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quid assisted chemical bath
deposition of a highly uniform and transparent
cadmium sulfide thin film for photovoltaic
applications

Taskina Nasrin,a Vidhya Selvanathan,*b Md. Ariful Islam,cd Md. Mahfuzul Haque,ace

Ayesha Wasima Rashid,cf Norasikin Ahmad Ludin, *a Puvaneswaran Chelvanathan,a

Tiong Sieh Kiong,b Abdulaziz M. Alanazi,g Hamad AlMohamadi,hl Ishtiaque M. Sayed,di

Md. Shahiduzzaman,j Takashi Suemasuk and Md. Akhtaruzzaman *hl

Cadmium sulfide (CdS) is one of the most important semiconductor materials in solar cells. In this study,

different concentrations (0–0.118 M) of 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4) ionic

liquid (IL) are introduced as a novel complexing agent in dilute chemical bath deposition of CdS thin

films. To comprehend the effectiveness of different ionic liquid concentrations as the complexing agent,

the structural, morphological, electrical, and optoelectronic properties of the films were investigated. X-

ray diffractogram of the CdS thin film exhibited peaks attributed to wurtzite structure, with peak intensity

enhanced dramatically after IL addition. From morphological studies, a pinhole-free and uniformly

deposited CdS film with large grain size was observed upon inclusion of 0.069 M IL. Optical

characterization has shown good transparency up to 85% from the UV-vis spectroscopy analysis. With

the variation of the ionic liquid concentration, there was no major difference observed in the energy

bandgap. However, an increment in carrier concentration and reduction in resistivity of the deposited

thin films were observed. The film with 0.069 M IL showed the maximum carrier concentration value of

7.51 × 1014 cm−3 with the lowest resistivity. Incorporating the optoelectronic properties of the deposited

CdS films, numerical simulations were performed to validate those as electron transport layers for

perovskite solar cells with the device structure of FTO/CdS (CdS-0 to CdS-3)/CsSnBr3/P3HT/Ag.

Simulation results demonstrated that the fabricated CdS thin film fabricated with 0.069 M BMIMBF4
would be a promising candidate in perovskite solar cells with an efficiency of around 16.5%.
1. Introduction

The CdS is one of the low-cost materials which has excellent
optoelectronic properties along with good lattice-matching
properties, low resistivity, easy ohmic contact, and low inter-
face defects.1,2 It is a compound of the group II–VI, an n-type
semiconductor with an energy gap of ∼2.45 eV. Due to its
easy fabrication process, this material is mostly used as window
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material in thin lm photovoltaic solar cells (e.g. CdTe,
Cu(In,Ga)Se2, Cu2ZnSnS4).3,4 The most popular techniques for
depositing CdS thin lms include spray pyrolysis, close-spaced
sublimation, thermal evaporation, chemical bath deposition
(CBD), and metal–organic chemical vapor deposition
(MOCVD).5 Among all these deposition methods, CBD is espe-
cially favored due to its simplicity and cost-effectiveness. This
method is a well-established technique for fabricating high-
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Fig. 1 Chemical structure of BMIMBF4.

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

1/
3/

20
25

 1
1:

05
:5

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
quality CdS thin lms, and its fundamental principles have
been extensively documented in the literature. Foundational
studies by Lokhande,5 Ortega-Borges and Lincot6 have estab-
lished the theoretical and experimental frameworks for CBD as
a reliable deposition method, particularly for CdS thin lms.
These works provide detailed insights into the reaction mech-
anisms, kinetics, and thermodynamics of the deposition
process. Building on these foundations, subsequent researchers
– including Paul O'Brien and John McAleese,7 Y.-J. Chang et al.,8

and M. S. Aida & S. Hariech9 have expanded CBD's scope,
addressing both key challenges and emerging opportunities in
thin-lm fabrication. Collectively, these studies serve as the
cornerstone for understanding CBD's applicability and offer
critical insights into optimizing parameters for advanced
material development. By adjusting the bath parameters, such
as duration, temperature, or the addition of other chemicals,
the optoelectronic properties of the formed thin lms can be
modied.

The addition of a complexing agent is another crucial factor
that is used to govern the rate of thin lm deposition. Typically,
the complexing agent binds with the metal ions in the solution
to form complex ions and prevents immediate immersion
deposition. Hence, the complexing agent's main role is to
engage with the metal cations, which helps to slow down their
reaction and stop the nal product from precipitating in bulk
amounts. Without any complexing agents, therefore, little to no
lm formation is anticipated since the product precipitates in
the bulk solution rather than depositing properly on the
substrate.10

Researchers have used several complexing agents (e.g.,
ammonia, EDTA, acetylacetone, TEA, nitrilotriacetic acid,
amino acid) in the CBD solution to alter the properties of the
CdS thin lms and studied the variation.11,12 For instance, V. D.
Moreno-Regino et al. examined the structural, electrical, and
optical properties of the lms along with the presence of
different organic compounds in the lms, which were deposited
by varying the ammonium hydroxide's (complexing agent)
concentration in the bath solution. They found lower defects
with higher uniformity in the lm prepared with a 0.24 M
concentration of the complexing agent, showing the best
structural, electrical and optical properties.12 Arun Kumar et al.
prepared hierarchical nanoake-structured CdS thin lms with
different complexing agents using the CBD method at two
deposition intervals. Ammonia, ammonia with triethanolamine
or ethylene-diamine-tetra-acetic acid were used as complexing
agents. The cubic phase of the deposited lms was conrmed by
X-ray diffraction. Further, they observed the increment of crys-
tallite size in the deposited thin lms for higher deposition
time.13

Ionic liquids (ILs) are liquids at low temperatures (<100 °C)
consisting of organic cations that are large in size and asym-
metric (i.e. pyridinium, phosphonium, imidazolium) and inor-
ganic or organic anions. The structure of these cations and
anions as well as their interactions control the properties of ILs.
By varying the combination and structural design of ions, the
chemical and physical properties of ILs can be adjusted to
a large range. In the electrolyte system, ILs were introduced as
© 2025 The Author(s). Published by the Royal Society of Chemistry
well stable solvents for stability improvement of dye synthesized
solar cells (DSSCs).14 Besides, they play a signicant role in
energy level adjustment, surface defects modication, and
homogenous nucleation, affecting charge transportation
mechanism and the kinetics of crystal growth.

Some of the typical complexing agents used for the forma-
tion of CdS thin lm via CBD are triethanolamine, ethanol-
amine and sodium citrate. Although using ionic liquids as the
alternative complexing agent may not directly decrease the cost
of material, these ionic liquids offer a promising approach to
enhance the efficiency and environmental sustainability of thin
lm deposition processes. The unique properties of ionic
liquids may justify the higher material cost by enabling higher-
quality thin lm deposition and reducing environmental
impact.15 Moreover, ILs are known for their easy recycling
processes, hence allowing the possibility of reusing them that
reduces the overall production costs.16 Among several ILs, 1-
butyl-3-methylimidazolium tetrauoroborate (BMIMBF4) is
well-known one that consists of electron-donating alkyl chains
and electron-rich nitrogen atoms. Fig. 1 shows the chemical
structure of this IL.

Though the use of IL is not a new thing for developing thin
lms for solar cells, to the best of our knowledge none reported
on the incorporation of it in the CBD method to improve the
optoelectronic properties of CdS thin-lm that can be used in
perovskite solar cells (PSCs). In this study, the BMIMBF4 IL was
introduced as a complexing agent in the CBD method to
improve the optical, electrical, and morphological properties
for CdS thin lm. As the properties of the deposited lms
suggested that they can be used as an electron transport layer
(ETL) in PSC, a theoretical study on a PSC incorporating
deposited CdS lms as ETL was conducted by SCAPS-1D
simulation package. To the best of our knowledge, no prior
work has incorporated BMIMBF4 in the CBD process for CdS
thin-lm deposition, making this a pioneering study in
leveraging the unique properties of ionic liquids for photo-
voltaic applications.
2. Methodology
2.1. Materials and methods

Cadmium sulphate (CdSO4), ammonium hydroxide (NH4OH),
thiourea, and BMIMBF4 were obtained from Sigma Aldrich and
utilized as raw materials without any kind of further treatment.
CdSO4 and thiourea were dissolved in deionized water (DI
water) to prepare the precursor solution that was kept stirring
RSC Adv., 2025, 15, 4892–4903 | 4893
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until it became an aqueous solution. Then CBD method was
used to deposit CdS lms on the soda-lime glass (SLG)
substrate.
2.2. Fabrication of CdS thin lms

CdS thin lms were deposited on SLG substrates through the
CBD method. At rst, all substrates were cleaned with soap and
then cleaned in chronological order with methanol–acetone–DI
water in an ultrasonic cleaning system. Then glass substrates
were dried with N2 gas, attached to the holder, and put on the
growth beaker for deposition. A growth beaker consisting of
0.002 M of CdSO4, 1.31 M of NH4OH, 0.05 M of N-methyl thio-
urea were taken in a growth beaker in which BMIMBF4
concentration varied from 0 to 0.118 M. The considered
concentrations of BMIMBF4 to produce different CdS lms are
Table 1 Concentration of ionic liquid to deposit different CdS films

Designation Amount of IL (M)

CdS-0 0
CdS-1 0.035
CdS-2 0.069
CdS-3 0.118

Fig. 2 XRD pattern of deposited CdS thin film for increasing ionic
liquid concentration.

4894 | RSC Adv., 2025, 15, 4892–4903
tabulated in Table 1 along with the designation of the deposited
lms below. The deposition was performed at 80 °C for 50
minutes. When the deposition was completed, the samples
were rinsed in 30% diluted ammonia followed by hot and room
temperature DI water.
2.3. Waste disposal and management

The CBD solutions were carefully managed to prevent envi-
ronmental contamination, particularly those containing
BMIMBF4 and cadmium salts. Cadmium sulde was safely
precipitated using sodium sulde and subsequently disposed of
as hazardous waste. BMIMBF4 was recovered through phase
separation and purication for reuse. Residual waste was
neutralized and handled in strict compliance with approved
hazardous waste disposal protocols and local environmental
regulations.
2.4. Characterization

Structural properties, including the orientation of crystals and
some other crystallographic properties, were assessed at room
temperature by BRUKER aXSD8 Advance diffractometer with
varying angles from 10° to 80° with 0.02° step size using Cu Ka
radiation of 1.5408 Å wavelength. Raman spectroscopy (Thermo
Scientic, Model: DXR2xi) was utilized to record the Raman
spectra of the deposited thin lms within the range of 100 cm−1

to 800 cm−1. A 532 nm laser was employed, where its power was
kept below 5 mW to prevent laser-induced changes in the lms.
Table 2 Crystallite size, FWHM, strain and dislocation density

Sample
FWHM,
b (degrees)

Strain,
3

Crystallite size,
D nm

Dislocation density,
d (× 1013 cm−2)

CdS-0 14.214 0.267 0.567 31.06
CdS-1 1.238 0.023 6.519 0.235
CdS-2 1.213 0.022 6.656 0.226
CdS-3 1.085 0.019 7.441 0.181

Fig. 3 Raman spectra curve of deposited CdS thin films.

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ra06320a


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

1/
3/

20
25

 1
1:

05
:5

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
The surface morphology of the lms including the cross-
sectional view and elemental composition were examined by
using eld emission scanning electron microscopy (FESEM) of
model Hitachi SU1510 and Ultra Dry EDS detector of Thermo
Fisher Scientic. Lambda 900 UV/vis/NIR spectrophotometer
was used to measure the transmittance and absorbance spectra
of the lms. The electrical properties of the deposited lms were
acquired by a Hall effect measurement system of model HMS
ECOPIA 3000.
Fig. 4 FESEM images of (a) CdS-0, (b) CdS-1, (c) CdS-2 and (d) CdS-3
histogram.

© 2025 The Author(s). Published by the Royal Society of Chemistry
2.5. Numerical simulation

To validate the proper use of deposited CdS thin lms as ETL in
perovskite solar cell (PSC), SCAPS-1D soware was used for
simulating the solar cell. Poisson's equation, continuity equa-
tion of hole and electron are mainly solved by this soware until
they converge and different cell performance parameters are
derived from the simulation.17–19 These equations are
mentioned below.20–24

Continuity equation for electrons and holes, respectively:
films with different scale bars (1 mm and 100 nm) and size distribution

RSC Adv., 2025, 15, 4892–4903 | 4895
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1

q

dJn

dx
¼ Un � GðxÞ (1)

1

q

dJp

dx
¼ GðxÞ �Up (2)

where, q is the elementary charge, Un and Up are recombination
rates of electrons and holes, respectively, Jn and Jp are current
densities of electrons and holes, respectively, and G(x) is the
electron–hole pair generation rate at some distance x from the
surface of the cell.

Poisson's equation:

d2j

dx2
¼ q

3
ðn� pþNA

� �ND
þ þ nt � ptÞ (3)

where, J is electrostatic potential, p and n are the density of
holes and electrons, respectively, ND

+ and NA
− = concentration

of ionized donors and acceptors, respectively, nt and pt are the
concentration of trapped electrons and holes, respectively, and
3 is material's permittivity.
3. Results and discussion
3.1. Structural properties

X-ray diffraction patterns of the deposited CdS thin lms for
different concentrations of the IL are shown in Fig. 2. According
to the literature, CdS crystals have two major crystalline phases
– hexagonal and cubic. All the CdS thin lms showed the CdS
peak as a hexagonal structure which matches with the standard
data from the JCPDS card (no. 41-1049).3 Bare CdS thin lm
showed a regular peak at 2q = 26.7°, which corresponds to the
(002) plane of the hexagonal form of CdS crystals. When the IL
Fig. 5 FESEM cross-sectional images of (a) CdS-0, (b) CdS-1, (c) CdS-2

4896 | RSC Adv., 2025, 15, 4892–4903
was introduced, the bare sample's amorphous characteristics
changed, and its peak becamemore intense. The sharpest peak,
which was observed for 0.069 M of IL, suggested that the lm's
level of crystallinity was increasing. Further, aer adding IL, two
small peaks became visible in the (100) and (112) planes. These
two planes which corresponded to 2q = 43.71° (110) and 51.85°
(112), also matched with CdS phases. Increment of peak
intensity due to the variation of ionic liquid concentration
indicated the transition from amorphous to crystalline.

The intensity of the prominent peak increased with IL
concentration which corresponds to increasing crystallite size
as calculated using Debye–Scherrer's formula,25

D ¼ Kl

b cos q
(4)

where, K is 0.89, D represents the average crystallite size, l and q

are the light wavelength and Bragg's angle, respectively and
b symbolizes the full width at a half maximum.

Introducing the IL increased the crystallinity dramatically
and the increment of IL concentration caused an increase in
crystallite size gradually, as shown in Table 2. (Eqn (5)) was used
to calculate the average strain (3) of the deposited thin lms was
calculated by using the Williamson–Hall equation as below.25,26

b cos q ¼ Kl

D
þ 43 sin q (5)

Moreover, eqn (6) was used to calculate the dislocation
density (d) that is found due to the creation of imperfections in
crystal orientation.27,28

d ¼ 1

D2
(6)
and (d) CdS-3 films.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (i) EDX analysis and (ii) mapping of as-deposited CdS thin film with increasing concentration of (a) CdS-0, (b) CdS-1, (c) CdS-2, and (d)
CdS-3.

© 2025 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2025, 15, 4892–4903 | 4897
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Table 3 Atomic ratio of Cd/S from EDX analysis

Sample Elements Atom. Conc. (%) Atomic ratio (Cd/S)

CdS-0 Cd 53% 1.13
S 47%
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Table 2 also depicts the variation in strain and crystallite size.
The lower value of strain signies higher crystallinity.29 As the
concentration of IL increases, the strain value decreases. The
lowest and highest avg. strain (3) value for IL assisted-CdS thin
lms were recorded as 0.019, and 0.023, respectively.
CdS-1 Cd 54.3% 1.19
S 45.7%

CdS-2 Cd 52.5% 1.11
S 47.5%

CdS-3 Cd 51.7% 1.07
S 48.3%
3.2. Raman spectrum analysis

The structural characteristics of the deposited CdS thin lms
were investigated further at ambient conditions by Raman
spectrum analysis, which are illustrated in Fig. 3. Analyzing
these spectra, it has been found that, the progression in the
longitudinal optical (LO) phonon mode dominates the
spectra.30 Two peaks are found at 301.97 and 601.84 cm−1 in
each spectrum, the rst one is the A1 longitudinal optical (1LO)
mode, and the other (weaker one) is the LO mode's overtone
(2LO), which is consistent with earlier ndings.31–33 The peak
intensity of the deposited thin lms may depend on several
factors, such as crystallinity, interface stress, or the mode of
surface phonon,34 amount of material, dimensions of the
investigated area, laser power, etc. For deposited CdS thin lms,
it has been observed that CdS-2 has a higher peak intensity as
compared to others. This may be due to the better crystallinity
resulting in lower defects in the lm.35,36 Moreover, with the
ionic liquid concentration variation, peak positions in A1
longitudinal mode are shied a little because of the phonon
connement effect.33 Earlier ndings have also reported a shi
in peak positions in the Raman spectrums for CdS thin
lms.37,38 For a clearer comparison, the normalized Raman
spectra are presented as an inset in Fig. 3, allowing for the
calculation of FWHM for the stronger peaks (1LO). Despite the
observed variations in peak intensities, the FWHM values,
found to be nearly equal (∼23.14 cm−1) across all lms, suggest
similar structural properties and homogeneity despite the
observed differences in peak intensities. This demonstrates the
complexity of the relationship between peak intensity and
structural characteristics, indicating that while peak intensity
reects variations in crystallinity and defect levels, the consis-
tent FWHM values point to a uniformity in the lms' overall
structural quality.
3.3. Morphological properties

Fig. 4 depicts the FESEM images and particle size distribution
of the CdS thin lms. With the addition of different concen-
trations of IL, the lms showed varying results in surface
morphology compared to the bare CdS. No agglomeration was
observed for CdS-0, but there were many pinholes that made the
lm non-uniform. Upon the addition of IL, the surface quality
of the lms improved up to CdS-2, with fewer pinholes and
more compact packing. However, CdS-2 exhibited an average
particle size of 48.17 nm, which is smaller than that of CdS-
0 (83.34 nm), and agglomerates were observed. For CdS-3, the
agglomerates were reduced, and the average particle size
further decreased to 44.08 nm, but the surface exhibited signs
of overgrowth, reducing the lm uniformity. The improved
surface morphology of CdS-2, with larger grain sizes and fewer
4898 | RSC Adv., 2025, 15, 4892–4903
pinholes can be attributed to the balanced reaction process
facilitated by the IL, which allowed for better lm coverage.

Fig. 5 shows the FESEM cross-sectional images of the
deposited CdS lms. From this gure, it was observed that the
thickness of CdS lms varied between 80 and 100 nm.

The elemental compositions of the thin lms were analyzed
using EDX, as shown in Fig. 6. The EDX data, summarized in
Table 3, reveal that the atomic ratio of Cd to S is approximately
1.1 for all deposited CdS thin lms, indicating the formation of
nano-crystalline, stoichiometric CdS lms.39 Notably, CdS-1
exhibits a slightly higher atomic ratio of Cd/S (1.19), suggest-
ing the presence of sulfur vacancies due to the coexistence of
CdS with other cadmium compounds, which may also be
intermediates or by-products of the CBD reaction.40 Addition-
ally, EDX mapping in Fig. 6 conrms the uniform distribution
of Cd and S across the lms.
3.4. Optical properties

Optical transmittance (T) and absorbance (A) plays a major
factor in exploring any optoelectronic material. UV-vis
spectroscopy-derived transmittance spectra of the different
CdS thin lms deposited with different ionic liquid concentra-
tions are shown in Fig. 7(a).

The results showed that optical transmittance tends to vary
between 75% and 90% within the visible light spectrum of 450–
650 nm for different concentrations of ionic liquid. Absorption
edges matched with the fundamental absorption edge for
solution-deposited CdS thin lms found in other studies.41 With
the increment of the concentration of ionic liquid, the lm
transparency was increased, and it was improved up to 90%
which was found for the lm deposited with 0.069 M ionic
liquid. This improvement in transparency may be attributed to
the larger crystallite size of that lm than other lms, as Khi-
mani et al. previously reported that the optical transmittance
increased with the enlargement of crystallite size.41,42

From the absorbance values (A) of the lms for different
wavelengths of light (l), absorption coefficients (a) were derived
using the equation mentioned below43,44 –

a ¼ 2:303
A

d
(7)

where, d = thickness of the lm. Fig. 6b shows the absorption
coefficient spectra for all CdS lms. As the optical bandgap (Eg)
is a very important parameter for determining the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 (a) Optical transmittance spectra, (b) absorption co-efficient spectra and Tauc plot of: (c) CdS-0, (d) CdS-1, (e) CdS-2, and (f) CdS-3.

Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

1/
3/

20
25

 1
1:

05
:5

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
photosensitivity range of a material, Eg for all deposited CdS
lms was determined from the Tauc plot that was plotted by
linearizing the Tauc's equation as below:45–48

(ahv)2 = (hv − Eg) (8)
© 2025 The Author(s). Published by the Royal Society of Chemistry
where, hv = photon energy. The Tauc plots for the CdS thin
lms are displayed in Fig. 7(c–f). Table 4 lists the computed
bandgap values, which range from 2.44 eV to 2.45 eV. These
consistent values show that the bandgap was unaffected by the
ionic liquid. Instrumental accuracy and curve-tting during the
RSC Adv., 2025, 15, 4892–4903 | 4899
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Table 4 Urbach and energy bandgap values for as-deposited CdS

Sample
Film thickness
(nm)

Urbach energy
(meV)

Bandgap
(eV)

CdS-0 92.30 174.83 2.44
CdS-1 96.02 168.07 2.44
CdS-2 100.51 115.88 2.45
CdS-3 89.32 331.13 2.45

Table 5 Electrical properties of as-deposited CdS films

Sample
name

Carrier concentration
(cm−3)

Electron mobility
(cm2 V−1 s−1)

Resistivity
(U cm)

CdS-0 1.92 × 1014 16.1 1.37 × 104

CdS-1 2.69 × 1014 4.84 5.28 × 103

CdS-2 7.51 × 1014 16.5 1.85 × 103

CdS-3 4.26 × 1014 3.15 5.32 × 103
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Tauc plot analysis are the causes of the experimental uncer-
tainty, which is roughly ±0.01 eV. This small variation is within
the uncertainty range, suggesting it is due to measurement
errors rather than changes in material properties.
Fig. 8 (a) Schematic illustration and band alignment of proposed PSC stru
proposed PSCs.

4900 | RSC Adv., 2025, 15, 4892–4903
Urbach energy (Eu), an important parameter representing
the disorder, is oen interpreted as the tail width of localized
states in the bandgap.49 Eu is constant or weakly dependent on
temperature. It is assumed that the spectral dependence of the
absorption edge in the low photon energy range follows the
empirical Urbach rule given by.15,16

a(n) = ao exp(hn/Eu) (9)

where ao is a constant. Calculated Eu for all deposited CdS lms
are tabulated in Table 4.
3.5. Electrical properties

Electron mobility (me), carrier concentration (h), and resistivity
(r) values of as-deposited CdS thin lms were obtained by the
Hall effect measurement system, which is summarized in
Table 5. The following equation represents the relationship
between h, me and r:50

r ¼ 1

qhme

(10)

where q = electrical charge.
It has been observed that the charge carrier concentration

value gradually increases with the increment of IL
cture; (b) J–V characteristics curve and (c) quantum efficiency curve of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 6 Parameters used in device simulation

Parameters FTO25
CdS-0
(ref. 52 and 53)

CdS-1
(ref. 52 and 53)

CdS-2
(ref. 52 and 53)

CdS-3
(ref. 52 and 53)

CsSnBr3
(ref. 54) P3HT55,56

d (nm) 200 92.30 (exp.) 96.02 (exp.) 100.5 (exp.) 89.32 (exp.) 450 50
Eg (eV) 3.5 2.44 (exp.) 2.44 (exp.) 2.45 (exp.) 2.45 (exp.) 1.75 1.85
c (eV) 4 4.45 4.45 4.45 4.45 4.07 3.5
3r 9 10 10 10 10 5.9 3.4
NC (cm−3) 2.2 × 1017 2.2 × 1018 2.2 × 1018 2.2 × 1018 2.2 × 1018 1 × 1018 1 × 1022

NV (cm−3) 2.2 × 1016 1.9 × 1019 1.9 × 1019 1.9 × 1019 1.9 × 1019 1 × 1018 1 × 1022

Vth e− (cm s−1) 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107

Vth p (cm s−1) 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107

me (cm
2 V−1 s−1) 20 16.1(exp.) 4.84 (exp.) 16.5 (exp.) 3.15 (exp.) 1 × 10−1 1 × 10−4

mp (cm2 V−1 s−1) 10 4.025 1.21 4.125 0.787 1 × 10−1 1 × 10−3

NA (cm−3) — — — — — 7 × 1016 3.17 × 1013

ND (cm−3) 1 × 1020 1.92 × 1014 (exp.) 2.69 × 1014 (exp.) 7.51 × 1014 (exp.) 4.26 × 1014 (exp.) — —
Nt (cm

−3) — — — — — 1 × 1014 —
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concentration into CdS thin lms (CdS-1, CdS-2) up to 0.069 M.
Beyond this point, it starts to decrease. The values are varied
from 1.92 × 1014 cm−3 to 7.51 × 1014 cm−3. Moreover, it is also
observed that the addition of IL reduces the resistivity of the
CdS thin lms by one order of magnitude. The CdS thin lm
with 0.069 M IL (CdS-2) exhibits the lowest resistivity and the
highest mobility of 1.85 × 103 U cm and 16.5 (cm2 V−1 s−1),
respectively which indicates a better electrical property in
comparison to others. These optimum electrical properties of
the CdS-2 lm can be correlated with the structural and
morphological analysis of that lm found from the Raman
spectrum and FESEM images, respectively where CdS-2 lm
depicted moderate crystallinity and larger grain size without
any pinholes and agglomeration. Moreover, the lowest Urbach
energy of CdS-2 lm representing fewer disorders or defects
may be another possible reason for improved electrical
properties.

3.6. Numerical simulation

The electron transport layer (ETL) layer is mostly responsible for
promoting the overall charge extraction capacity and tuning the
crystallinity for better device performance in perovskite solar
cells (PSCs).51 For evaluating the photovoltaic performances of
the proposed PSC by employing IL-introduced CdS thin lm as
an electrical transport layer, a simulation study was performed.
SCAPS-1D soware was used for performing this computational
study with a standard spectrum of AM1.5G (1000 W m−2; T =

300 K) for illumination. Here, deposited CdS thin lms with
different IL concentrations from 0 to 0.118 M were used as ETL.
For the absorber and hole transport layer (HTL), CsSnBr3 and
Table 7 Simulated perovskite solar cell performances

Device structure
Jsc
(mA cm−2)

Voc
(V)

FF
(%)

PCE
(%)

FTO/CdS-0/CsSnBr3/P3HT/Ag 14.86 1.22 66.08 11.99
FTO/CdS-1/CsSnBr3/P3HT/Ag 18.95 1.23 67.72 15.79
FTO/CdS-2/CsSnBr3/P3HT/Ag 19.80 1.23 67.93 16.57
FTO/CdS-3/CsSnBr3/P3HT/Ag 18.52 1.23 67.60 15.40

© 2025 The Author(s). Published by the Royal Society of Chemistry
P3HT were employed with a band gap of 1.75 eV and 1.85 eV,
respectively. Fig. 8(a) depicts the suggested device architecture
(FTO/CdS/CsSnBr3/P3HT/Ag) with energy band alignment. The
simulation parameters have been summarized in Table 6.

Fig. 8(b) and (c) illustrate the JV characteristics and quantum
efficiency (QE) curve, respectively. From the J–V curve, it is
observed that the deposited IL-introduced CdS thin lms highly
inuenced the PSC performances. The device performances of
the proposed PSC were increased with the increment of IL
concentration into CdS thin lms. However, the addition of IL
above 0.069 M in CdS lm preparation changes the lm prop-
erties in such a way that the complete PSC performances started
to decrease. This may be due to the decrement in charge carrier
mobilities and thickness of the deposited IL-assisted CdS thin
lm. The highest efficiency of 16.57% was recorded for the PSC
with CdS-2 (IL of 0.069 M) thin lm, whereas Jsc, Voc and FF were
found to be 19.80 mA cm−2, 1.23 V and 67.93%, respectively.
Also, a better quantum efficiency (above 90%) was observed for
PSC with CdS-2 lm compared to others at the visible spectrum
region ranging from 350 nm to 520 nm as shown in Fig. 8(d).
The device performances are summarized in Table 7.

4. Conclusions

CdS thin lms were deposited on a glass substrate via the CBD
technique with the addition of different concentrations of
BMIMBF4 ionic liquid to analyze the impact. X-ray diffraction
analysis revealed that the sharpness and intensity of the peak
increased with the increment of ionic liquid concentration
during the lm preparation conrming the improvement of
crystallinity in the lms. From morphological studies, it was be
concluded that the lms exhibited better coverage with homo-
geneity and lesser pinholes, due to the use of ionic liquid, even
when a lower concentration was used. Films showed good
transparency with minor changes in bandgap ranging from 2.44
to 2.45 eV. The experimental uncertainty associated with these
measurements is ±0.01 eV, indicating that the observed varia-
tions are within the range of experimental accuracy. The effect
of morphological improvement of the CdS thin lm with IL was
also translated into good electrical properties. Analyzing the
RSC Adv., 2025, 15, 4892–4903 | 4901
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electrical properties, deposited CdS with the presence of
0.069 M IL was conrmed as the optimum one for which Raman
analysis and surface morphology were found the most prom-
ising. That lm performed as the best ETL in simulated PSC
through SCAPS-1D simulation depicting the efficiency of 16.5%,
that ensured the promising use of IL-assisted CdS lm in
photovoltaic application.
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