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Structurally divergent reactivity of
2,2-disubstituted azetidines – mechanistic insights
and stereochemical implications of amide
coupling and ring expansion to
5,6-dihydro-4H-1,3-oxazines

Aditya K. Sahay, a Callum S. Begg, a Xiurong Zhang, b James. A. Bull a and
Alan C. Spivey *a

Azetidines have gained traction in drug discovery for their ability to introduce conformational constraint

and modulate physiochemical properties. Strategies that enable their selective functionalization or con-

trolled expansion into more complex scaffolds provide opportunities for molecular diversification to

rapidly access new chemical space. Subjecting 2,2-disubstituted azetidines to amide coupling with car-

boxylic acids is found to effect either N-acylation or ring expansion to spiro and 6,6-disubstituted 5,6-

dihydro-4H-1,3-oxazine, dependent on reaction conditions. A diverse range of topologically interesting

heterocycles, which hold significant potential for pharmaceutical screening, have been prepared using

this divergent reaction manifold. A mechanistic framework, supported by additive screening and trapping

experiments, is presented to account for the ring expansion and racemization that accompanies these

transformations when the substrate allows formation of a ring-opened azafulvenium intermediate.

Introduction

The ring-opening and ring-expansion of small-ring aza-hetero-
cycles driven by relief of strain is a powerful strategy for gener-
ating new acyclic and cyclic architectures.1 Such transform-
ations can allow for the generation of complex molecular struc-
tures in a single step. While aziridines have been extensively
studied in this context,2 their four-membered counterparts,
azetidines, are relatively underexplored.3,4 This disparity likely
reflects the difficulty in synthesizing azetidines and the rela-
tively higher energy barrier to achieve ring-opening via σ-C–N
bond cleavage, particularly in non-activated (i.e., N–H and
N-alkyl) systems.5 These derivatives exhibit remarkable stabi-
lity despite bearing similar ring strain energies to aziridines
(105 vs. 114 kJ mol−1).6

Recent advances have addressed challenges associated with
the accessibility of azetidines and opened new avenues to
harness their unique reactivity.7–9 For instance, Ghorai has dis-
closed regioselective Cu-catalysed ring expansion of activated
N-sulfonlylazetidines with alkynes (Scheme 1B).9b Similarly,

Tehrani has shown non-activated azetidines undergo Zn-cata-
lysed cycloaddition with DMAD, albeit requiring 2-alkynyl sub-
stitution.9c Ring expansion of azetidines using a pendant

Scheme 1 Context of the work reported here.
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internal nucleophile constitutes an alternate strategy.10

Indeed, simple N-acylazetidines are known to undergo
acid-10a–c and base-mediated10d,e ring expansion to isomeric
dihydrooxazine products. Additionally, we previously demon-
strated that N-Boc-2,2-disubstituted azetidines undergo TFA-
mediated, irreversible, intramolecular ring expansion to form
1,3-oxazin-2-ones (Scheme 1C).10i

Building on these findings, we sought to explore whether σ-
C–N cleavage of 2,2-disubstituted azetidines could be orche-
strated in a potentially reversible fashion to generate zwitter-
ionic intermediates capable of intermolecular trapping by
nucleophiles/dipolarophiles. Herein, we disclose divergent
reactivity of N-unsubstituted azetidines with carboxylic acids,
wherein either N-acylation or ring expansion to spiro- and 6,6-
disubstituted dihydro-1,3-oxazines occurs, dependent on the
reaction conditions. These latter ring-systems are widely found
in agrochemicals such as herbicides,11 and medicinal leads
e.g., in aspartyl β-secretase (BACE1) inhibitor ‘oxazine 89’,
which is a therapeutic target for Alzheimer’s disease,12 and
spiro-oxindole natural product uncarialine D, which exhibits
promise as an anti-tumour agent13 (Scheme 1A).

The substrate for our initial investigations was N–H spiro-
oxindole azetidine hydrochloride 1a (Table 1). This compound
was prepared in quantitative yield from its N-Boc counterpart13

upon treatment with 4 N HCl in dioxane. No ring expansion to
the spiro-1,3-oxazin-2-one was observed under these con-
ditions, consistent with our previous findings.14 Subsequent
attempted amide coupling reactions of 1a with p-CF3 benzoic
acid using EDC·HCl and Et3N in CH2Cl2 yielded two products:

the expected spiro-azetidine amide and the ring expanded
spiro dihydro-1,3-oxazine in 4 : 1 ratio (entry 1). A similar ratio
albeit with improved total yield was obtained by switching to
T3P as coupling agent (entry 2). The formation of the latter
product was attributed to σ-C–N bond cleavage (aided by elec-
tron donation from the oxindole nitrogen), amide N-to-O tau-
tomerism and subsequent 6-exo-trig spirocyclization of the
amide oxygen onto the putative azafulvenium intermediate
(vide infra, Scheme 4). This mechanism is consistent with
prior reports of azetidine to dihydrooxazine ring
expansions.10a–c

Intrigued, we sought to delineate conditions to selectively
furnish either the spiro-azetidine amide 2d or the spiro
dihydro-1,3-oxazine 3d (Table 1). Initial screening revealed a
pronounced influence of the solvent on product distribution.
Using THF favoured the formation of 2d (18 : 1 ratio 2d : 3d,
entry 3) in 71% yield. By contrast, MeCN shifted the selectivity
(2 : 1 ratio 2d : 3d, entry 4). Further refinement of the reaction
parameters, including an increase in the base equivalents, a
reduction in the initial reaction temperature, and an extension
of the reaction duration from 4 to 6 h, yielded the spiro-azeti-
dine amide 3d with high selectivity [29 : 1 ratio (2d : 3d)] and
an 88% yield (entry 8). To enhance the formation of the spiro
dihydro-1,3-oxazine 3d, the reaction was conducted with 5
equiv. DBU (cf. 3 equiv. Et3N) at elevated temperature over an
extended reaction time of 18 h which gave 3d with good
selectivity (1 : 11 ratio 2d : 3d) and in 62% yield (entry 12). The
protonated base may aid the azetidine ring expansion by
H-bond-interactions during the tautomerisation/proton-trans-

Table 1 Optimization of amide coupling and ring expansion

Entrya Base (x equiv.) Solvent Temp. (°C) Time (h) 2db, (%) 3db, (%) 2d : 3d

1c Et3N (2.5 equiv.) CH2Cl2 25 4 58 15 4 : 1
2 Et3N (2.5 equiv.) CH2Cl2 25 4 64 22 3 : 1
3 Et3N (2.5 equiv.) DCE 25 4 69 17 4 : 1
4 Et3N (2.5 equiv.) THF 25 4 71 4 18 : 1
5 Et3N (2.5 equiv.) MeCN 25 4 55 28 2 : 1
6 Et3N (2.5 equiv.) EtOAc 25 4 41 3 14 : 1

Change from entry 4 – spiro-azetidine amide optimisation
7 Et3N (3 equiv.) THF 25 4 82 4 21 : 1
8 Et3N (3 equiv.) THF 0–25 6 88 (77)d 3 29 : 1

Change from entry 5 – spiro-dihydro-oxazine optimisation
9 Et3N (5 equiv.) MeCN 25 4 44 31 1.4 : 1
10 DBU (5 equiv.) MeCN 25 4 46 36 1.3 : 1
11 Et3N (5 equiv.) MeCN 40 18 18 56 1 : 3
12 DBU (5 equiv.) MeCN 40 18 6 62 (54)d 1 : 11

a Reactions were carried out on 0.017 mmol. b Yields are determined by in situ 19F NMR spectroscopy with respect to PhCF3 as an internal stan-
dard. cUsing EDC·HCl. d Isolated yield on 0.1 mmol scale.

Organic Chemistry Frontiers Research Article

This journal is © the Partner Organisations 2025 Org. Chem. Front., 2025, 12, 6556–6563 | 6557

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
A

ug
us

t 2
02

5.
 D

ow
nl

oa
de

d 
on

 2
/1

6/
20

26
 6

:5
6:

51
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5qo00804b


fer. A time-course study confirmed the rapid formation of the
spiro-azetidine amide as the kinetic product. Over time, under
conditions conducive to ring expansion, this intermediate
underwent conversion to the thermodynamically favoured
spiro dihydro-1,3-oxazine product (see SI).

With optimized conditions established for each product,
the scope of this divergent reactivity was explored. An array of
carboxylic acids was evaluated which in most cases could be
selectively converted to both product classes (Scheme 2).
Coupling with benzoic acid afforded both spiro-azetidine
amide and spiro dihydro-1,3-oxazine products in good yields
(2a, 3a). Switching the N-protecting group from benzyl to
methyl on the spiro-oxindole also delivered both 2b and 3b,
the latter of which has previously been isolated by Muñiz and
co-workers.15 Aryl electronics influenced the product distri-
bution with substituted benzoic acids. Electron-rich p-anisic
acid gave a higher yield of spiro dihydro-1,3-oxazine 3c,

whereas electron-deficient aryl acids p-trifluoromethyl and
p-nitrobenzoic acids, afforded both spiro-azetidine amides 2d,
2e and spiro dihydro-1,3-oxazines 3d, 3e in good yields.

The reactivity of alkyl carboxylic acids was influenced by
both steric and electronic effects. Hexanoic acid provided pro-
ducts 2f and 3f in moderate yields whereas isobutyric acid
exhibited a preference for the ring-expanded spiro dihydro-1,3-
oxazine 3g, which was isolated in 84% yield. In contrast, the
use of azetidine-3-carboxylic acid delivered both spiro-azeti-
dine amide 2h and spiro dihydro-1,3-oxazine 3h in good
yields, suggesting that steric factors may play a role in influen-
cing selectivity. Phenylacetic acid afforded both regioisomeric
products 2i and 3i in 73% and 56% yields under the respective
sets of conditions.

Heteroaromatic carboxylic acids coupled divergently to give
pyridyl and furan-containing products (2–3j, 2–3k), the former
of which constitutes nicotinate derivatives. The reaction scope

Scheme 2 Scope of divergent coupling of carboxylic acids with N–H spiro-oxindole azetidines to form spiro-azetidine amides or ring expanded
products.
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was further expanded by exploring substitutions on the oxi-
ndole scaffold. The introduction of a 5-methoxy substituent
led to marked preference for the ring expanded spiro dihydro-
1,3-oxazine 3l. In contrast, and somewhat unexpectedly, the
5-bromo and 4,6-difluoro analogues afforded exclusively spiro-
azetidine amides 2m and 2n. 5,7-Dimethyl substituents on the
spiro-oxindole scaffold afforded both products (2–3o) in mod-
erate yields. Spiro-azetidine amide 2p and spiro dihydro-1,3-
oxazine 3p derivatives of Naproxen were obtained in compar-
able yields, both as 1 : 1 mixture of diastereomers. Pleasingly,
other dipolarophiles proved to be compatible delivering novel
spiro-thiazine oxindole 4 and N-aryl spiro-tetrahydroquinoline
oxindole 5.

Having examined the scope with spiro-oxindole scaffolds,
we sought to determine whether non-spirocyclic compounds
could similarly undergo the ring-expansion process. To this
end, 2,2-disubstituted azetidines were subjected to the opti-
mized ring-expansion conditions (Scheme 3). 2-Phenyl-2-car-
boxylethyl-azetidine 6a coupled with p-anisic acid and p-tri-
fluoromethyl-benzoic acid to give azetidine amides 7a′ and 7b′
as major products. Only trace amounts of dihydro-1,3-oxazine
7a were observed in the former case. Switching to the corres-
ponding 2-p-anisyl-2-carboxylethyl azetidine 6b allowed access
to ring-expanded dihydro-1,3-oxazine products in high yields
with an array of carboxylic acid coupling partners with varying
electronic demands (7c–g). The 1,2-dimethoxy derivative 6c
reacted cleanly to afford the corresponding 6,6-disubstituted
dihydro-1,3-oxazine 7h. Furthermore, both primary and sec-
ondary alkyl carboxylic acids, exemplified by hexanoic acid
and piperidine-4-carboxylic acid respectively, successfully deli-

vered the dihydro-1,3-oxazines 7i and 7j in excellent yields.
Overall, these findings demonstrate the utility of 2,2-di-
substituted azetidines as intermediates en route to various sub-
stituted dihydro-1,3-oxazines, which are valuable building
blocks for further exploration in medicinal and materials
chemistry.

During these studies, it was observed that when highly
enantiomerically enriched spiro-oxindole azetidine 1a (4 : 96
er) was reacted with p-trifluoromethyl-benzoic acid, both spiro-
azetidine amide 2d and spiro dihydro-1,3-oxazine 3d were
obtained with significantly eroded ers (40 : 60 and 45 : 55,
respectively). Loss of stereochemical integrity was expected for
the dihydro-1,3-oxazine 3d,10c but had not been anticipated for
amide 2d which retains the intact azetidine ring. This unex-
pected racemization of 2d prompted a mechanistic investi-
gation. Chiral HPLC analysis of the spiro-oxindole azetidine
hydrochloride salt 1a obtained by N-Boc deprotection with 4 N
HCl in dioxane revealed negligible racemization. By contrast,
attempted N-Boc deprotection using TFA led exclusively to the
spiro-oxazinone product (76 : 24 er), consistent with our pre-
viously reported findings.14 Precipitation of the product from
the reaction mixture as it progresses under the former con-
ditions likely explains these contrasting stereochemical
outcomes.

The spiro-oxindole azetidine HCl salt 1a was then exposed
to acids and bases in solution to assess racemization. Over
18 h, most conditions led to significant loss of enantiopurity,
especially with acids. Carefully free-basing 1a with NaOH
yielded the N–H spiro-oxindole azetidine with minimal racemi-
zation, but this form proved more susceptible to racemization,
again most notably with acids. We hypothesised that the labi-
lity of the spiro-oxindole stereocenter in the N-Boc-deprotected
spiro-oxindole azetidine 1a likely resulted from rapid ring
opening and closing of the azetidine ring via an azafulvenium
salt intermediate (Scheme 4). Support for this hypothesis
came from treating spiro-azetidine amide 2d with BF3·Et2O
and Et3SiH, which afforded ring-opened acylated intermediate
8 presumably resulting from hydride capture at C3 of the aza-
fulvenium salt.

Recognizing the importance of maintaining the azetidine
stereochemical integrity for medicinal chemistry applications
and to accrue further evidence to support the racemisation
hypothesis, we prepared a series of further spiro-oxindole aze-
tidines II–IV. The N-Ts and 7-aza derivatives were designed to
retard azetidine ring-opening by destabilising the proposed
azafulvenium salt intermediate. Additionally, a spiro-pyrroli-
dine homologue was synthesized as a control to evaluate the
impact of ring strain in promoting the racemization process.
These were prepared as racemates and separated using chiral
SFC. Subjecting the modified spiro-oxindole azetidines II–IV to
one-pot N-Boc deprotection followed by optimized amide coup-
ling conditions revealed a significant reduction in racemiza-
tion, with their enantiomeric purities being maintained over
the 6 h period of evaluation. The pyrrolidine IV also did not
racemise under these conditions. These findings support the
proposed mechanism of racemisation and provide a method

Scheme 3 Dihydro-1,3-oxazine formation from other 2,2-disubstituted
azetidines.
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of preventing it by counter-balancing the inherent ring strain
with an electron-deficient oxindole framework.†

Racemisation (or epimerization) at C3 of spiro-oxindoles via
azafulvenium ion intermediates has been proposed previously
for aziridine-based systems.16a–c In particular, Hajra has
shown that spiro-oxindole aziridines (and epoxide) undergo
ring-opening and ring-expansion reactions, generally with
retention of stereochemistry at C3, but sometimes with varying
degrees of epimerization.16 The stereoretentive pathway was

postulated to proceed with anchimeric assistance from the
lactam nitrogen (i.e. double inversion via a tricyclic α-lactam
intermediate), with epimerization proceeding via an azafulve-
nium ion intermediate (as proposed in this study) for electron-
rich oxindoles or upon addition of Lewis acids.16d,f We found
no evidence for the anchimeric assistance pathway in our
work, but like Hajra have found that the propensity of these
strained spiro oxindoles to spring open via azafulvenium ions
is dependent on the electron demand of the aryl ring in the
oxindole: electron neutral and rich derivatives undergo this
ring-opening readily, electron deficient congeners less so.

Conclusions

In summary, we have developed a divergent, condition-con-
trolled coupling protocol to access spiro-azetidine amides and
the corresponding spiro dihydro-1,3-oxazine from the reaction
of N–H-spiro-oxindole azetidines with carboxylic acids. We
have also extended the scope beyond spirocyclic systems to 2,2-
disubstituted azetidines, which serve as versatile linchpins for

Scheme 4 Studies to investigate racemization during reactions of spiro-oxindole azetidines with carboxylic acid.

†Studies were also conducted on salt 1a to assess whether N-alkylation pro-
ceeded with retention of enantiopurity. Treatment of enantiopure N-Boc-depro-
tected spiro-oxindole azetidine 1a with 3,5-difluorobenzyl bromide under SN2
conditions yielded the desired product with significantly diminished er. A side
product was isolated and characterized as the bis-alkylated ammonium salt,
which intriguingly retained the spiro-azetidine ring. Reductive amination con-
ditions using 3,5-difluorobenzaldehyde furnished exclusively the mono-alkylated
product. However, this also resulted in substantial erosion of enantiopurity. As
in the N-acylation process, racemization is likely attributable to the facile ring-
opening of the spiro-oxindole azetidine. Furthermore, we found that
N-alkylation could also be successfully achieved with suitable Michael acceptors
such as ethyl acrylate and phenyl vinyl sulfone (see SI).
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molecular editing/scaffold hopping. Mechanistic investigations
revealed partial racemisation of the spirocentre under the
amide coupling conditions. Additive screening and trapping
studies suggested that this proceeds via a ring-opened azaful-
venium salt intermediate. These studies reinforce that care
should be taken to monitor the enantiopurity of enantio-
enriched oxindole derivatives through reaction sequences.
However, rational modifications to the spiro-oxindole frame-
work enables the synthesis of spiro-azetidine amide products
with retention of enantiopurity. Ongoing efforts are focused
on developing an asymmetric variant of the ring expansion
process to access enantioenriched spiro- and non-spiro
dihydro-1,3-oxazine products.
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