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magnesium alloys using fs-LA-SIBS combined with
machine learning methods
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and Xiaoyong He *d

This work employs the femtosecond laser-ablation spark-induced breakdown spectroscopy (fs-LA-SIBS)

technique for the quantitative analysis of magnesium alloy samples. It integrates four machine learning

models: Random Forest (RF), Support Vector Machine (SVM), Partial Least Squares (PLS), and k-Nearest

Neighbors (KNN) to evaluate their classification performance in identifying magnesium alloys. In

regression tasks, the models aim to predict the content of four elements: manganese (Mn), aluminum

(Al), zinc (Zn), and nickel (Ni) in the samples. For classification tasks, the models are trained to recognize

different types of magnesium alloy samples. Performance evaluation is based on sensitivity, specificity,

and accuracy. The results indicate that the RFR model performs optimally for regression tasks, while the

Random Forest Classification (RFC) model outperforms other models in classification tasks. This work

confirms the feasibility of quantitative analysis and identification of magnesium alloys using the fs-LA-

SIBS technique combined with machine learning methods. It establishes a technical foundation for real-

time monitoring of alloys in subsequent laser-induced breakdown spectroscopy (LIBS) instruments.
1 Induction

With the growing technological demands of society, the appli-
cation of magnesium alloys in modern industry and daily life is
becoming increasingly widespread. Magnesium alloys are
materials formed by alloying magnesium with other metals
such as manganese (Mn), aluminum (Al), zinc (Zn), nickel
(Ni), and rare earth metals, and possibly non-metallic elements.
Renowned for their lightweight, high strength, and excellent
damping properties, magnesium alloys have found extensive
use in elds such as aerospace,1 automotive manufacturing,2

and consumer electronics.3 Therefore, it is very important to use
precise analysis techniques to strictly control the elemental
content in the production process of magnesium alloys. This
method ensures that the chemical composition of the alloys
meets strict standards, maintains the stability and consistency
of product performance, and also improves production effi-
ciency and the economic benets of the materials. Femto-
second laser-induced breakdown spectroscopy (fs-LIBS) offers
anjiang Preschool Education College,

gineering, Guangdong Ocean University,

gdou.edu.cn

ng Network and Equipment Engineering

088, China

elligentization, Dongguan University of

ail: hxy@dgut.edu.cn

the Royal Society of Chemistry
a rapid and minimally destructive method for elemental
analysis,4–6 ideal for on-site applications without the need for
complex sample pretreatment. It enables the simultaneous
detection of multiple elements, proving essential across various
elds such as materials science, environmental monitoring,7,8

industrial quality control,9,10 and geological exploration.11 The
technique requires only a minimal material removal rate,
thereby minimizing sample damage and allowing for precise,
micro-to-nanometer scale detection. This capability signi-
cantly enhances the potential for high spatial resolution in
localized elemental analysis.12 Moreover, fs-LIBS effectiveness is
supported by the unique interaction dynamics between femto-
second lasers and materials, with titanium-sapphire femto-
second lasers providing robust single-pulse energy and high
repetition rate capabilities, which further rene its analytical
performance.13,14

In fs-LIBS analysis, the duration of atomic emission gener-
ated by ablating samples with femtosecond lasers is usually
shorter than that when using nanosecond lasers. This is
a distinct disadvantage in spectral analysis as it directly leads to
lower detection sensitivity of elements, especially for alloy
element analysis. However, femtosecond lasers offer signicant
advantages in reducing background noise, improving spatial
resolution, and minimizing matrix effects. Employing spark
discharge to enhance the optical radiation of the plasma can
signicantly improve the sensitivity of spectral analysis. For
terminological simplicity, this technique is termed femto-
second laser-ablation spark-induced breakdown spectroscopy
RSC Adv., 2025, 15, 1549–1556 | 1549
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Fig. 1 Schematic diagram of fs-LA-SIBS.
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(fs-LA-SIBS). The spark discharge LIBS (SD-LIBS) system
combines high-voltage fast discharge circuits with traditional
LIBS experimental setups.15–18 Due to the lower energy require-
ment of laser pulses, this method induces minimal damage to
the sample surface. Furthermore, experiments have shown that
under discharge conditions, the sample is ablated solely by the
femtosecond laser. Therefore, the diameter of the craters on the
sample surface is determined primarily by the characteristics of
the femtosecond laser, including its focusing properties, pulse
energy, and density. The discharge does not affect the crater
diameter. This shows the biggest advantage of using femto-
second lasers as ablation sources is that they allow for high
spatial resolution elemental analysis of micro-areas within the
sample.19 These advantages make fs-LA-SIBS tech particularly
effective for the quantitative analysis and identication of
magnesium alloy samples. The aim of this work is to further
optimize the performance of fs-LA-SIBS technique in magne-
sium alloy analysis by integrating machine learning methods,
thereby achieving higher precision and reliability in the
results.19

Machine learning methods applications in LIBS technique
mainly include clustering, classication, and regression.20

Clustering, an unsupervised learning technique, formsmultiple
clusters with distinct centers solely based on the features of the
data without the need for prior class labels.21 Classication, on
the other hand, is a supervised learning method that involves
learning patterns from sample data and class labels.22 Regres-
sion, also supervised, learns the relationship between contin-
uous outcomes, forming patterns between the true values of
spectra and sample results to provide predictive results.23 In
machine learning clustering analysis, Dong et al. combined
principal component analysis (PCA) with K-means clustering to
classify coal. PCA reduces the dimensionality of the input LIBS
spectral data to two principal components, aiming to describe
data features with fewer variables. The accuracy of the K-means
model based on PCA was found to be 92.59%. However, K-
means relies heavily on distance calculation and cluster
centers, making it challenging to establish complex separation
boundaries between data categories due to its requirement for
highly separated sample clusters.24 Yu et al. classied jade
samples from ve different locations using LIBS spectral data,
employing methods such as partial least squares discriminant
analysis (PLS-DA), pairwise PLS-DA, linear discriminant analysis
(LDA), and support vector machine (SVM) models.25 The results
indicated that the nature of the model itself, along with the
selection of appropriate feature spectral lines based on weight
differences, led to superior performance of the SVMmodel. The
high accuracy demonstrated the suitability of LIBS technique
for origin classication.

The Random Forest Regression (RFR) model can better
uncover patterns in data, ltering out or discarding features
with poor correlations, and using highly correlated data to build
machine learning models, thereby improving model tting and
robustness. Li et al. proposed a newmethod that combines LIBS
and RFR for the quantitative analysis of multiple elements in
steel samples.26 This method utilizes normalized LIBS spectra to
establish a calibration model by optimizing RFR parameters
1550 | RSC Adv., 2025, 15, 1549–1556
and comparing the performance of different input variables.
The study results demonstrate the potential application value of
integrating LIBS technique with RFR models for rapid in situ
determination of multiple elements, particularly in the metal-
lurgical eld. Yang et al. utilized the RFR-LIBS model to
measure the basicity of 30 sintered ore samples.27 They opti-
mized the parameters of the RFRmodel, validated its prediction
accuracy through a test set, and found that the RFR model
outperformed the PLSR model. This technique shows promise
as a method for real-time online rapid analysis in the mining
industry. Liu et al. investigated the combination of LIBS with
variable importance-based RFR (VI-RFR) for the quantitative
analysis of toxic elements (Pb, Cr, and Hg) in plastic products.28

The results demonstrated that the LIBS-VI-RFR model exhibited
superior performance in the quantication of Pb, Hg, and Cr in
plastics, with lower root mean square error and higher corre-
lation coefficients compared to other methods. Wang et al.
proposed an RFR model combining LIBS and infrared spec-
troscopy (IR) data fusion for identifying different geographical
regions of Radix Astragali. LIBS and IR spectra of 19 samples
were collected and analyzed.29 The results showed that the
predictive performance of the RF model based on data fusion
surpassed that of individual LIBS or IR methods. Among them,
the RF model based on intermediate-level data fusion exhibited
the best performance, with high sensitivity, specicity, and
accuracy.

This work introduces a rapid identication analysis method
for magnesium alloys, based on standard magnesium alloy
samples, employing the fs-LA-SIBS technique in combination
with machine learning. Recognition models such as RF, SVM,
PLS-DA, and KNN were established and compared for their
effectiveness in processing fs-LA-SIBS data. Furthermore, the
performance of these models was assessed through sensitivity,
specicity, and accuracy metrics, discussing their potential
applications in metallurgical analysis and identication.
2 Experimental

The experimental setup for the fs LA-SIBS technique is illus-
trated in Fig. 1. A Ti:sapphire femtosecond laser system
(Coherent Inc., model Astrella-Tunable-USP-1K) operating at
a repetition rate of 1 kHz serves as the ablation laser source,
with a wavelength, pulse width, and pulse energy of 800 nm, 35
fs, and 7.5 mJ, respectively. The femtosecond laser beam has
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Content of manganese (Mn), aluminum (Al), zinc (Zn), and
nickel (Ni) elements in magnesium alloy (wt%)

Sample no.

Concentration (%)

Mn Al Zn Ni

1# (G301) 0.082 3.04 1.21 0.0006
2# (G302) 0.256 5.06 0.95 0.0047
3# (G303) 0.374 6.97 0.71 0.0096
4# (G304) 0.57 9.00 0.46 0.015
5# (G305) 0.71 10.4 0.201 0.019

Fig. 2 The schematic diagram of the random forest principle.
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a diameter of 10mm. A direct-current high voltage power supply
(10 kV, 200 mA) is employed for spark discharge, where the
capacitor C is charged through a 100 kU limiting resistor R. A
tungsten needle with a diameter of 2 mm acts as the anode in
the discharge circuit, while a magnesium alloy sample serves as
the cathode. The tungsten needle is positioned horizontally at
a 45° angle relative to the sample surface, with its tip 2mm away
from the sample surface. The experimental setup operates in
a laser-triggered spark discharge mode, when the laser passes
through the focusing lens L1 (f= 150 mm) to ablate the sample,
plasma is generated, triggering the spark discharge circuit
immediately to obtain enhanced plasma emission. The
enhanced plasma radiation is collected by a quartz lens L2 (f =
100 mm) and focused through another quartz lens L3 (f = 100
mm) onto the ber-optic entrance of a compact multi-channel
spectrometer (Avantes, AVS-desktop-USB2). The spectrometer
has a resolution of 0.15 nm in the wavelength range of 200–
500 nm and is equipped with a 2048-pixel charge-coupled device
(CCD) operating in a non-gated mode. In this work, the
discharge voltage, capacitance, and laser pulse energy are set to
2 kV, 5 nF, and 1.2 mJ, respectively.

The experiment analyzed standard magnesium alloy
samples purchased from Aluminum Corporation of China
Limited. Table 1 lists the concentrations of different elements
in 5 different numbered standard samples. The element
contents in the samples were determined using ICP-MS and AAS
techniques, which are widely recognized for their accuracy and
precision in trace element analysis. These techniques were
calibrated and optimized specically for the sample matrix to
ensure reliable and reproducible results. Based on established
literature and manufacturer specications, the uncertainties
associated with these measurements typically range from 2% to
10%, depending on the experimental conditions and sample
characteristics. Among these 5 samples, particular attention
was paid to the concentrations of aluminum (Al), manganese
(Mn), nickel (Ni), and zinc (Zn). These spectral data were used
for model training and calibration, with 70% randomly selected
as the training set and the remaining 30% used as the test set.
The training set was used for establishing the multivariate
calibration model and optimizing model parameters, while the
test set was used to verify the accuracy of the model's quanti-
tative analysis results. Each sample collected 100 sets of fs-LA-
SIBS spectral data, with each spectrum averaged 500 times by
the ber optic spectrometer and an integration time set to 10
© 2025 The Author(s). Published by the Royal Society of Chemistry
ms. The spectral data covered a wavelength range from 200 nm
to 500 nm, with each data set containing 5958 data points.
3 Methodology
3.1 The RF algorithm

The random forest regression algorithm falls under the
umbrella of ensemble learning techniques, which amalgamate
multiple learning algorithms with varying efficiencies to
enhance the overall learning efficacy of the model. The sche-
matic diagram of the random forest principle is shown in
Fig. 2. Comprising numerous decision trees, the RF model
presents as a versatile ensemble method for classication and
regression tasks. Each decision tree within the forest operates
independently, contributing to the collective wisdom of the
model. In essence, a decision tree embodies a tree-like struc-
ture where nodes represent feature attributes, and branches
delineate the decision-making process based on those attri-
butes. This hierarchical approach facilitates efficient classi-
cation, as the sample's category is determined by traversing
down the tree from the root node to the leaf nodes, guided by
the features at each node. The process of constructing a deci-
sion tree model involves several steps. Initially, a subset of
features and corresponding labels is randomly sampled from
the dataset. Then, at each node, a subset of dimensions from
the feature space is chosen to split the data into distinct
categories. This partitioning continues recursively until
certain stopping criteria are met, such as reaching a maximum
tree depth or achieving purity in the leaf nodes. To create
a random forest regression, this decision tree construction
process is repeated multiple times, with each iteration gener-
ating a new tree. By leveraging random sampling and feature
selection, each decision tree in the forest is trained on
a slightly different subset of data, introducing diversity and
reducing overtting. Through this ensemble approach, the
RF model harnesses the collective wisdom of multiple decision
trees to deliver robust and accurate predictions. Moreover, the
inherent randomness in feature selection and data sampling
helps mitigate bias and variance, enhancing the model's
generalization capabilities. The RF model algorithm excels in
handling complex datasets by leveraging the power of
RSC Adv., 2025, 15, 1549–1556 | 1551
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ensemble learning, where the synergy of diverse decision trees
yields superior predictive performance and robustness.
3.2 Evaluation metrics for random forest regression

Regression is one of the fundamental directions in supervised
learning. Computers extract features from the data and labels in
the training set, predicting one of the labels for each data point
in the test set, with the labels being continuous. In LIBS,
regression algorithms are utilized by using the features of
different sample spectra as data and the elemental content or
other information of the samples as labels for learning.
Subsequently, they predict the labels for test sample spectra
based on their features. When evaluating the predictive
performance of machine learning models, the coefficient of
determination (R2), root mean square error (RMSE), and mean
relative error (MRE) are three important metrics in regression
models. The formula of three important metrics the coefficient
of determination (R2, RMSE, and MRE) are as follows:

R2 ¼ 1�
Pn
i¼1

ðyi � ŷiÞ2

Pn
i¼1

ðyi � yÞ2
(1)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � ŷiÞ2
s

(2)

MRE ¼ 1

n

Xn

i¼1

����yi � ŷi
yi

���� (3)

where n is the number of samples, yi is the actual value of the ith
sample, ŷi is the predicted value of the ith sample, and �y is the
average of the actual values of the samples.
Fig. 3 (a) Shows the plasma emission spectra of different magnesium
alloy samples at wavelengths from 300 to 500 nm; comparing the
plasma spectra recorded in fs-LA-SIBS and fs-LIBS, (b) 300–400 nm
and (c) 400–500 nm.
3.3 Evaluation metrics for random forest classication

When evaluating the classication performance of a machine
learning model, Sensitivity, Specicity and Accuracy are three
important metrics in classication models. The formula of True
Positive Rate (TPR), True Negative Rate (TNR), and accuracy are
as follows:

TPR = TP/(TP + FN) (4)

TNR = TN/(TN + FP) (5)

Accuracy = (TP + TN)/(TP + TN + FP + FN) (6)

where TP is the number of true positives, FN is the number of
false negatives, TN is the number of true negatives and FP is the
number of false positives.
4 Results and discussion
4.1 Enhancement of the fs-LA-SIBS signal

In the fs-LA-SIBS experiment, Fig. 3 shows the spectral
comparison of ve standard magnesium alloy samples in the
1552 | RSC Adv., 2025, 15, 1549–1556
wavelength range of 300–500 nm. Due to the high spectral
signal intensity of Mg, which exceeds 60 000, only the signals of
Al I at 394.40 nm and 396.15 nm can be distinguished, while
other trace elements with lower concentrations are difficult to
distinguish in the gure. However, the experimental results
show that the spectral signals of these elements do exhibit
differences. Compared with high-power lasers, using low pulse
energy can reduce atomic emission signals and background
emissions, which are suitable for none-gated detectionmethods
to capture the emission spectrum. Therefore, this work
employed an none-gated optic ber spectrometer to record the
spectrum. The spectrometer did not detect strong signals in the
200–300 nm range, hence Fig. 3(b) and (c) show the plasma
emission spectrum observed in the 300–500 nm region using
the Avantes multi-channel ber spectrometer for fs-LIBS and fs-
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 2 The performance of RFR model with different wavelength
inputs

Occluded fs-LA-SIBS
bands (nm) Element R2 RMSE MRE

200–500 Mn 0.978 0.021 0.022
Al 0.775 10.023 21.081
Zn 0.663 1.354 0.044
Ni 0.976 0.676 1.629

280–500 Mn 0.982 0.014 0.018
Al 0.806 9.862 20.597
Zn 0.692 1.219 0.035
Ni 0.981 0.586 1.572
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LA-SIBS. The experimental conditions were consistent with
those previously described, with an integration time of 10 ms
and the spectrum being an average of 500 repeated measure-
ments. The discharge voltage and capacitance were set to 2.0 kV
and 10 nF, respectively. Compared to fs-LIBS, the spectrum of
fs-LA-SIBS was signicantly enhanced, with spark discharge
increasing the peak intensity by more than ten-folds.

4.2 Selection of input variables

Through the RFR model, performance comparison and analysis
were conducted on multi-elements (Mn, Al, Zn, Ni) within
different wavelength ranges to explore the inuence of wave-
length selection on the model predictive accuracy. Table 2
presents detailed performance indicators across two wave-
length ranges, 200–500 nm and 280–500 nm.

The analysis revealed that by reducing the wavelength range
from 200–500 nm to 280–500 nm, the R2 values for all elements
improved, indicating enhanced model prediction capability.
Particularly for Mn and Ni, within the 280–500 nm wavelength
range, the model demonstrated exceptionally high predictive
accuracy, with R2 values approaching 1. This suggests that the
shorter wavelength range better captures the characteristic infor-
mation of these elements, thereby improving model accuracy.

Compared toMn and Ni, the performance of themodel for Al
showed poorer performance in both wavelength ranges.
Although there was an improvement in predictive accuracy aer
reducing the wavelength range, RMSE and MRE remained
relatively high. While the predictive performance of Zn
improved aer reducing the wavelength range, there still exists
a signicant gap compared to Mn and Ni.

Although the numerical improvement is small, in the context
of complex magnesium alloy spectral data, it shows that the
selection of wavelength ranges inuences the optimization of
the performance of RFR model in predicting metal element
content. These small improvements could have a signicant
impact in real-world applications, and greater performance
gains will be realised in the future by incorporating additional
techniques.

4.3 Optimization of the RFR model through Out-of-Bag
(OOB) error

To optimize the performance of the RFR model, this work
employed the Out-of-Bag (OOB) error method to compare the
© 2025 The Author(s). Published by the Royal Society of Chemistry
effects of different numbers of decision trees (ntree) and feature
trees (mtry). Ntree represents the number of trees in the forest,
where increasing the number of trees typically improves the
model performance until a certain point, beyond which the
improvement becomes marginal. However, more trees also
entail longer training times and higher computational costs.
Mtry denotes the number of features randomly selected at each
node when splitting ntree. This random selection of a subset of
features for each split increases model diversity, reduces over-
tting risks, and enhances the model generalization ability.

Optimizing the number of ntree and feature selection not only
enhances the predictive performance of the RFR model but also
improves its efficiency and applicability. As depicted in Fig. 4(a),
the regression model for manganese achieved excellent
performance at ntree = 500, mtry = 300, achieving high perfor-
mance at a relatively low computational cost. In Fig. 4(b), the
regression model for aluminum performed well at ntree = 200,
mtry = 1000, demonstrating high performance with limited
computational resources. In Fig. 4(c) and (d), the optimal
congurations for the regressionmodels of zinc and nickel were
ntree = 500,mtry = 200, and ntree = 300,mtry = 2200, respectively,
conrming that high predictive accuracy can be achieved under
limited computational resources.

Table 3 presents the predictive performance of the RFR
model for specic elements (Mn, Al, Zn, Ni) before and aer
optimization, including R2, RMSE, and MRE. Before optimiza-
tion, the model already exhibited high predictive accuracy for
Mn, with an R2 value of 0.977616. The predictive accuracy for Al
was relatively low, with an R2 of only 0.774895. Zn showed high
predictive performance similar to Mn, while Ni had the lowest
predictive performance, with an R2 value of only 0.662897. Aer
optimization, the predictive performance of all elements
improved. The R2 value for Mn increased to 0.994041, with
signicantly reduced RMSE and MRE, indicating a signicant
improvement in Mn element predictive accuracy. The R2 of Al
also increased, with slight reductions in RMSE and MRE
compared to Mn. Aer optimization, Zn exhibited the best
predictive performance, with an R2 value as high as 0.998904
and RMSE and MRE close to 0, indicating nearly perfect
prediction. The performance of Ni also improved aer optimi-
zation, with improvements in R2, RMSE, and MRE.

These results demonstrate the signicant positive impact of
OOB error optimization on the performance of the RFR model,
particularly in reducing prediction errors. This renders the
model more apt for predicting intricate datasets, particularly
when handling elements with varying degrees of variability.
4.4 Evaluation of RFC model classication performance

By employing the OOB error method, the classication accuracy
of the random forest classication model has been enhanced,
along with further improvements in its operational efficiency
and applicability. As depicted in Fig. 5, the optimal parameters
are achieved when ntree is set to 100 and mtry is also set to 100,
resulting in a model error rate of 0. However, in typical
scenarios, a non-zero error rate is more in line with practical
expectations, as achieving perfect prediction accuracy is
RSC Adv., 2025, 15, 1549–1556 | 1553
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Fig. 4 The influence of different parameters (ntree and mtry) on OOB Error in RFR model.

Table 3 The performance of RFR model before and after OOB error
optimization

OOB error optimization Element R2 RMSE MRE

Before optimization Mn 0.978 0.021 0.022
Al 0.775 10.023 21.081
Zn 0.976 1.354 0.044
Ni 0.663 0.676 1.629

Aer optimization Mn 0.994 0.008 0.009
Al 0.837 8.269 18.200
Zn 0.999 0.005 0.010
Ni 0.740 0.470 0.976
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unlikely in most cases. Therefore, to ensure data accuracy, as
a precautionary measure, parameters of ntree = 100 and mtry =

100 are chosen.
1554 | RSC Adv., 2025, 15, 1549–1556
Table 4 displays the classication performance of the RFC
model on different samples before and aer optimization.
Before optimization, both sensitivity and specicity for sample
no. 1# were 1.000, indicating the model perfect prediction
accuracy for this sample. However, the accuracy slightly fell
below 1 (0.975) due to misclassications in other sample cate-
gories. For sample no. 2#, sensitivity and specicity before
optimization were 0.942, with an accuracy of 0.937, indicating
good performance in identifying this sample but with room for
improvement. Sample no. 3# exhibited lower sensitivity (0.578)
before optimization, despite higher specicity (0.933), yet
achieving an accuracy of 1, indicating high overall classication
accuracy despite insufficient positive identication capability.
This may suggest imbalanced class distribution in the classi-
cation problem or complete and accurate classication of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 The influence of parameters ntree and mtry in RFC model on
OOB error.

Table 4 Evaluation of RFC model classification performance before
and after OOB error optimization

OOB error optimization Sample no. Sensitivity Specicity Accuracy

Before optimization 1# 1.000 1.000 0.975
2# 0.942 0.942 0.937
3# 0.578 0.933 1.000
4# 1.000 0.917 0.722
5# 0.964 0.964 1.000

Aer optimization 1# 1.000 1.000 1.000
2# 1.000 1.000 1.000
3# 0.667 1.000 1.000
4# 1.000 0.941 0.754
5# 1.000 1.000 1.000

Fig. 6 Average accuracy after 100 independent classifications of
different models.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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samples in other categories. Sensitivity and specicity for
sample no. 4# and 5# demonstrated excellent performance
before optimization, with high accuracy, particularly achieving
perfect accuracy for sample no. 5#. Aer optimization, sensi-
tivity and specicity for all samples reached 1.000, indicating
perfect performance in identifying positive and negative
instances. Except for sample no. 4# with an accuracy of 0.754, all
other samples achieved perfect accuracy of 1.000. The param-
eters adjusted during the optimisation process may not have
a signicant effect on sample no. 3#, but have a signicant
effect on other samples, resulting in the model not improving
its accuracy relative to other samples in recognising that class of
samples very signicantly. Or perhaps the diversity of sample
no. 3# in the training set is insufficient to cover all variants of
the samples in this class, resulting in insufficient generalisation
ability of the model.

Overall, the optimized RFC model exhibited signicant
performance improvements across most samples.

Fig. 6 presents the average accuracies of the four models aer
100 independent tests. The results demonstrate that the RFC
model achieves the highest average accuracy of 0.9498, con-
rming its outstanding performance in this task. In comparison,
the SVMmodel has an average accuracy of 0.6551, PLS-DAmodel
has 0.8327, and KNN model has 0.7170, all signicantly lower
than the RFC model. Therefore, the RFC model indisputably
emerges as the preferred choice for magnesium alloy classica-
tion tasks. This nding not only provides valuable insights for
alloy classication but also sets a precedent for the application of
machine learning in materials science. The work further under-
scores the practicality and reliability of the RFC model, offering
strong support for future industrial production and materials
research endeavors.
5 Conclusion

This work utilizes fs-LA-SIBS combined with machine learning
algorithms to analyse the elemental content in magnesium alloy
samples as well as model identication. The RFR model demon-
strated excellent predictive accuracy with a high R2 (no less than
0.740), low RMSE (no greater than 8.269) and MRE (no greater
than 18.200). In the classication task, the RFC model is able to
show better performance in dealing with unbalanced datasets
with higher evaluation capabilities (sensitivity not less than 0.667,
specicity not less than 0.941, and accuracy not less than 0.754).
This work not only introduces novel technical means for the rapid
and accurate classication of alloy samples but also lays a robust
theoretical foundation and practical solutions for material iden-
tication in related industrial domains. Future endeavors could
delve deeper into exploring the RFR model application in broader
material classication tasks and optimizing its parameters to
accommodate more complex real-world scenarios.
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