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Non-structural protein 15 (Nsp15) is a SARS-CoV-2 (SCoV-2) endoribonuclease and is a promising target for

drug development because of its essential role in evading the host immune system. However, developing

inhibitors against Nsp15 has been challenging due to its structural complexity and large RNA binding

surface. In this report, we screened a 2640 acrylamide-based compound library against Nsp15 and

identified 10 fragments that reacted with cysteine residues on Nsp15 and inhibited its endoribonuclease

activity with IC50s less than 5 mM. These compounds had several attractive properties, such as low

molecular weight (180–300 g mol−1), log P <3, zero violations to Lipinski's rules, and no apparent pan-

assay interference (PAINs) properties. In addition, based on this data as a training set, we developed an

artificial intelligence (AI) model that accelerated the hit to lead process and had a 73% accuracy for

predicting new acrylamide-based Nsp15 inhibitors. Collectively, these results demonstrate that

acrylamide fragments have great potential for developing Nsp15 inhibitors.
Introduction

The emergence and rapid spread of the SARS-CoV-2 (SCoV-2)
virus has stimulated the need for new drugs. Hundreds of
drug discovery campaigns have been run to target essential
proteins from SCoV-2 virus.1,2 For example, targeting RNA
dependent RNA polymerase (RdRp)3 and main protease
(Mpro)4,5 has led to the discovery of several promising antiviral
drugs. However, alternative drugs that target other crucial
proteins from SCoV-2 are still needed to respond to strain
evolution and resistance development.6,7 The non-structural
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protein 15 (Nsp15) is a promising therapeutic target for drug
development against SCoV-2 because its inhibition results in
the upregulation of interferons and protects against viral
infections via multiple pathways.8,9

Nsp15 cleaves viral RNA and suppresses host sensors that
recognize viral RNA and induce the production of interferons.10

Inhibition of Nsp15 activates the production of interferons and
prevents the spread of viral infection through paracrine
signaling pathways, consequently the activation of Nsp15 in
a few cells can have global effects on anti-immunity.11 For
example, infection of lung-derived epithelial cell lines and
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primary nasal epithelial air–liquid interface (ALI) cultures with
mutant Nsp15 SCoV-2 virus caused an increased secretion of
interferons and attenuated viral replication signicantly.12 In
another instance, infection of mutant Nsp15 MHV coronavirus
into mouse bone marrow-derived macrophages resulted in an
early and robust induction of interferon leading to rapid cell
death.8 This suggests that viruses with mutant Nsp15 cannot
infect mice effectively, due to their activation of the host
immune response.8 Additionally, Nsp15 is also an evolutionarily
conserved protein,13 with a possibility of discovering inhibitors
efficacious against other coronaviruses. Though Nsp15 has
great potential as a drug target, it is less explored in terms of
drug discovery due to the challenge of drugging its very large
binding interface.14 Only a handful of compounds have been
identied that can inhibit Nsp15.15–17

Targeted covalent inhibition could be a promising route to
drug classically “undruggable” proteins, such as Nsp15. SCoV-2
Nsp15 has several free cysteines (ve cysteines: Cys103, Cys117,
Cys291, Cys293 and Cys334) that play a role in subunit oligo-
merization and interactions with the RNA substrate that can
potentially be targeted by covalent drugs. There is evidence that
alkylation or other types of covalent modication of these
cysteines by covalent drugs might have the potential to inhibit
Nsp15 activity.16 Irreversible covalent modication of the
cysteine near the active site is likely to be implicated in the
mechanism of inhibition of Nsp15 through these compounds.
However, electrophile libraries of covalent inhibitors have never
been investigated before for identifying Nsp15 inhibitors.

In this report, we screened an acrylamide-based electrophile
library containing 2640 compounds against Nsp15 and identi-
ed several fragments that inhibited Nsp15 with IC50s less than
5 mM, which had specicity for Nsp15 over other cysteine con-
taining proteins. We selected an acrylamide library for
screening because of their high selectivity for thiol nucleophiles
and moderate reactivity to thiols at physiological pH. The
identied fragments have promising predicted pharmacolog-
ical properties and follow Lipinski's rule of ve and are easy to
synthesize. Mass spectrometry experiments showed that one of
the ten compounds we identied modied the cysteine next to
the Nsp15 active site (residue Cys293). Building on this, we used
our experimental data to develop an innovative articial intel-
ligence platform that can predict potential inhibitors of Nsp15
and demonstrated that it has high prediction accuracy of∼80%.
Thus, this work both identies a new chemical scaffold for the
development of future drugs targeting SCoV-2 via Nsp15 and
illustrates a novel approach to expedite the discovery and
optimization of lead hits in a faster, and more economical
manner. In conclusion, we demonstrate acrylamide-based
Nsp15 inhibitors are interesting lead compounds for future
drug discovery campaigns against coronaviruses.

Results and discussion
Rationale for selecting an acrylamide library to identify
covalent inhibitors against SCoV-2 Nsp15

To discover covalent inhibitors that could sustain engagement
efficiently with minimal off-target reactivity, we targeted the
10244 | RSC Adv., 2025, 15, 10243–10256
most nucleophilic residues present on the Nsp15 protein, those
being cysteine residues.18 Typically, the most used electrophile
building block employed in covalent inhibitors targeting
cysteines are Michael acceptors, such as acrylamides.19 Acryl-
amides have been widely used as electrophiles in irreversible
covalent inhibitors for many proteins bearing non-catalytic
cysteines. For example, afatinib,20 ibrutinib,21 and AMG-510
(ref. 22) are acrylamide-based inhibitors of EGFR, BTK, and K-
RasG12C, respectively.23 Here, we used an electrophile library
containing 2640 acrylamide compounds from Enamine.
Acrylamide-based compounds are covalent inhibitors against
SCoV-2 Nsp15

Hexameric Nsp15 was recombinantly expressed and puried
from bacterial cells using talon and size exclusion chromatog-
raphy.13 We utilized two parameters (binding and inhibiting
Nsp15) to discover acrylamide-based covalent inhibitors from
high-throughput screening (HTS) (Fig. 1A). First, we used an
activity-based protein proling (ABPP) probe, cysteine-reactive
tetramethylrhodamine-5-iodoacetamide dihydroiodide (IA-
Rho)24 in a competitive manner to screen the acrylamide library
to facilitate the discovery of covalent ligands against SCoV-2
Nsp15. The presence of cysteine-reactive compounds was ex-
pected to correspond with the disappearance of the IA-Rho-
labeled Nsp15 band which can be visualized via gel electro-
phoresis for detection of Rho. We optimized the Nsp15 and IA-
Rho concentrations to 0.25 mg and 0.5 mM, respectively. The
negative control consisted of Nsp15, IA-Rho and DMSO. We
initiated high throughput screening at a nal concentration of
40 mM. A concentration of 40 mM was selected for the screening
because Nsp15 is an undruggable target and would likely
require high concentrations of compounds to identify inhibi-
tors. We screened 2640 acrylamide-based compounds at a nal
concentration of 40 mM and the compounds that led to disap-
pearance of the Nsp15 band were selected, followed by their
conrmation with repurchased compounds. Repurchased
compounds refer to the hits repurchased from ChemDiv as
single compounds. Promising hits were repurchased to validate
their activity further characterize them. The preliminary
screening of the acrylamide library identied 829 initial hits
that reacted with Nsp15 via its cysteines, corresponding to a hit
rate of 31.4%.

To further characterize and validate the potential binders as
Nsp15 inhibitors, we used a uorescence-based HTS assay that
uses a DNA–RNA hybrid oligomer (50FAM-dArUdAdA-TAMRA30)
with FRET pairs on the ends.25,26 As Nsp15 preferentially cleaves
uridylates (rU),25 the endonuclease cleavage of this substrate
determines the specic cleavage by Nsp15. Endonuclease
cleavage of the oligomer by Nsp15 was quantied by measuring
the uorescence aer exciting at 485 nm and measuring the
emission at 535 nm. The optimized concentrations, Nsp15 (5
nM) and substrate (1 mM) showed a signicant difference (>5-
fold) between negative (in absence of Nsp15) and positive
control (in presence of Nsp15) and had a Z0 calculated as >0.5.
The dataset was normalized with negative and positive control
and percentage inhibition was calculated.25,26 The screening of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 High-throughput screening (HTS) of acrylamide library consisting of 2640 compounds against Nsp15 identified ten inhibitors with sub-
micromolar IC50s. (A) Hexameric Nsp15 was screened against the acrylamide library using three HTS assays including activity-based protein
profiling (to find cysteine binders) and FRET and mRNA degradation assay (to find inhibitors) at the concentration of 40 mM; (B) ten potent
covalent inhibitors of Nsp15 that have IC50s less than 5 mM were identified, and their chemical structures are shown.
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initial hits using this FRET assay resulted in the identication
of 408 compounds (a hit rate of 15.4%) that inhibited endo-
nuclease activity of Nsp15. To rule out the false positives, an
orthogonal assay was performed to nd out if these compounds
could prevent mRNA degradation by Nsp15. The mRNA degra-
dation assay conrmed several hits inhibiting 100% of Nsp15
activity and reduced the collection above to 308 (a conrmed hit
rate of 11.6%, higher than 5% hit rate shown by fragment-based
drug-discovery approach27). To narrow down the hit number for
potent covalent inhibitors, all three assays were repeated at
a second concentration of 10 mM. This further reduced the
count to 60 compounds (a hit rate of 2%). Sixty compounds were
repurchased and validated using all three assays at a concen-
tration of 40 and 10 mM, and this resulted in the identication
© 2025 The Author(s). Published by the Royal Society of Chemistry
of 15 covalent inhibitors against Nsp15. Finally, a dose response
uorescent-based assay that used an RNA substrate13 was per-
formed to validate and select potent inhibitors. This assay
validated 10 compounds with IC50s less than 5 mM (Fig. 1B and
S1†).
Acrylamide based Nsp15 inhibitors are non-toxic

We assessed the thiol reactivity of the top electrophile hits by
incubating with reduced Ellman's reagent (5,5-dithio-bis-2-
nitrobenzoic acid (DTNB)), and followed the absorbance of
TNB2− at 412 nm wavelength for up to 5 hours28 (Fig. 2A). To
measure the kinetic constants and evaluate the intrinsic reac-
tivity of these acrylamide-based Nsp15 inhibitors towards
thiols, we tted the data to a second-order reaction rate
RSC Adv., 2025, 15, 10243–10256 | 10245
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Fig. 2 Acrylamide based inhibitors have moderate non-specific
reactivity with thiols and are non-toxic tomammalian cells. (A) Scheme
for determining thiol reactivity of Nsp15 covalent inhibitors (200 mM)
using Ellman's reagent; (B) the kinetic rate constant of alkylation of
TNB2− by acrylamide-based inhibitors (k) (M−1 s−1) was calculated and
compared with acrylamide; (C) a cell viability assay utilizing the dye
resazurin was performed with different concentrations (0–0.5 mM) of
inhibitors and revealed the compounds to be non-toxic at the doses
tested. The cytotoxic concentration 50% (CC50) (mM) is shown in the
table for Caco-2 cells.
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equation and extrapolated the kinetic constant for the alkyl-
ation by the acrylamide-based inhibitors. All compounds
showed an excellent t to the kinetic model of one-phase
exponential decay (R2 > 0.9). The kinetic rate constant (k) for
Nsp15 inhibitors ranged from 1.5–4 M−1 s−1 (Fig. S2†).

Next, we assessed drug toxicity, which is a key parameter in
clinical pharmacology and routinely performed during
preclinical screening of drug candidates.29 To assess the drug
response and toxicity, a resazurin assay was used to analyze the
cell viability30 in response to Nsp15 inhibitor compound treat-
ment. A range of concentrations (0.03–0.5 mM) of inhibitors
was tested on Caco-2 cells (in vitro model of the intestinal
epithelial cells), and cell viability was measured and the CC50
10246 | RSC Adv., 2025, 15, 10243–10256
was calculated (Fig. 2C). At the lower concentrations (0.3–0.125
mM), most of the compounds (except compound 5) showed
100% cell viability, suggesting no toxicity at the tested concen-
trations. At the higher concentration (0.25–1 mM), compounds
1, 2, 3, 8 and 10 show cell viability greater than 85%, while the
rest showed less than 40% viability, indicative of some negative
effects on cell viability.

Acrylamide-based inhibitors show specicity and are active
towards Nsp15 from other coronaviruses

Nsp15 is an evolutionary conserved protein and considered as
a genetic marker for nidoviruses. Conservation of Nsp15 across
species suggests that SCoV-2 Nsp15 inhibitors might be also
used to target Nsp15 from other coronaviruses. SCoV-2 Nsp15
shares sequence identity with other coronavirus species such as
SCoV-1, and Middle East respiratory syndrome coronavirus
(MERS-CoV), with corresponding percentages of 88.44% and
51.47%, respectively (Fig. S3A†).16 We wondered if these ten
compounds could also inhibit Nsp15 from SCoV-1 and MERS-
CoV. To examine this, we tested the inhibitory activity of these
compounds against Nsp15 from SCoV-2, SCoV-1 and MERS-CoV
using a uorescent based endonuclease assay. We observed that
compounds inhibited SCoV-1 and MERS-CoV Nsp15 to varying
extents. A dose response assay was performed to determine the
IC50 values of these compounds against Nsp15 from SCoV-2,
SCoV-1 and MERS-CoV (Fig. 3A and S3B). Since several inhibi-
tors were able to work on other viral variants, we assert that
these acrylamide compounds could serve as useful initial hits
for development into second-generation compounds against
other coronaviruses.

To examine the broad specicity of the compounds, we also
tested these ten compounds against a distantly related RNA
endonuclease, RNase A that shares a similar catalytic mecha-
nism with Nsp15. We observed that none of the inhibitors
inhibited RNase A activity, suggesting the inhibitors are not
acting through the conserved catalytic triad, as expected (RNase
A and Nsp15 share the catalytic triad). We also tested these
compounds against an unrelated enzyme SIRT1, that has been
implicated for modications (transnitrosation, gluta-
thionylation) of cysteine residue as a mechanism of its physio-
logical inhibition. As expected, and hypothesized, none of the
compounds inhibited SIRT1 enzymatic activity, suggesting the
nucleophilic cysteine in SIRT1 was not being alkylated by
acrylamide based Nsp15 inhibitors. The statistical analysis, t-
test of DMSO with each compound (compound 1–10) resulted in
a p-value greater than 0.05 (p > 0.05), suggesting no signicant
difference in enzymatic activity. Together, these results
demonstrate that these acrylamide-based compounds are rela-
tively specic inhibitors that act on Nsp15 from various coro-
naviruses (Fig. 3B).

Ability of acrylamide-based inhibitors to inhibit Nsp15 in cells

To assess the inhibitory effect of these in vitro Nsp15 inhibitors
in a cellular environment, we utilized a live virus infection assay
based on a genetic ablation of Nsp15 activity resulting in
a higher production of IFN-b during Nsp15 mutant virus
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Acrylamide based inhibitors show specificity towards Nsp15 from coronaviruses. (A) A dose response assay determining IC50s of ten
inhibitors against Nsp15 from SCoV-2, SCoV-1 and MERS-CoV demonstrated that these inhibitors could also be utilized as initial hits for other
coronaviruses; (B) effect of inhibitors on unrelated proteins, RNase A and SIRT1 show their specificity towards Nsp15. Results are expressed as
percent activity relative to the DMSO control and were normalized based on quenching effects of the compounds in the respective assays using
control substrates. Mean ± SD is shown (n = 3 independent experiments).
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infection.8 With a catalytic-inactive mutant (H234A) of Nsp15 as
a positive control, we evaluated ten compounds in the Caco2-AT
culture system. All the compound-treated cells did not produce
more IFN-b compared to the untreated wild-type (WT) group,
and some even produced less than theWT group. We found that
the viral nucleocapsid (N) gene levels of all tested samples were
comparable, indicating that all the cells were successfully
infected (Fig. S4†). These results suggest that these ten
compounds show no signicant inhibitory effect on Nsp15
activity during SCoV-2 infection in the Caco2-AT test system.
The lack of inhibitory effect might be due to their relative low
potency (high IC50) of the compounds.
Nsp15 covalent inhibitors are predicted to have favorable
drug-like properties

Estimation of the pharmacokinetic prole of a drug candidate is
a crucial aspect in drug development that includes parameters
like its absorption, distribution, metabolism, and excretion
(ADME).31 In this report, we carried out theoretical prediction of
ADME parameters of the inhibitors using SwissADME,32,33 a free
and readily accessible web tool. We predicted the physiochemical
properties, pharmacokinetics, drug-likeness, and medicinal
chemistry friendliness of these small molecules by importing
their 2D structures into a webpage interface using the canonical
simplied molecular input line entry system (SMILES) format.

The ability of a drug to move across the membranes for
transportation throughout the body is highly dependent on its
physiochemical properties.34,35 All the Nsp15 inhibitors identied
© 2025 The Author(s). Published by the Royal Society of Chemistry
had optimal values for their physiochemical properties, indi-
cating they should have good oral bioavailability, suggesting
them as promising drug candidates36 (Fig. S5A†). SwissADME can
also predict gastrointestinal (GI) absorption and blood–brain
barrier (BBB) penetration,37 two pharmacokinetic behaviors
associated with lipophilicity and polarity of the molecules. While
all acrylamide based Nsp15 inhibitors were predicted to have
a high level of GI absorption, six out of ten inhibitors showed
a probability of crossing the BBB. Interestingly, all the inhibitors
were deemed to be non-substrates of P-glycoprotein (P-gp), sug-
gesting that they are unlikely to be effluxed from cells.

Drug-likeness is an essential aspect of drug development
that evaluates the potential of a molecule to become an oral
drug.38 These ten inhibitors followed Lipinski's rule of ve,39

with zero violations and a bioavailability score of 0.55, dis-
playing good bioavailability and demonstrating a similarity to
other successfully developed oral drug candidates (drug-like-
ness).40 Importantly, the Nsp15 inhibitors identied herein did
not show any PAINs alerts, as indicated by a score of zero. The
ease with which these compounds can be synthesized is another
positive consideration for their use as lead compounds
(Fig. S5B†). To validate these results, we conrmed the drug
likeness of these ten compounds using ADMETlab2.0.41
Compound 10 modies a cysteine in the C-terminal domain
of Nsp15

To determine the cysteine residue(s) that mediate the covalent
interaction between Nsp15 and the compounds, we performed
RSC Adv., 2025, 15, 10243–10256 | 10247
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Fig. 4 Compound 10 modifies Cys293 in Nsp15 and distorts the active site in the C-terminal domain of Nsp15. (A) Compound 10–Nsp15 was
subjected to trypsin digestion followed by LC-mass spectrometry and analyzed by shotgun analysis. A peptide with Cys293 was found to be
modified with compound 10; (B) structural analysis from the MD simulations of 150 ns of compound 10–Nsp15 complex in comparison to apo
Nsp15 revealed that the irreversible binding of compound 10 to Nsp15 significantly distorts the active site.
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tandem mass spectrometry (MS/MS) analysis of protein–
compound adducts subjected to trypsin digestion. Tandem
mass spectrometry revealed that compound 10 is covalently
reacting with Cys293. Cys293 is present in the C-terminal
domain of Nsp15, next to the catalytic core of Nsp15
harboring endoribonuclease activity.42 Cys293 has been also
been implicated in interaction with the drug Favipiravir
through van der Waals interactions in molecular docking
simulations43 (Fig. 4A).

To assess the structural dynamics of Nsp15 following the
irreversible covalent reaction of compound 10 to Cys293, we
conducted molecular dynamics (MD) simulations of Nsp15 in
its apo form and in complex with compound 10 (covalently
bound to Cys293). Structural analysis from the MD simulations
revealed that the irreversible binding of compound 10 to Nsp15
signicantly distorts the active site (Fig. 4B). Although there is
no observable change in the overall backbone of Nsp15, the side
chain uctuations in the compound 10-bound complex are
altered, indicating a distortion of the binding site.
Development of an AI model to support Nsp15 hit-to-lead
optimization

During drug discovery, turning an early stage hit molecule into
a nanomolar-range lead molecule oen requires numerous
iterations, and even then, it carries a signicant chance of
failure. Therefore, to expedite this process, we utilized the
power of AI to identify distinguishing characteristics between
the successful and unsuccessful Nsp15 inhibitors in our library,
an endeavor that would be impossible to be achieved manually.
To the best of our knowledge, we are the rst group to leverage
AI for the screening of SCoV-2 Nsp15 inhibitors. Thus, we
10248 | RSC Adv., 2025, 15, 10243–10256
utilized our experimental HTS data to train sophisticated AI
models to streamline the hit-to lead discovery process andmake
it less laborious and expensive (Fig. 5A). Our AI-driven meth-
odology demonstrated a marked improvement in prediction
accuracy and has the potential to reduce false positives and
negatives.

Articial intelligence requires a vast training dataset
comprising millions of data points; however, it is next to
impossible to generate an experimental dataset this large in
drug discovery. Effective training of AI models cannot be ach-
ieved with smaller dataset. Therefore, to overcome this chal-
lenge, we explored several strategies, including ne-tuning large
language models, applying prompt engineering for ChatGPT-
based predictions, and combining embeddings from language
models with traditional machine learning techniques. We used
various AI models, including Random Forest (RF), SVM,
Random Forest (RF), Decision Tree (DT), Gradient Boosting
(GB), Logistic Regression (LR), Näıve Bayes (NB), KNN, C4.5,
Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), LLMs models such as GPT-3.5-turbo, and
GPT-4-turbo. Each of these models was optimized and ne-
tuned to enhance accuracy and precision. Among these, the
Gradient Boosting model demonstrated the best performance,
as shown in Fig. S6A.†

We extensively experimented with different algorithm
parameters and input features to improve model accuracy. For
the machine learning models, we utilized a grid search
approach to nd the best hyperparameters for each model. We
evaluated various LLM models for inhibitor prediction. Aer
extensive testing and optimization of the models, we developed
our model, which integrates Gradient Boosting and LLM. This
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Development of an AI model to predict Nsp15 inhibitors and accelerate the process of hit to lead identification. (A) The results from the
high throughput screening assay against Nsp15 were used to develop an AI model that could virtually screen thousands of compounds to predict
inhibitors and non-inhibitors against Nsp15; (B) the AI model was developed by utilizing the chemical properties, integrating ChemBERTa, and
machine learning techniques to predict Nsp15 inhibitors. The integrated model was tested on 50 unlabeled compounds, and its ability to predict
inhibitors was determined. The model showed 73% accuracy in distinguish inhibitor from non-inhibitors; (C) representation of the test
predictions made by the integrated AI model. The rest of the compounds are shown in Fig. S6B.†
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model combines features and embedding vectors from the
LLMs to train a new model for predicting inhibitors from a pool
of chemical structures (Fig. 5B).

We measured the model's performance using four main
metrics: recall, precision, F1 score, and efficiency. Recall checks
how well the model nds all the correct results, which is
important to avoid missing key compounds. Precision looks at
how many of the positive predictions are actually correct,
helping reduce false alarms. The F1 score combines recall and
precision into one measure to give a balanced view of perfor-
mance, especially when the data is uneven. Efficiency measures
how quickly and easily the model makes predictions, which is
important for real-time or large-scale use. Together, these
metrics show how well the model works and where it can
improve. The efficiency for all the individual models was greater
than 50%, suggesting that our proposed pipeline is effective in
dealing with small datasets for inhibitor prediction. This inte-
grated approach signicantly improved prediction accuracy,
showing a precision value of 0.73 and an F1 score of 0.73,
further indicating its high accuracy.

To validate our model, we tested it on an existing Nsp15
inhibitor data set, recently published.44 Our model predicted 9
out of 12 inhibitors listed in this recently published paper
correctly, demonstrating its high accuracy. Aer validation, we
employed our Integrated AI model to test 50 unlabeled
compounds. This model predicted the unlabeled inhibitors
with an accuracy of 73%. All the correct and incorrect
© 2025 The Author(s). Published by the Royal Society of Chemistry
predictions made on these 50 test compounds are presented in
Fig. 5C and S6B.† Moving forward, we anticipate that this
experimental-led AI driven experimental discovery platform will
identify new potent lead compounds in a cheap and efficient
manner. Moreover, the platform we present here can also be
adapted for the discovery of inhibitors for other high-value
target proteins.
Experimental
Materials and methods

Expression and purication of SCoV-2 Nsp15. The plasmid
expressing SCoV-2 Nsp15 (6×-His-Thrombin-TEV-Nsp15 in pET-
14b vector) was a kind gi from Robin Stanley, NIH. SCoV-2
Nsp15 was expressed as described in Pillon et al.13 Briey, the
plasmid was transformed into C41 (DE3) competent cells and
selected on carbenicillin LB agar plates. Next day, a colony was
picked to grow primary culture of 10 mL 2XYT media supple-
mented with 50 mg per mL carbenicillin. The secondary culture
was grown by diluting primary culture 1 : 100 in 2XYT media to
an OD of 1.0 (A600). SCoV-2 Nsp15 protein was expressed with
0.2 M isopropyl b-D-1-thiogalactopyranoside (IPTG) for 3 hours
at 37 °C. The culture was harvested and resuspended in lysis
buffer (50 mM Tris pH 8.0, 500 mM NaCl, 5% glycerol) sup-
plemented with EDTA-free protease inhibitor tablets. The cells
were sonicated, and lysate was claried at 13 000×g for 30
minutes at 4 °C. The supernatant was loaded on Talon HP
RSC Adv., 2025, 15, 10243–10256 | 10249
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column (Cytiva) at the speed of 1 mL min−1. The non-specic
protein was removed by washing the column with lysis buffer
supplemented with 10 mM imidazole. Nsp15 was eluted with
high imidazole buffer (lysis buffer supplemented with 250 mM
imidazole). The eluted fraction of Nsp15 were pooled, concen-
trated, and dialyzed against SEC buffer (20 mM HEPES pH 7.3,
150 mM NaCl, 5 mM MnCl2, 5 mM beta-mercaptoethanol (b-
me)). The protein was stored in −80 °C until further use.

SCoV-1 and MERS-CoV Nsp15 variants were puried as previ-
ously described.16 Briey, BL21(DE3) pLYsS cells were transformed
with pet28B+ plasmids encoding for these Nsp15 variants. Starter
cultures were grown overnight at 37 °C in terric broth (TB) in the
presence of 100 mg mL−1 kanamycin. Larger cultures of TB-
kanamycin were inoculated with starter culture and grown to an
OD 600 nmof 0.6. Cultures were then cooled at 4 °C for 30minutes
before induction with 1 mM IPTG at 16 °C for 20 hours. Cells were
then pelleted at 6000×g for 20minutes at 4 °C and resuspended in
lysis buffer (20 mM Tris pH 8.0, 150 mM NaCl, 5 mM imidazole,
0.1% Triton X-100, 1 mg mL−1 lysozyme) supplemented with
EDTA-free Roche Complete Ultra protease inhibitor tablet (Sigma),
1 mM PMSF and 1 mM b-me. The lysate was incubated on ice for
30 minutes before sonication with a Branson Digital Sonier at
25% amplitude (15 seconds on, 1 minute off) for 10 pulses. Debris
was pelleted via centrifugation at 20 000×g and the claried lysate
was incubated with Ni-NTA beads (Qiagen) at 4 °C for 4 hours with
gentle rotation. The beads were washed in 20 mM Tris pH 8.0,
300mMNaCl, 10mM imidazole, 0.01%Triton X-100, and 1mM b-
me. The proteins were eluted by incubating the beads with 10–
250 mM imidazole. Fractions were analyzed for purity via SDS-
PAGE and staining with Coomassie Brilliant Blue R-250 (Bio-
Rad). Pooled fractions were concentrated with a Pierce Protein
concentrator 10K (Thermosher). The buffer was exchanged
during concentration with 20 mM HEPES pH 7.5, 150 mM NaCl,
0.1 mM DTT, and 10% glycerol. Concentrated protein was ali-
quoted and stored at −80 °C until usage. Protein concentration
was measured using the DTT-resistant Pierce 660 nM Protein BCA
Assay kit (Thermosher).

Activity based protein proling to nd cysteine binders. The
cysteine-reactive compounds against Nsp15 were identied
using competitive gel-based ABPP. An iodoacetamide-
rhodamine (IA-Rho) probe was used to alkylate cysteines
within Nsp15 and can be competed out by covalently bound
compounds from pre-treatment. In the total reaction volume of
25 mL, 0.25 mg of Nsp15 was incubated with 40 or 10 mM of the
compound for 30 minutes at 37 °C. In the absence of
compound, DMSO was added as a negative control. Aer
incubation, 0.5 mM of IA-Rho was added and incubated for 30
minutes in the dark at room temperature. The reaction was
stopped using 10 mL of SDS loading buffer, boiled for 5 minutes
at 95 °C and 12.5 mL of the sample was loaded on tris-glycine gel.
The gel was imaged under rhodamine uorescence. Cysteines
within Nsp15 that have been covalently modied would not be
labeled by IA-Rho, leading to a reduction in signal on the gel.

Chemical library composition and liquid handling. The
electrophilic covalent probe library purchased from Enamine
was stored at 10 mM and 2 mM in DMSO in 384-well master
plates (Greiner Cat # 784201). Primary screening plates
10250 | RSC Adv., 2025, 15, 10243–10256
(Corning Cat # 3573) were generated using a Cybio Well Vario
liquid handler (Analytik Jena, Jena, Germany) from 2 mM plate
to yield a nal concentration of 40 mM or 10 mM compound with
a DMSO concentration of 2% (v/v). Hits were cherry picked from
master plates and re-arrayed onto new masters with a Tecan
Freedom Evo 150 (Tecan Systems Inc, San Jose, CA) at the Drug
Discovery Center, UC Berkeley.

Fluorescent assay to determine the Nsp15 inhibitors. The
uorescent based Nsp15 activity assay was optimized in 384-
well plate (Corning Cat# 3573). The DNA–RNA hybrid substrate
(50FAM-dArUdAdA-TAMRA-30) was custom ordered from Crea-
tive Biogene. The nal reaction volume of 25 mL consisted of
12.5 mL of Nsp15 protein (5 nM) and Nsp15 substrate (1 mM)
diluted in cleavage buffer (20 mMHEPES pH 7.5, 100 mM NaCl,
5 mM MnCl2) with 2% DMSO (absence and presence of
compound (40 and 10 mM)). The Nsp15 activity was monitored
by measuring uorescent intensity at given wavelengths (exci-
tation: 485 nm and emission: 535 nm) aer 1 hour. The data
was analyzed in CDD vault analysis servers. The dataset was
normalized to the baseline (negative control: in absence of
Nsp15) and activity response (positive control: in presence of
Nsp15) and calculated as percentage inhibition using GraphPad
Prism. The dose response assay was performed to determine the
IC50s. The experiments were run in duplicates.

mRNA degradation assay to discover the Nsp15 inhibitors.
In mRNA degradation assay, 500 ng of Nsp15 was incubated
with compound (40 and 10 mM) (2% DMSO in the absence of
compound) for 30 minutes in the 25 mL of the buffer (20 mM
HEPES pH 7.3, 100 mM NaCl, 5 mM MnCl2) at room tempera-
ture. Aer incubation, the Fluc mRNA (0.3 mg) (TriLink
Biotechnologies) was added to the pre-incubated Nsp15 and
allowed the degradation of mRNA for 30 minutes. The RNA
loading dye was added and ran on 1% agarose gel. The negative
control (mRNA in the absence of Nsp15 and compounds) was
also included. The compounds that prevented the mRNA
degradation were taken as Nsp15 inhibitors.

Validation of Nsp15 inhibitors. The Nsp15 inhibitors ob-
tained from three sequential assays were validated, and dose–
response assay was performed to determine IC50 using uo-
rescent assay, The enzyme assays were performed in triplicates
at 25 °C using a 96-well plate. The compounds (1 mL in 100%
DMSO at the nal concentrations ranging from 30 nM to 800
mM in a 50 mL reaction) were preincubated with 4 nM hexameric
Nsp15 in a 30 mL buffer A (20 mM HEPES pH 7.2, 100 mM NaCl,
5 mM MnCl2) for 30 minutes. The nal concentration of DMSO
was 3.3%. Then, 20 mL of 0.5 mM RNA substrate (506-FAM-
AAAUAA-306-TAMRA, GenScript) in a buffer A was added to the
protein–compound complex and uorescent intensity was
measured at excitation/emission wavelength of 485/528 every
5 min for 120 minutes. The IC50 values were calculated based on
the nal concentrations of the compounds at the 45- or 90-
minutes time points using GraphPad Prism.
Specicity assay

Nsp15 and RNase A activity assay. An adapted FRET-based
assay was used as previously described42 employing an RNA
© 2025 The Author(s). Published by the Royal Society of Chemistry
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substrate with the sequence: 50FAM-CAACUAAACGAAC-BHQ103
where FAM and BHQ1 are 6-Carboxyuorescein and Black Hole
Quencher respectively. The reactions were done in black 96-well
polystyrene plates (Greiner, Bio-One) in a 60 mL volume. The
reactions contained 60 ng of protein, 1× reaction buffer (25 mM
HEPES pH 7.3, 50 mM NaCl, 5 mM MnCl2), and various
concentrations of compounds all dissolved in DMSO and were
preincubated together in the dark for 30 minutes at RT. RNA
substrate was then added to a nal concentration of 1 mM and
plates were incubated at 37 °C for a further 20 minutes. Fluo-
rescence data was collected using a Varioskan LUX plate reader
using excitation and emission wavelengths of 495 and 520 nm
respectively. The results shown are the average of 3 biological
replicates ± SD.

SIRT1 uor de lys activity assay. SIRT1 activity was measured
using the FLUOR DE LYS® SIRT1 uorometric drug discovery
assay kit (Enzo Life Sciences). Recombinant SIRT1 was puried
as described in the protein puricationmethods above.45 SIRT1,
FdL substrate, and NAD+ were used at nal concentrations of
200 nM, 25 mM, and 5 mM, respectively. Inhibitor compounds
were preincubated with SIRT1 in the absence of NAD+ or FdL
Substrate for 30 minutes at 25 °C. The reactions were then
allowed to proceed for 30 minutes at 37 °C following the addi-
tion of substrate. The reactions were terminated by the addition
of developer reagent and incubated for 15 minutes at room
temperature in the dark before being measured on a spectro-
photometer using excitation and emission wavelengths of 360
and 460 nm, respectively on a Varioskan LUX plate reader. The
results shown are the average of 3 biological replicates ± SD.

Cell lines and virus. A Caco-2 cell line expressing hACE2 and
hTMPRSS2 (Caco2-AT),46 a gi from Dr Mohsan Saeed (Boston
University), was propagated in DMEM containing 10% FBS, 1%
Pen/Strep, 1× NEAA, 1 mg per mL puromycin (InVivogen, ant-pr-
05), and 1 mg per mL blasticidin (InVivogen, ant-bl-05). A Vero
E6 line expressing hACE2 and hTMPRSS2 (Vero-AT) was ob-
tained through BEI Resources, NIAID, NIH, and maintained in
DMEM containing 10% FBS, 1% Pen/Strep, 1× NEAA, 1 mg mL
per puromycin (InVivogen, ant-pr-05).

The following SCoV-2 strain/isolate was obtained through
BEI Resources, NIAID, NIH: Washington strain 1 (WA1) (NR-
52281). A recombinant virus expressing catalytic-inactive
Nsp15 (Nsp15mut) was generated using an infection clone as
described here.47 These viruses were propagated once with Vero-
AT cells to obtain large viral stocks and were titrated with Vero-
AT cells.

Assessment of Nsp15 activity inhibition with live SCoV-2.
The evaluation of the inhibitory effect of Nsp15 inhibitors
against live SCoV-2 was conducted in a certied BSL-3 lab at
Oklahoma State University. Caco2-AT cells (3.0 × 105 cells per
well) were seeded in 12-well plates a day prior to infection. The
work concentrations of the compounds were determined as
follows based on a cell viability assay: compounds 1, 2 and 10 at
0.5 mM; compounds 3, 5, 7, and 9 at 0.1 mM; compounds 4 and
8 at 0.2 mM; and compound 5 at 0.05 mM. Cells in the 12-well
plates were infected with the indicated viral strains at a multi-
plicity of infection (MOI) of 0.1 in serum-free media for 1 hour.
Aer incubation, the inoculum was removed, and 1 mL of
© 2025 The Author(s). Published by the Royal Society of Chemistry
diluted compound and 2 mM p-glycoprotein inhibitor CP-
100356 were added to each well. Aer 48 hours of incubation
at 37 °C, the cell culture supernatants were removed, and the
cells were collected in Qiagen RLT lysis buffer (Qiagen, Hilden,
Germany).

RNA extraction and real-time PCR quantication. RNA was
extracted from the Caco2-AT cells using RNeasy Mini kit (QIA-
GEN, 74106) following the manufacture's protocol. 1 mg of RNA
was converted to cDNA by using RT2 HT First Strand Kit (QIA-
GEN, 330411) which contains a component to eliminate
genomic DNA contamination. Quantitative PCR was performed
with specic primers (Table S1†) using PowerUp SYBR Green
Master mix (Fisher, A25918) on QuanStudio 6 Pro (Thermo-
Fisher, A43160). Cycle threshold values were normalized to 18S
rRNA levels by using the 2−DCt method. The forward and reverse
primers for human IFN-b gene were CTTGGATTCCTACAAA-
GAAGCAGC and TCCTCCTTCTGGAACTGCTGCA, respectively.
The forward and reverse primers for SCoV-2 N gene were
AAGCTGGACTTCCCTATGGTG and CGATTGCAGCATTGTTAG-
CAGG, respectively.
Mass spectrometry

1D method. Mass spectrometry was performed at the
Proteomics/Mass Spectrometry Laboratory at University of Cal-
ifornia, Berkeley. A nano LC column was packed in a 100 mm
inner diameter glass capillary with an integrated pulled emitter
tip. The column consisted of 10 cm of Polaris c18 5 mm packing
material (Varian). The column was loaded and conditioned
using a pressure bomb. The column was then coupled to an
electrospray ionization source mounted on a Thermo-Fisher
LTQ XL linear ion trap mass spectrometer. An Agilent 1200
HPLC equipped with a split line to deliver a ow rate of 1
mL min−1 was used for chromatography. Peptides were eluted
with a 90-minute gradient from 100% buffer A (5% acetonitrile/
0.02% heptauorobutyric acid (HBFA)) to 60% buffer B (80%
acetonitrile/0.02% HBFA). Collision-induced dissociation and
electron transfer dissociation spectra were collected for each m/
z. Protein identication, quantication, and analysis were done
with Integrated Proteomics Pipeline-IP2 (Bruker Scientic LLC,
Billerica, MA, http://www.bruker.com) using ProLuCID/
Sequest,48,49 DTASelect2,50,51 and Census.52,53 Spectrum raw
les were extracted into ms1 and ms2 les from raw les
using RawExtract 1.9.9 (http://elds.scripps.edu/
downloads.php) 10, and the tandem mass spectra were
searched against Nsp15.

LC/MS–MS mapping of modied peptides. Trypsin/Lys-C
digested peptides were analysed by online capillary nanoLC-
MS/MS using a 25 cm reversed phase column fabricated in-
house (75 mm inner diameter, packed with ReproSil-Gold C18-
1.9 mm resin (Dr Maisch GmbH)) that was equipped with
a laser-pulled nanoelectrospray emitter tip. Peptides were
eluted at a ow rate of 300 nL min−1 using a linear gradient of
2–40% buffer B in 140 min (buffer A: 0.02% HFBA and 5%
acetonitrile in water; buffer B: 0.02% HFBA and 80% acetoni-
trile in water) in an Thermo Fisher Easy-nLC1200 nanoLC
system. Peptides were ionized using a FLEX ion source (Thermo
RSC Adv., 2025, 15, 10243–10256 | 10251
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Fisher) using electrospray ionization into a Fusion Lumos Tri-
brid Orbitrap Mass Spectrometer (Thermo Fisher Scientic).
Data was acquired in orbi-trap mode. Instrument method
parameters were as follows: MS1 resolution, 120 000 at 200 m/z;
scan range, 350−1600m/z. The top 20 most-abundant ions were
subjected to collision-induced dissociation with a normalized
collision energy of 35%, activation q 0.25, and precursor isola-
tion width 2 m/z. Dynamic exclusion was enabled with a repeat
count of 1, a repeat duration of 30 seconds, and an exclusion
duration of 20 seconds. RAW les were analysed using PEAKS
(Bioinformatics Solution Inc.) with the following parameters:
semi-specic cleavage specicity at the C-terminal site of R and
K, allowing for 5 missed cleavages, precursor mass tolerance of
15 ppm, and fragment ion mass tolerance of 0.5 daltons.
Methionine oxidation was set as variable modications and
cysteine carbamidomethylation was set as a xed modication.
Peptide hits were ltered using a 5% FDR. Proteins with at least
2 unique peptides were ltered with a 5% FDR. Label free
quantitation (LFQ) was performed using PEAKS quantitation
module and default parameters with the following exceptions:
top 2 peptides for each protein with a min of 10XE4 abundance
was used and the TIC was used for all normalization including
technical replicates.

Molecular modelling. The crystal structure of Nsp15 was
obtained from the Protein Data Bank (PDB ID: 6WXC).15 The
protein structure was prepared using the Maestro Schrödinger
Protein Preparation Wizard. The co-crystallized ligand was
removed, and water molecules located more than 5 Å away from
the protein residues were removed, missing side chains were
added, and the pKa of the ionizable groups was set to 7.4 using
PROPKA.54 The protein then underwent restrained minimiza-
tion and was placed inside an orthorhombic box. Water mole-
cules (TIP3P) were added with a 10 Å buffer. The simulations
were performed under the NPT ensemble to maintain
a constant temperature and pressure, set at 300 K and 1.01325
bar, respectively, for 150 nanoseconds using the OPLS3 force
eld.55 Separately, ligand molecules were prepared using the
LigPrep module and then covalently bonded to cys293. The
simulation outputs were analyzed using the Schrödinger
Maestro suite, with graphical representations created using
ChimeraX.56,57

Drug-likeness evaluation. A list of SMILES of Nsp15 inhibi-
tors that have IC50 less than 5 mM were submitted to a freely
accessible web tool at SwissADME (http://www.swissadme.ch)
and run.

Optimization of AI models. The code for the models that we
trained in this paper is available here https://github.com/
bmosavati/AI-Powered-Platform-Drug-Discovery.

Dataset and feature engineering. In this study, we utilized
machine learning and articial intelligence models to investi-
gate the inhibitory potential of acrylamide fragments on the
non-structural protein 15 (Nsp15) of the SCoV-2 virus. Chemical
compounds were represented using SMILES notation. To
ensure high-quality data, the dataset underwent a comprehen-
sive cleaning and preprocessing process. Compounds with
incomplete or invalid SMILES strings were excluded to elimi-
nate errors in data representation. Duplicate entries were
10252 | RSC Adv., 2025, 15, 10243–10256
removed to avoid redundancy andmissing molecular descriptor
values were addressed by excluding entries with signicant gaps
to maintain data integrity. Additionally, oversampling tech-
niques were employed to correct the class imbalance between
the minority class (Nsp15 inhibitors) and the majority class
(non-inhibitors). These steps ensured a balanced dataset,
improving model robustness and the reliability of machine
learning predictions. The MACCS ngerprint method was
employed to convert SMILES strings into a format suitable for
machine learning. The MACCS method generates 166 binary
bits, each representing the presence or absence of specic
chemical substructures or features. In addition to the MACCS
ngerprints, we incorporated tenmolecular descriptors into our
dataset: molecular weight, log P (MolLog P), number of atoms,
number of bonds, number of rings, rotatable bond counts,
hydrogen bond donors, hydrogen bond acceptors, number of
stereocenters, and topological polar surface area (TPSA). These
features were normalized prior to their integration into the
dataset. The dataset comprised 1920 entries, including 257
molecules identied as Nsp15 inhibitors (positive hits), 1613
molecules with no inhibitory action against Nsp15 (negative
hits). The dataset was divided into training, validation, and
testing sets with a 70%, 15%, 15% split: specically, 70% (1309
compounds) for training, 15% (280 compounds) for validation,
and 15% (280 compounds) for testing, and 50 molecules
reserved for validation purposes as unlabeled compounds.

Machine learning and deep learning models. We employed
a variety of machine learning algorithms to train, test, and
predict the inhibitory potential of the compounds. These algo-
rithms included Logistic Regression, Decision Tree, Support
Vector Machine (SVM), Naive Bayes, Gradient Boosting, K-
Nearest Neighbors (KNN), and Linear Regression (LR).58–60

Additionally, we utilized deep learning models such as Con-
volutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs).61–63 Large Language Models (LLMs), including GPT-3.5,
GPT-4, and ChemBERT, were also leveraged for classication
tasks. Model performance was evaluated using metrics such as
accuracy, precision, and F1-score.
ChemBERTa-based models

Fine-tuning ChemBERTa on SMILES strings. We ne-tuned
the ChemBERTa model, which is specialized in handling
chemical structures represented as SMILES strings. The pre-
trained ChemBERTa model was augmented with a fully con-
nected layer followed by a classier layer.64–67 This ne-tuning
process involved adjusting the learning rates, dropout rates,
and the number of training epochs to enhance model perfor-
mance specically for predicting Nsp15 inhibitors. The ne-
tuned model was solely trained on the SMILES strings from
our dataset to capture intricate chemical structure
representations.

Integrating SMILES embeddings with molecular descriptors.
In another approach, we extended the use of ChemBERTa by
integrating additional molecular descriptors with SMILES
embeddings. Initially, SMILES strings were embedded using the
pre-trained ChemBERTa model. These embeddings were then
© 2025 The Author(s). Published by the Royal Society of Chemistry
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concatenated with normalized quantitative features such as
molecular weight, log P, and other relevant descriptors. The
combined embeddings and features were passed through
a dropout layer to mitigate overtting risks and subsequently
fed into a dense layer for nal predictions. This integration
aimed to leverage both chemical structure information and
specic molecular properties to improve prediction accuracy.

Utilizing ChemBERTa for sequence embeddings in tradi-
tional ML models. We also explored the use of ChemBERTa
purely for generating sequence embeddings of SMILES strings.
These embeddings, representing detailed chemical structure
information, were extracted, and then utilized as input features
in traditional machine learning models. The machine learning
algorithms employed included Logistic Regression, Decision
Tree, SVM, Naive Bayes, KNN, GB and Linear Regression. This
method allowed us to compare the efficacy of deep learning-
based embeddings against traditional ngerprint-based
approaches.

GPT-based models. GPT models were employed to classify
molecules based solely on their SMILES strings. We tested three
variations of prompts: one containing only SMILES strings,
another including both SMILES strings and the protein
sequence of Nsp15, and a third combining SMILES strings with
small molecule features. Due to GPT's character limit, it was not
feasible to include SMILES strings, features, and the Nsp15
protein sequence in a single prompt.

Example prompt for GPT models:

“FC(F)(F)CC1CN(CCO1)C(]O)C]C [ YES

C]CC(]O)N1CCCCC1C2CCCO2 [ NO

Based on the prior examples, for all of the following, predict
whether they inhibit or not:

CC1CC]2C]CC]CC2N1C(]O)C]C[

C]CC(]O)N1CCN(CC1)S(]O)(]O)CC]2C]CON2[”

Including the Nsp15 protein sequence provided contextual
biochemical information potentially enhancing prediction
accuracy. For a comprehensive analysis, we engineered prompts
that combined chemical structures (SMILES strings) with
detailed quantitative features:

“The following are the drug information of molecules that do
or do not inhibit the Nsp 15 protein of Covid-19 virus.

Each drug information is presented in one line in the
following order: smiles strings, molecular weight, log P, number
of atoms, number of bonds, number of rings, rotatable bonds
count, hydrogen bond donors, hydrogen bond acceptors,
number of stereocenters, Topological Polar Surface Area (TPSA).

CNC(]O)CC1CCN(CC1)C(]O)C]C, 210.277, 0.5471, 15, 15,

1, 3, 1, 2, 0, 49.41 [ 1
© 2025 The Author(s). Published by the Royal Society of Chemistry
C]CC(]O)N1CCSCC1C#N, 182.248, 0.63998, 12, 12, 1, 1, 0, 3,

1, 44.1 [ 0

Based on the prior examples, for all the following, predict
whether they inhibit or not. Only output the smiles strings and
your predictions, nothing else:

C]CC(]O)NCC(]O)N1CCC]2C]CC]CC2C1, 244.294,

0.8735, 18, 19, 2, 3, 1, 2, 0, 49.41[

CN(CC(]O)N1CCCC1)C(]O)C]C, 196.25, 0.2532, 14, 14, 1,

3, 0, 2, 0, 40.62[”

This prompt format provided extensive data for each mole-
cule, allowing the GPT model to generate predictions based on
both structural and physical properties.

Performance evaluation metrics. K-Fold cross validation was
used to evaluate the performance of models. The value of k was
considered within 5, 7, and 10. The sampling process 1000
times was considered to prevent data bias, and the average
performances were the result. The models were evaluated using
various metrics including the area under the ROC curve
(AUROC) and the area under the precision–recall curve (AUPR),
F1 score, recall and precision. These metrics were calculated
from the number of true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN) using the following
equations:

Recall = TP/TP + FN (1)

Precision = TP/TP + FP (2)

F1 score = 2 (precision × recall)/(precision + recall) (3)

Accuracy = TP + TN/TP + TN + FP + FN (4)

The AUC value was considered as the indicator of classica-
tion model accuracy. Precision measures the accuracy of positive
predictions made by a classier. Recall, also known as sensitivity
or true positive rate, measures the ability of a classier to
correctly identify all positive instances in the dataset. The F1
score is the harmonic mean of precision and recall, providing
a single metric that balances both precision and recall.
Conclusions

Inhibition of Nsp15 has the potential to greatly improve the
treatment of SCoV-2. Nsp15 is a crucial endoribonuclease
present in all coronaviruses that aids viruses in evading the host
immune response during viral infection. Nsp15 suppresses the
production of interferons by infected cells by cleaving viral RNA.
Down-regulating the production of interferons by SCoV-2
infected could have synergistic effects with inhibiting viral
replication by preventing neighboring cells from being infected
with viruses. Despite its potential, developing inhibitors against
Nsp15 has been challenging due to its structural complexity and
RSC Adv., 2025, 15, 10243–10256 | 10253
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large binding interface. HTS against SCoV-2 Nsp15 have yielded
a few inhibitors, however these compounds were frequently
promiscuous hits or non-potent.

Cysteine reactive acrylamide compounds have had great
success as covalent inhibitors of proteins, especially in trans-
forming “undruggable” proteins to druggable. Here, we took
this opportunity to screen a never-been-explored acrylamide-
based library against Nsp15. Acrylamide-containing drugs
show prolonged on-target residence time due to irreversible
cysteine engagement. We screened a 2640 acrylamide-based
electrophile library and identied ten cysteine reactive inhibi-
tors against Nsp15 with IC50s in the low micromolar range (less
than 5 mM). These compounds are non-toxic in mammalian
cells. These acrylamide-based inhibitors are specic to Nsp15
and can potentially be utilized as initial hits for targeting other
coronaviruses. In conclusion, we present acrylamide-based
fragments as new covalent inhibitors of Nsp15 enzymes from
various coronaviruses and present a new AI-driven pipeline
based on these results for the rapid and cheap identication of
future lead compounds.

Data availability

The data and code used in this study are available online at
https://github.com/babakmosavati/AI-Powered-Platform-Drug-
Discovery.
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H. Barreteau, D. I. Roper, K. Horváti, G. G. Ferenczy,
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