with
several diseases and pathological conditions.57 Tryptophan is
metabolised through L-kynurenine pathway by the enzyme
indoleamine 2,3-dioxygenase (IDO) that is present in macro-
phages and dendritic cells. IDO is induced under the immune
activation condition. IDO breaks L-tryptophan to produce L-
formylkynurenine which is consequently metabolised by the
enzyme kynurenine formamidase to produce L-kynurenine
which is considered as an inammatory marker.57

The increase in the level of L-formylkynurenine in S-S-M
could be attributed to the stimulation and activation of
macrophages. Unexpectedly, though, L-kynurenine showed no
increase in response to the S. aureus secretome and a signicant
decrease in response to the P. aeruginosa secretome, suggesting
that such effect is due to tolerance and local immunosuppres-
sion associated with an enhanced IDO activity which may
indicate a stronger impact on this pathway.58

Overall, the observed metabolic changes are consistent with
known immunometabolic mechanisms. Alterations in arginine
and proline metabolism may reect reduced nitric oxide
synthesis, a central antimicrobial effector function of macro-
phages. Perturbations in tryptophan metabolism, including
changes in L-formylkynurenine and L-kynurenine, are indicative
of IDO activity, which is known to modulate immune tolerance
and inammatory responses. Similarly, depletion of glycine and
related metabolites, together with changes in serine levels,
could impair glutathione biosynthesis and thereby compromise
redox balance during macrophage activation. These links
suggest that the secretome-induced metabolic shis may have
direct consequences for macrophage immune function.
However, since our study did not directly measure functional
outputs such as cytokine release or phagocytic activity, future
work will combine metabolomics with functional immunolog-
ical assays to dene the specic roles of these altered pathways.

Fig. 5 summarises the key similarities and differences in
metabolite changes induced by S-S-M and P-S-M treatment.
Both bacterial secretomes signicantly affected metabolites
involved in arginine and proline metabolism (e.g. L-1-pyrroline-
3-hydroxy-5-carboxylate, creatinine, L-glutamate 5-semi-
aldehyde, L-citrulline, and phosphocreatine), suggesting
common mechanisms of immune modulation. However,
distinct secretome-specic alterations were also observed. S-S-
M treatment led to increased levels of L-asparagine and L-for-
mylkynurenine, along with decreased levels of glycine-related
metabolites, including sarcosine and guanidinoacetate. Addi-
tionally, o-acetylcarnitine and tryptophan pathway intermedi-
ates were differentially regulated. In contrast, P-S-M treatment
maintained creatine levels, reduced L-asparagine, and modestly
© 2025 The Author(s). Published by the Royal Society of Chemistry
perturbed tryptophan metabolism, evidenced by a decrease in L-
kynurenine. These different metabolic responses suggest that S.
aureus and P. aeruginosa employ distinct strategies for inu-
encing host immune function and metabolic reprogramming.
Specically, S. aureus may enhance redox balance and immune
evasion through glycine depletion and active tryptophan
catabolism, whereas P. aeruginosamaymodulate energy use and
immune response via asparagine regulation. These ndings
highlight potential pathogen-specic therapeutic targets, such
as modulating glycine metabolism in S. aureus infections or
targeting asparagine pathways in P. aeruginosa infections.

Fig. 6 represents a schematic pathway analysis of most
amino acids related metabolites which were signicantly
changed in response to the treatment of the secretome from P.
aeruginosa and S. aureus in macrophages.

However, in this study, only one strain of Gram-positive and
Gram-negative bacteria were used, and the secretome repre-
sents a complex mixture of molecules. Therefore, attribution of
the observed effects to specic bacterial factors is limited.
Future studies will aim to fractionate bacterial secretomes to
identify specic components responsible for the observed
effects, and to include multiple clinical strains from both Gram-
positive and Gram-negative bacteria. These approaches will
improve mechanistic understanding and help determine the
extent to which the ndings are generalisable across different
bacterial species.

Additionally, while THP-1 cells are widely used as a macro-
phage model in infection and immunometabolism studies,59 it
is expected that PMA priming via protein kinase C activation
can inuence cellular metabolism and may not fully reect the
behaviour of primary human macrophages. Nevertheless, THP-
1 cells offer several advantages that make them appropriate for
an exploratory, untargeted LC-MS metabolomics study: they are
reproducible, easy to culture, and provide the large cell
numbers required for robust metabolite proling. By contrast,
monocyte derived macrophages exhibit high donor-to-donor
variability, are difficult to obtain in sufficient quantity, and
oen yield lower metabolite coverage, which poses challenges at
the discovery stage. For these reasons, THP-1 cells were selected
as a practical and reproducible model to generate baseline
insights into host metabolic responses. We consider this work
a discovery-phase investigation intended to identify candidate
pathways, with future studies planned to validate these ndings
in primary macrophages and, ultimately, in vivo models.

Beyond such model-related constraints, it is also important
to recognise limitations that are inherent to the metabolomics
methodology itself. LC-MS metabolomics, like any other
analytical approach, has several limitations that stem from
technical challenges. These include instrumental limitations,
data complexity, accurate identication and fragmentation
patterns. Although LC-MS is a powerful tool in metabolomics,
its sensitivity can vary signicantly. This variability can be
overcome through the use of validated methods and regular
instrument calibration to ensure accurate quantication across
a wide dynamic range of concentrations.60 Variations in LC-MS
instrumentation across laboratories can also affect reproduc-
ibility. Additionally, the vast and complex datasets generated in
RSC Adv., 2025, 15, 40607–40618 | 40615
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Fig. 5 Venn diagram shows significantly altered metabolites in response to S-S-M and P-S-M treatments. Metabolites with similar changes in
both conditions are shown in the light green overlap. Metabolites with significantly increased levels are indicated in dark green, while those with
significantly decreased levels are shown in red.
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metabolomics require sophisticated statistical analysis for
meaningful interpretation.61 However, this challenge is
increasingly being addressed by advances in high-quality data
pre-processing soware.62 To address the challenges associated
Fig. 6 Schematic pathway analysis shows the significantly altered meta
metabolite levels; downward arrows indicate decreases. Red arrows rep
induced by P-S-M.

40616 | RSC Adv., 2025, 15, 40607–40618
with accurate metabolite identication, future studies should
incorporate LC-MS/MS analysis to obtain denitive fragmenta-
tion patterns. However, another technical hurdle involves
unpredictable fragmentation patterns, which complicate
bolites in their relevant pathways. Upward arrows indicate increased
resent changes induced by S-S-M, and green arrows represent those

© 2025 The Author(s). Published by the Royal Society of Chemistry
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metabolite identication. Although advanced deconvolution
methods are being developed to address this issue, there
remains a critical need for comprehensive reference standards
to expand spectral libraries. Addressing these challenges will
further enhance the robustness and reliability of LC-MS meta-
bolomics studies.60
Conclusion

This study demonstrates that LC-MS metabolite proling is
a powerful and effective tool for investigating the metabolic
effect of Gram-positive and Gram-negative bacteria on macro-
phages. The secretomes of S. aureus and P. aeruginosa exerted
distinct metabolic impacts on THP-1 macrophages, particularly
in pathways such as glycine and serine metabolism, sphingo-
lipid metabolism, glycolipid metabolism, alanine, aspartate
and glutamate metabolism as well as tryptophan metabolism.
Despite these differences, both bacterial secretomes induced
similar alterations in arginine and proline metabolism, sug-
gesting potential shared mechanisms in modulating the host
immune system. Furthermore, the secretome of wild-type P.
aeruginosa and its mutant variant exhibited comparable
impacts onmacrophagemetabolism, with only a fewmetabolite
variations (e.g., picolinic acid, N-acetyl-L-glutamate 5-semi-
aldehyde, 5-guanidino-2-oxopentanoate, and 5-
aminopentanoate).

The identication of key metabolites as potential biomarkers
for Gram-positive or Gram-negative bacteria offers promising
avenues for the development of novel diagnostic strategies for
bacterial infections. These biomarkers not only improve the
accuracy and early detection of pathogen-specic infections but
may also provide insights into specic virulence factors or
bacterial strains. Furthermore, understanding the metabolic
pathways disrupted by bacterial secretomes enhances our
knowledge of the mechanisms underlying bacterial pathogen-
esis and resistance. This foundational understanding enables
the design of targeted drugs capable of overcoming bacterial
virulence and resistance. For example, selective targeting of
enzymes involved in identied metabolic pathways critical for
the immune response or bacterial survival offers a path toward
innovative therapeutic approaches. A novel drug could be
designed to inhibit or activate these enzymes to disrupt bacte-
rial infections effectively. Supporting this concept, the inhibi-
tion of arginase has already shown success in combating P.
aeruginosa and S. aureus.46,47

In summary, our results demonstrate that LC-MS metabolite
proling can reveal distinct and overlapping metabolic effects
of Gram-positive and Gram-negative bacterial secretomes on
macrophages. While these ndings do not directly address
bacterial pathogenesis or resistance mechanisms, they provide
valuable baseline insights into host–pathogen metabolic inter-
actions. Such exploratory data can inform future mechanistic
studies aimed at linking metabolic alterations to bacterial
virulence and resistance and may ultimately support the iden-
tication of novel therapeutic targets.
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