

RESEARCH ARTICLE

[View Article Online](#)
[View Journal](#) | [View Issue](#)

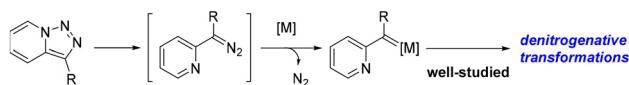
Cite this: *Org. Chem. Front.*, 2025, **12**, 5868

A general rhodium-catalyzed regioselective C–H functionalization: accessing heteroarylated and alkenylated arenes[†]

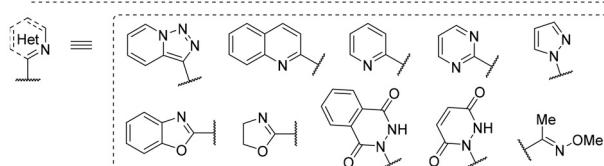
Tian Cao,^{‡,a,b} Yan Wang,^{‡,a,b} Shiping Zhan,^{c,b} Wenqian Ding^{b,d} and Xiaowei Wu^{‡,a,b,c,d,e}

Received 15th April 2025,
Accepted 2nd July 2025
DOI: 10.1039/d5qo00647c
rsc.li/frontiers-organic

Herein, an efficient and general rhodium-catalyzed C–H heteroarylation and alkenylation of pyridotriazoles and *ortho*-aryl heterocycles with iodonium ylides is reported. This strategy enables the synthesis of a wide array of heteroarylated and alkenylated heterocycles and arenes under mild reaction conditions. The triazole moiety in pyridotriazoles serves exclusively as an intrinsic directing group, showcasing distinct reactivity compared to previous reports. In addition, this transformation accommodates various N-containing heterocycles and oximes as directing groups, highlighting its versatility for heterocycles and arenes functionalization. This protocol exhibits broad substrate scope, good functional group tolerance, operational simplicity, air compatibility, and scalability with low catalyst loading. Moreover, a low kinetic isotope effect value indicates C–H bond cleavage is unlikely to be the rate-determining factor.


Introduction

Nitrogen-containing heterocycles frequently appear in bioactive compounds, natural products, and organic functional materials.¹ Thus, developing efficient methods for incorporating heterocyclic moieties would be beneficial and can rapidly increase molecular complexity. C–H functionalization remains a pivotal strategy in organic synthesis, offering a direct pathway to diverse chemical architectures.² In this context, rhodium-catalyzed C–H activation has attracted considerable interest for its capability to enable challenging transformations in recent years.^{2,3}



Over the past decade, pyridotriazoles have usually served as a source of metal carbenoids in transition metal-catalyzed denitrogenative transformations, facilitating the synthesis of

various molecules with *N*-heterocyclic moieties (Scheme 1a).^{4–7} Additionally, iodonium ylides, recognized for their stability and reactivity, frequently serve as versatile carbene precursors in C–H functionalization reactions.^{8,9} For instance, a Rh-catalyzed C–H activation/annulation involving pyridotriazoles and

a) TM-catalyzed denitrogenative transformations of pyridotriazoles (refs. 4–7, 10)

b) Rh-catalyzed C–H heteroarylation/alkenylation of heterocycles with iodonium ylides (*this work*)

- Pyridotriazoles displaying distinct reactivity
- Broad substrate scope
- Various N-containing heterocycles as directing groups
- Mild conditions
- Good functional group tolerance
- Scalability with low catalyst loading
- Novel heteroarylated and alkenylated heterocycles

^aState Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550014, China

^bZhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.

E-mail: wuxiaowei@simm.ac.cn

^cSchool of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China

^dGuangzhou University of Chinese Medicine, Guangdong 510006, China

^eShanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

† Electronic supplementary information (ESI) available. CCDC 2412343. For ESI and crystallographic data in CIF or other electronic format see DOI: <https://doi.org/10.1039/d5qo00647c>

‡ These authors contributed equally.

iodonium ylides was developed recently, where the triazole component of pyridotriazoles serves both as a directing group and a carbene precursor.¹⁰

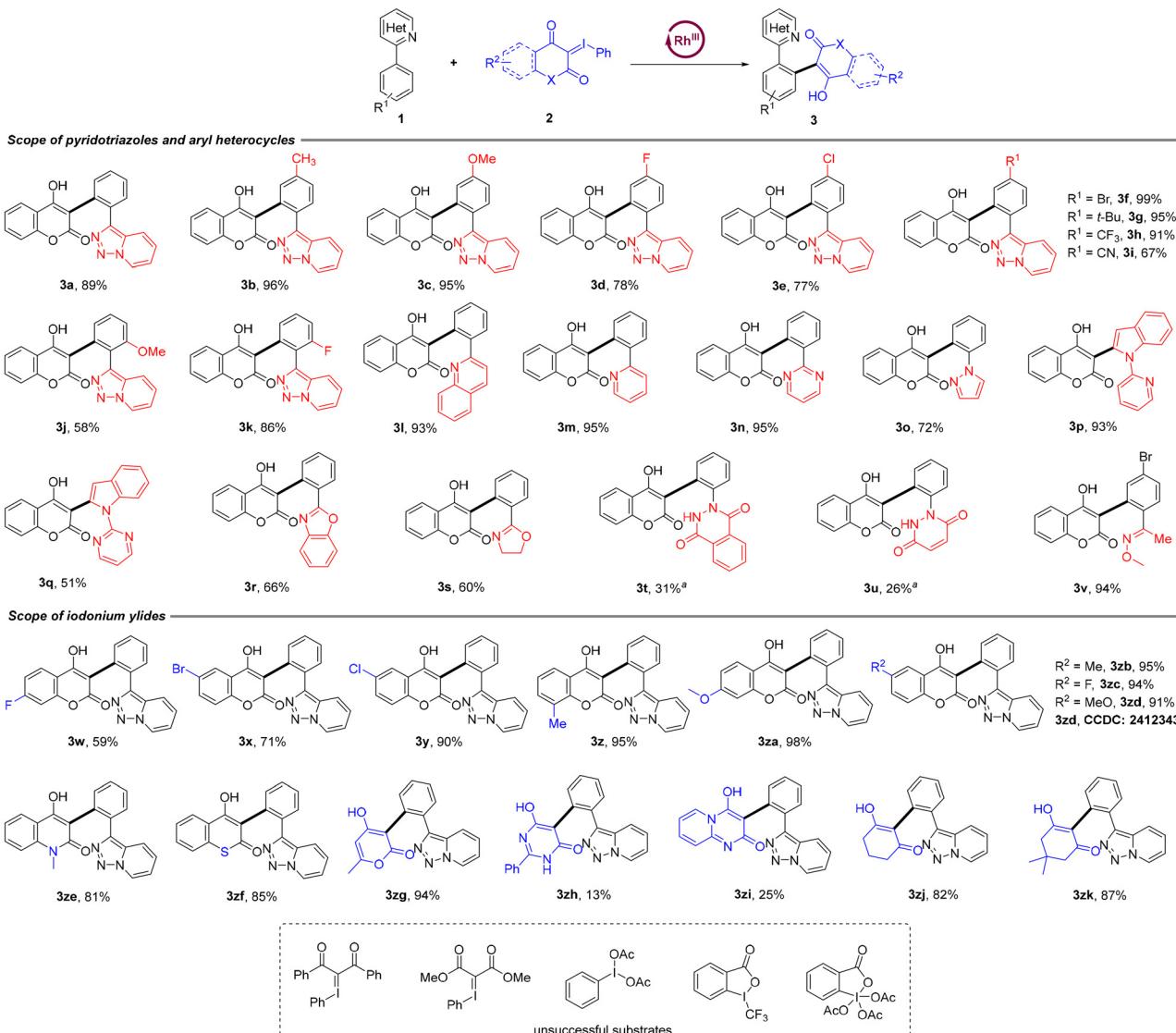
Inspired by previous studies^{4–10} and driven by our continuous pursuit of novel drug-like heterocyclic compounds,¹¹ we herein develop an efficient and mild rhodium-catalyzed C–H heteroarylation and alkenylation of pyridotriazoles and *ortho*-aryl heterocycles with iodonium ylides, accessing various heteroarylated and alkenylated arenes (Scheme 1b). Notably, the triazole moiety in pyridotriazoles acts exclusively as an intrinsic directing group, displaying a different chemical reactivity compared to previous reports.^{4–7,10} In addition, various N-containing heterocycles and oximes as directing groups are also compatible in this reaction, indicating the potential for general heteroarylation and alkenylation of arenes.

Results and discussion

An optimization study was conducted using pyridotriazole **1a** and 3-(phenyl- λ^3 -iodaneylidene)chromane-2,4-dione **2a** as substrates. Initially, various metal catalysts were tested with NaOAc as an additive in TFE solvent (Table 1, entries 1–6). The results showed that $\text{Cp}^*\text{Co}(\text{CO})\text{I}_2$, $[\text{RuCl}_2(\text{p-cymene})]_2$, Pd(OAc)₂, Rh₂(esp)₂, and Rh₂(OAc)₄ did not facilitate the reaction. In contrast, $[\text{Cp}^*\text{RhCl}_2]_2$ exhibited moderate catalytic activity, yielding the desired product **3a** in 39%. Next, a range of additives, including KOAc, CsOAc, Zn(OAc)₂, and NaHCO₃, were evaluated. Zn(OAc)₂ proved to be the most effective, providing

Table 1 Optimization of reaction conditions^a

Entry	Catalyst	Additive	Solvent	Yield ^b
1	$\text{Cp}^*\text{Co}(\text{CO})\text{I}_2$	NaOAc	TFE	NR
2	$[\text{RuCl}_2(\text{p-cymene})]_2$	NaOAc	TFE	NR
3	$\text{Pd}(\text{OAc})_2$	NaOAc	TFE	NR
4	$[\text{Cp}^*\text{RhCl}_2]_2$	NaOAc	TFE	39%
5	$\text{Rh}_2(\text{OAc})_4$	NaOAc	TFE	NR
6	$\text{Rh}_2(\text{esp})_2$	NaOAc	TFE	NR
7	$[\text{Cp}^*\text{RhCl}_2]_2$	KOAc	HFIP	31%
8	$[\text{Cp}^*\text{RhCl}_2]_2$	CsOAc	HFIP	31%
9	$[\text{Cp}^*\text{RhCl}_2]_2$	Zn(OAc)₂	HFIP	89%
10	$[\text{Cp}^*\text{RhCl}_2]_2$	NaHCO ₃	HFIP	NR
11	$[\text{Cp}^*\text{RhCl}_2]_2$	Zn(OAc) ₂	Dioxane	NR
12	$[\text{Cp}^*\text{RhCl}_2]_2$	Zn(OAc) ₂	MeOH	19%
13	$[\text{Cp}^*\text{RhCl}_2]_2$	Zn(OAc) ₂	TFE	89%
14	$[\text{Cp}^*\text{RhCl}_2]_2$	Zn(OAc) ₂	THF	Trace
15	$[\text{Cp}^*\text{RhCl}_2]_2$	Zn(OAc) ₂	DCM	33%
16	$[\text{Cp}^*\text{RhCl}_2]_2$	Na ₂ CO ₃	HFIP	Trace
17	$[\text{Cp}^*\text{RhCl}_2]_2$	Zn(OTf) ₂	HFIP	Trace

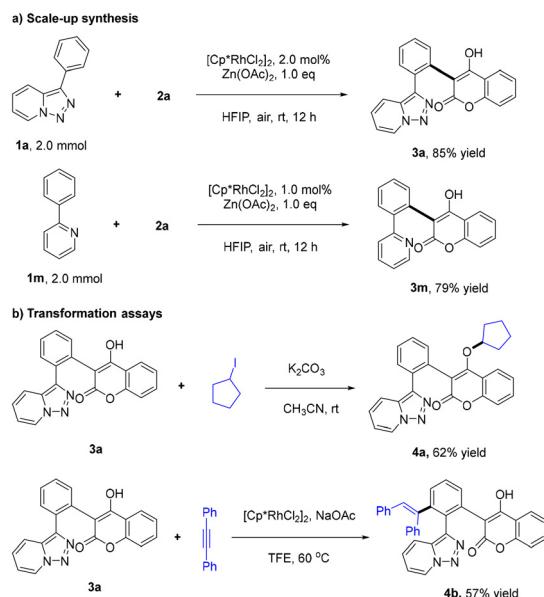

^a Reaction conditions: **1a** (0.2 mmol), **2a** (0.24 mmol), catalyst (5 mol%), additive (0.2 mmol), under air, room temperature, solvent (2.0 mL), 12 h. ^b Isolated yield. NR = no reaction.

the highest yield of **3a** (89%) in both HFIP (entry 9) and TFE (entry 13) when used with $[\text{Cp}^*\text{RhCl}_2]_2$. The solvent effect was also examined using 1,4-dioxane, MeOH, THF, and DCM (entries 11–15). These solvents delivered significantly lower yields, with some reactions resulting in no product or only trace amounts. In addition, when Na₂CO₃ and Zn(OTf)₂ was used instead of Zn(OAc)₂, only a trace amount of **3a** was obtained (entries 16 and 17). HFIP and TFE consistently outperformed other solvents, delivering the highest yields. The optimal reaction conditions were determined to be $[\text{Cp}^*\text{RhCl}_2]_2$ as the catalyst, Zn(OAc)₂ as the additive, and either HFIP or TFE as the solvent, achieving an impressive yield of 89% under air at room temperature.

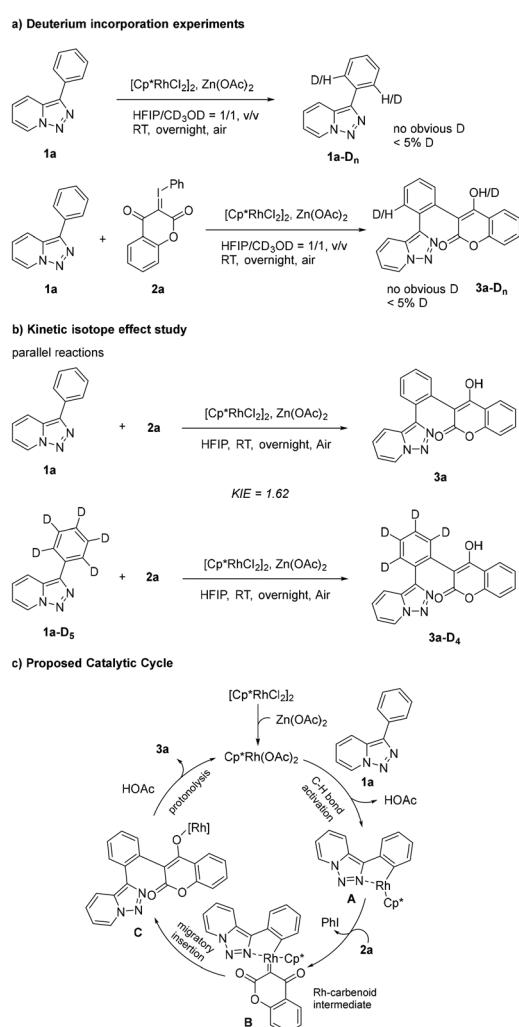
With optimal conditions established, the substrate scope of pyridotriazoles, *ortho*-aryl heterocycles, and iodonium ylides under rhodium catalysis was then investigated (Scheme 2). First, pyridotriazoles with methyl (**3b**) and methoxy (**3c**) on the phenyl ring delivered excellent yields, indicating enhanced reactivity. Additionally, electron-withdrawing groups, such as fluoro (**3d**, **3k**) and chloro (**3e**), produced slightly lower yields but demonstrated good compatibility. Electron-withdrawing groups at the phenyl ring like trifluoromethyl (**3h**) maintained high efficiency, whereas cyano (**3i**) slightly reduced the yield, likely due to its strong electron-withdrawing nature. Bulky substituent, *tert*-butyl (**3g**), showed minimal steric effect on the reaction outcome. Regarding heterocyclic directing groups, nitrogen-containing heterocycles, such as quinoline (**3l**), pyridine (**3m**), pyrimidine (**3n**), pyrazole (**3o**), benzoxazole (**3r**), and oxazoline (**3s**) exhibited good to excellent yields. Besides, 1-(2-*pyridine-2-yl*)-1*H*-indole and 1-(*pyrimidin-2-yl*)-1*H*-indole also performed well, affording the corresponding products **3p** and **3q** smoothly. In addition, replacing the directing group with a phthalazine-1,4-dione, pyridazine-3,6-dione, or *O*-methyl oxime moiety still enabled the reaction to proceed smoothly, affording the corresponding products **3t**–**3v**. The results demonstrate the broad applicability of the Rh(III)-catalyzed system across a wide range of functional groups and N-containing heterocyclic directing groups, underscoring the potential for diverse functionalization.

The substrate scope of iodonium ylides with pyridotriazole was subsequently explored. Halogen substituents on the coumarin ring, such as fluoro (**3w**), bromo (**3x**), and chloro (**3y**), exhibited a trend of increasing yields with larger halogens. Electron-donating groups, including methyl (**3z**, **3zb**) and methoxy (**3za**, **3zd**), produced excellent yields, underscoring their positive influence on reactivity. Similarly, the electron-withdrawing fluoro group (**3zc**) maintained high efficiency, demonstrating the reaction's broad tolerance to various functional groups. When the coumarin ring was replaced with other heteroaryl rings, such as 4-hydroxy-1-methylquinolinone, 4-hydroxy-thiochromenone, 4-hydroxy-6-methyl-pyranone, 6-hydroxy-2-phenylpyrimidinone, and 4-hydroxy-2*H*-pyrido[1,2-*a*]pyrimidinone, the desired products (**3ze**–**3zi**) were obtained smoothly, showcasing excellent compatibility with diverse heterocyclic frameworks. Additionally, aliphatic rings such as cyclohexane-1,3-dione and 5,5-dimethylcyclohexane-1,3-dione

Scheme 2 Reaction conditions: **1** (0.2 mmol), **2** (0.24 mmol), $[\text{Cp}^*\text{RhCl}_2]_2$ (5.0 mol%), $\text{Zn}(\text{OAc})_2$ (0.2 mmol), under air, HFIP (2.0 mL), rt, 12 h; isolated yields are reported. ^a $[\text{Cp}^*\text{RhCl}_2]_2$ (3.0 mol%), AgSbF_6 (0.3 equiv.), under air, TFE (2.0 mL), rt, 12 h.


(**3zj**, **3zk**) also worked. Moreover, the reaction does not tolerate non-cyclic iodonium ylides, Dess–Martin periodinane, Togni Reagent II, or (diacetoxyiodo)benzene. Overall, this methodology demonstrates good functional group tolerance, compatibility with diverse heterocyclic moieties and high efficiency. It efficiently delivers structurally complex products across diverse frameworks, including phenyl, heteroaryl, and aliphatic rings, emphasizing its potential for versatile functionalization.

In addition, scale-up synthesis and subsequent transformation experiments were carried out to demonstrate the practicality and versatility of the developed methodology (Scheme 3). For the scale-up synthesis, pyridotriazole **1a** was treated with **2a** in HFIP at room temperature for 12 hours, affording compound **3a** in 85% yield when 2.0 mol% $[\text{Cp}^*\text{RhCl}_2]_2$ was used. Furthermore, when the reaction was conducted with 1.0 mol% $[\text{Cp}^*\text{RhCl}_2]_2$, compound **3m** was obtained in 79% yield, high-


lighting the scalability and efficiency of the reaction. In the transformation assays, **3a** underwent etherification with iodocyclopentane in the presence of K_2CO_3 in CH_3CN to afford **4a** (62%). Additionally, further functionalization of **3a** was achieved *via* C–H activation using $[\text{Cp}^*\text{RhCl}_2]_2$ and NaOAc with diphenylacetylene in TFE at 60 °C, providing **4b** in good yield. These results underscore the synthetic utility of these reactions, enabling the efficient generation of structurally diverse compounds and expanding its applicability for further functionalization.

In the deuterium incorporation experiments (Scheme 4a), reactions were conducted in a mixture of HFIP and CD_3OD (1 : 1) with $[\text{Cp}^*\text{RhCl}_2]_2$. The resulting products, **1a-D_n** and **3a-D_n**, showed negligible deuterium incorporation (<5% D). In the KIE study (Scheme 4b), parallel reactions of **1a** and fully deuterated **1a-D₅** with **2a** under standard conditions yielded **3a**

Scheme 3 Scale-up synthesis and transformation.

Scheme 4 Mechanism study.

and **3a–D₄**, respectively. The calculated KIE value of 1.62, derived from the relative reaction rates (k_H/k_D), suggests a moderate isotopic influence on the reaction mechanism.

Based on preliminary mechanistic studies and existing literatures,^{8,10} the proposed catalytic cycle illustrates the transformation of substrate **1a** into product **3a** using the rhodium catalyst $[\text{Cp}^*\text{RhCl}_2]_2$ in the presence of iodonium ylide **2a** and $\text{Zn}(\text{OAc})_2$ (Scheme 4c). The cycle begins with the activation of the rhodium catalyst to generate the active catalytic species $\text{Cp}^*\text{Rh}(\text{OAc})_2$. This species undergoes C–H bond activation with **1a**, forming the rhodium–arene complex **A** while releasing acetic acid. Subsequently, compound **2a** reacts with intermediate **A** to generate the rhodium–carbenoid intermediate **B**. This intermediate then undergoes migratory insertion, forming intermediate **C**. Finally, protonolysis of **C** with acetic acid releases the desired product **3a**, while regenerating the active rhodium catalyst to close the cycle. This process elegantly integrates C–H activation and carbene transfer, enabling efficient and selective product formation.

Conclusions

In summary, we present an efficient and general rhodium-catalyzed methodology for the C–H heteroarylation and alkenylation of pyridotriazoles and *ortho*-aryl heterocycles using iodonium ylides as coupling partners. This approach unlocks access to a broad range of heteroarylated and alkenylated heterocycles and arenes under mild conditions. Notably, the triazole moiety in pyridotriazoles functions exclusively as an intrinsic directing group, exhibiting distinct chemical reactivity compared to prior studies. The scope of this transformation is further demonstrated by its compatibility with diverse N-containing heterocycles, including quinoline, pyridine, pyrimidine, pyrazole, benzoxazole, oxazoline, phthalazine-1,4-dione, pyridazine-3,6-dione, and *O*-methyl oxime moiety, highlighting the methodology's adaptability for *ortho*-aryl heterocycle functionalization. Good functional group tolerance, operational simplicity, air compatibility, and scalability with low catalyst loading are also demonstrated. In addition, the low KIE value indicates the C–H bond cleavage is unlikely to be the rate-determining step.

Conflicts of interest

There are no conflicts to declare.

Data availability

The data supporting this article have been included as part of the ESI.†

Acknowledgements

Financial support from National Natural Science Foundation of China (82404416) and Zhongshan Science and Technology Bureau (CXTD2023009) are gratefully acknowledged.

References

- (a) W. Luo, Y. Liu, H. Qin, Z. Zhao, S. Wang, W. He, S. Tang and J. Peng, Nitrogen-containing heterocyclic drug products approved by the FDA in 2023: Synthesis and biological activity, *Eur. J. Med. Chem.*, 2024, **279**, 116838; (b) S. Kumari, K. Maddeboina, R. D. Bachu, S. H. S. Boddu, P. C. Trippier and A. K. Tiwari, Pivotal role of nitrogen heterocycles in Alzheimer's disease drug discovery, *Drug Discovery Today*, 2022, **27**, 10322; (c) L. C. Di Stasi, Coumarin Derivatives in Inflammatory Bowel Disease, *Molecules*, 2021, **26**, 422; (d) D. Gupta, E. Guliani and K. Bajaj, Coumarin-Synthetic Methodologies, Pharmacology, and Application as Natural Fluorophore, *Top. Curr. Chem.*, 2024, **382**, 16.
- (a) R. de Jesus, K. Hiesinger and M. van Gemmeren, Preparative Scale Applications of C-H Activation in Medicinal Chemistry, *Angew. Chem., Int. Ed.*, 2023, **62**, e202306659; (b) S. K. Sinha, P. Ghosh, S. Jain, S. Maiti, S. A. Al-Thabati, A. A. Alshehri, M. Mokhtar and D. Maiti, Transition-metal catalyzed C-H activation as a means of synthesizing complex natural products, *Chem. Soc. Rev.*, 2023, **52**, 7461–7503; (c) J. H. Docherty, T. M. Lister, G. McArthur, M. T. Findlay, D.-L. Pablo, J. Kenyon, S. Choudhary and I. Larrosa, Transition-metal-catalyzed C-H bond activation for the formation of C-C bonds in complex molecules, *Chem. Rev.*, 2023, **123**, 7692–7760.
- (a) V. Kumar, R. Maayuri, L. Mantry and P. Gandeepan, Recent advances in rhodium-catalyzed electrochemical C-H activation, *Chem. – Asian J.*, 2023, **18**, e202300060; (b) C.-X. Liu, S. Y. Yin, F. Zhao, H. Yang, Z. Feng, Q. Gu and S.-L. You, Rhodium-catalyzed asymmetric C-H functionalization reactions, *Chem. Rev.*, 2023, **123**, 10079–10134.
- (a) S. Chuprakov, F. W. Hwang and V. Gevorgyan, Rh-catalyzed transannulation of pyridotriazoles with alkynes and nitriles, *Angew. Chem., Int. Ed.*, 2007, **46**, 4757–4759; (b) Y. Shi, A. V. Gulevich and V. Gevorgyan, Rhodium-catalyzed NH insertion of pyridyl carbenes derived from pyridotriazoles: a general and efficient approach to 2-picolyamines and imidazo[1,5-a]pyridines, *Angew. Chem., Int. Ed.*, 2014, **53**, 14191–14195; (c) J. H. Kim, T. Gensch, D. Zhao, L. Stegemann, C. A. Strassert and F. Glorius, Rh(III)-Catalyzed C-H Activation with Pyridotriazoles: Direct Access to Fluorophores for Metal-Ion Detection, *Angew. Chem., Int. Ed.*, 2015, **54**, 10975–10979; (d) Z. Zhang, D. Yadagiri and V. Gevorgyan, Light-induced metal-free transformations of unactivated pyridotriazoles, *Chem. Sci.*, 2019, **10**, 8399–8404; (e) X. Lv, H. Yang, T. Shi, D. Xing, X. Xu and W. Hu, Rhodium(II)-Catalyzed Formal [4 + 1]-Cycloaddition of Pyridotriazoles and Propargyl Alcohols: Synthesis of 2,5-Dihydrofuran, *Adv. Synth. Catal.*, 2019, **361**, 1265–1270; (f) Z. Gao, D. Jiang, B. Li and B. Wang, Rhodium-catalyzed denitrogenative gem-difunctionalization of pyridotriazoles with thioesters: formal carbene insertion into C(O)-S bonds, *Chem. Commun.*, 2022, **58**, 1017–1020; (g) C. Dong, X. Wang, Z. Pei and R. Shen, Metal-Free Denitrogenative C-C Couplings of Pyridotriazoles with Boronic Acids to Afford α -Secondary and α -Tertiary Pyridines, *Org. Lett.*, 2019, **21**(11), 4148–4152.
- (a) V. Helan, A. V. Gulevich and V. Gevorgyan, Cu-Catalyzed Transannulation Reaction of Pyridotriazoles with Terminal Alkynes under Aerobic Conditions: Efficient Synthesis of Indolizines, *Chem. Sci.*, 2015, **6**, 1928–1931; (b) A. Joshi, D. C. Mohan and S. Adimurthy, Lewis Acid-Catalyzed Denitrogenative Transannulation of Pyridotriazoles with Nitriles: Synthesis of Imidazopyridines, *J. Org. Chem.*, 2016, **81**, 9461–9469; (c) D. Rawat, C. Ravi, A. Joshi, E. Suresh, K. Jana, B. Ganguly and S. Adimurthy, Indium-Catalyzed Denitrogenative Transannulation of Pyridotriazoles: Synthesis of Pyrido[1,2-a]indoles, *Org. Lett.*, 2019, **21**, 2043–2047; (d) S. Chuprakov and V. Gevorgyan, Regiodivergent metal-catalyzed rearrangement of 3-iminocyclopropenes into N-fused heterocycles, *Org. Lett.*, 2007, **9**, 4463–4466; (e) D. Rawat, C. Ravi, A. Joshi, E. Suresh, K. Jana, B. Ganguly and S. Adimurthy, Indium-Catalyzed Denitrogenative Transannulation of Pyridotriazoles: Synthesis of Pyrido[1,2-a]indoles, *Org. Lett.*, 2019, **21**, 2043–2047; (f) A. Joshi, R. Semwal, E. Suresh and S. Adimurthy, Pd-Catalyzed regioselective synthesis of 2,6-disubstituted pyridines through denitrogenation of pyridotriazoles and 3,8-diarylation of imidazo[1,2-a]pyridines, *Chem. Commun.*, 2019, **55**, 10888–10891; (g) Y. Dong, J. Chen, Y. Cui, L. Bao and H. Xu, Cp⁺RhIII-Catalyzed Sulfonamide-Directed Ortho Arene C-H Carbenoid Functionalization with Pyridotriazoles, *Org. Lett.*, 2020, **22**, 772–775.
- (a) M. Akter, K. Rupa and P. Anbarasan, 1,2,3-Triazole and Its Analogues: New Surrogates for Diazo Compounds, *Chem. Rev.*, 2022, **122**, 13108–13205; (b) G. Lv, Z. Lin, C. Zhang, S. Xu, Y. Xu, Y. Li, R. Lai, R. Nie, Z. Yang and Y. Wu, Synthesis of 1H-Isochromenes via Iridium-Catalyzed Cascade C-H Activation/Annulation of Pyridotriazoles at Room Temperature, *Organometallics*, 2023, **42**, 2228–2237; (c) Y. Chen, Z. Li, Y. Xu, T. Huang, L. Hai, R. Nie and Y. Wu, Access to Amides and Lactams via Pyridotriazole as a Transformable Directing Group, *J. Org. Chem.*, 2023, **88**, 15597–15607; (d) S. Basak, T. Paul, M. V. Nanjegowda and T. Punniyamurthy, Integrating C-H activation/2-fold annulation: a modular access to heteroaryl-tethered oxazoloisoquinolinones, *Chem. Commun.*, 2025, **61**, 1693–1696; (e) G. Xu, Y. Shao, S. Tang, Q. Chen and J. Sun, Dearomatic Migratory Rearrangement of 2-Oxypyridines Enabled by α -Imino Rhodium Carbene, *Org. Lett.*, 2020, **22**, 9303–9307; (f) H. Kim, S. Kim, J. Kim, J. Y. Son, Y. Baek,

K. Um and P. H. Lee, One-Pot Synthesis of Indolizines via Sequential Rhodium-Catalyzed [2 + 1]-Cyclopropanation, Palladium-Catalyzed Ring Expansion, and Oxidation Reactions from Pyridotriazoles and 1,3-Dienes, *Org. Lett.*, 2017, **19**, 5677–5680; (g) Z. Zhang and V. Gevorgyan, Co-Catalyzed Transannulation of Pyridotriazoles with Isothiocyanates and Xanthate Esters, *Org. Lett.*, 2020, **22**, 8500–8504.

7 (a) A. Joshi, D. C. Mohan and S. Adimurthy, Copper-Catalyzed Denitrogenative Transannulation Reaction of Pyridotriazoles: Synthesis of Imidazo[1,5-a]pyridines with Amines and Amino Acids, *Org. Lett.*, 2016, **18**, 464–467; (b) H. B. Xu, Y. Y. Zhu and L. Dong, Specific Synthesis of 3H-Indole Derivatives via Rh(III)-Catalyzed Cascade Annulation between N-Phenylbenzimidamides and Pyridotriazoles, *J. Org. Chem.*, 2019, **84**, 16286–16292; (c) V. Helan, A. V. Gulevich and V. Gevorgyan, Cu-Catalyzed Transannulation Reaction of Pyridotriazoles with Terminal Alkynes under Aerobic Conditions: Efficient Synthesis of Indolizines, *Chem. Sci.*, 2015, **6**, 1928–1931; (d) W. H. Jeon, J. Y. Son, J. E. Kim and P. H. Lee, Synthesis of 1,2-Benzothiazines by a Rhodium-Catalyzed Domino C-H Activation/Cyclization/Elimination Process from S-Aryl Sulfoximines and Pyridotriazoles, *Org. Lett.*, 2016, **18**, 3498–3501; (e) H. Wang, S. Cai, W. Ai, X. Xu, B. Li and B. Wang, Silver-Catalyzed Activation of Pyridotriazoles for Formal Intramolecular Carbene Insertion into Vinylic C(sp²)-H Bonds, *Org. Lett.*, 2020, **22**, 7255–7260; (f) J. H. Kim, T. Gensch, D. Zhao, L. Stegemann, C. A. Strassert and F. Glorius, Rh(III)-Catalyzed C-H Activation with Pyridotriazoles: Direct Access to Fluorophores for Metal-Ion Detection, *Angew. Chem., Int. Ed.*, 2015, **54**, 10975–10979; (g) E. Wang, J. Luo, L. Zhang, J. Zhang and Y. Jiang, Copper-Catalyzed Oxidative [3 + 2] Cycloaddition of Enamines and Pyridotriazoles toward Indolizines, *Org. Lett.*, 2024, **26**, 1249–1254.

8 Selected reviews and examples: (a) S. Kumar, V. Borkar, M. Mujahid, S. Nunewar and V. Kanchupalli, Iodonium ylides: an emerging and alternative carbene precursor for C-H functionalizations, *Org. Biomol. Chem.*, 2022, **21**, 24–38; (b) J. Liao, D. Kong, X. Gao, R. Zhai, X. Chen and S. Wang, Transition-Metal-Catalyzed Directed C-H Bond Functionalization with Iodonium Ylides: A Review of the Last 5 Years, *Molecules*, 2024, **29**, 3567–3594; (c) A. Yoshimura and V. V. Zhdankin, Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents, *Chem. Rev.*, 2024, **124**, 11108–11186; (d) Y. Jiang, P. Li, J. Zhao, B. Liu and X. Li, Iodonium Ylides as Carbene Precursors in Rh(III)-Catalyzed C-H Activation, *Org. Lett.*, 2020, **22**, 7475–7479; (e) Z. Dong, P. Li, X. Li and B. Liu, Rh(III)-Catalyzed Diverse C—H Functionalization of Iminopyridinium Ylides, *Chin. J. Chem.*, 2021, **39**, 2489–2494; (f) S. Mayakrishnan, M. Tamizmani and N. U. Maheswari, Harnessing hypervalent iodonium ylides as carbene precursors: C-H activation of N-methoxybenzamides with a Rh(III)-catalyst, *Chem. Commun.*, 2020, **56**, 15462–15465; (g) P. Xie, H. Gao, X. Li, Y. Jiang and B. Liu, Rh(III)-Catalyzed C-C coupling of unactivated C(sp³)-H bonds with iodonium ylides for accessing all-carbon quaternary centers, *Org. Chem. Front.*, 2022, **9**, 3823–3827; (h) J. Liang, J. Huang, Q. Yang, Y. Fu, Q. Ding and Y. Peng, Synthesis of dihydroindazolo[2,3-f]phenanthridin-5(6H)-ones via Rh(III)-catalyzed C-H activation of 2-aryl indazoles and annulation with iodonium ylides, *Green Chem.*, 2022, **24**, 8441–8446.

9 Selected examples: (a) J. Ren, C. Pi, X. Cui and Y. Wu, Transition Metal-Controlled Divergent Annulations of Azomethine Imines with Iodonium Ylides via C-Centred [1,2]-Rearrangement, *Org. Lett.*, 2023, **25**, 2582–2587; (b) X. Li, Y. Shen, G. Zhang, X. Zheng, Q. Zhao and Z. Song, Ru(II)-Catalyzed Decarbonylative Alkylation and Annulations of Benzaldehydes with Iodonium Ylides under Chelation Assistance, *Org. Lett.*, 2022, **24**, 5281–5286; (c) L. Yang, C. Pi, Y. Wu and X. Cui, Lewis Acid-Catalyzed [3 + 2]-Cyclization of Iodonium Ylides with Azadienes: Access to Spiro[benzofuran-2,2'-furan]-3-ones, *Org. Lett.*, 2022, **24**, 7502–7506; (d) Z. Yang, C. Liu, J. Lei, Y. Zhou, X. Gao and Y. Li, Rh(III)-catalyzed C-H/C-C bond annulation of enamines with iodonium ylides to form isocoumarins, *Chem. Commun.*, 2022, **58**, 13483–13486; (e) J. Ren, C. Pi, X. Cui and Y. Wu, Divergent C(sp²)-H arylation of heterocycles via organic photoredox catalysis, *Green Chem.*, 2022, **24**, 3017–3022; (f) L. R. Yuan, S. J. Ji and X. P. Xu, Coupling-Spirocyclization Cascade of Tryptamine-Derived Isocyanides with Iodonium Ylides and Despirocyclization Reactions, *Org. Lett.*, 2023, **25**, 7858–7862; (g) M. Zhang, L. Chen, H. Sun, Z. Liu, S. Yan and F. Yu, Rh(III)-Catalyzed [3 + 2] Annulation/Pinacol Rearrangement Reaction of Enamines with Iodonium Ylides: Direct Synthesis of 2-Spirocyclo-pyrrol-3-ones, *Org. Lett.*, 2023, **25**, 7214–7219; (h) S. Nunewar, S. Kumar, H. Pandhare, S. Nanduri and V. Kanchupalli, Rh(III)-Catalyzed Chemodivergent Annulations between Indoles and Iodonium Carbenes: A Rapid Access to Tricyclic and Tetracyclic N-Heterocycles, *Org. Lett.*, 2021, **23**, 4233–4238; (i) C. Wen, Y. Wang, Y. Yang, Y. Tian, J. Wang and S. Li, Hydrazone-oxime Selectively Directed Redox-Neutral [4 + 2] Annulations Cascade with Alkynes and Iodonium Ylides to Build 1,1'-Biisouquinoline Mono- N-oxides, *Org. Lett.*, 2023, **25**, 2616–2621.

10 G. Lv, Q. Zhang, C. Zhang, Y. Chen, Z. Lin, R. Lai, Z. Yang and Y. Wu, The Pyridotriazole Works as a Traceless Directing Group: A C-H Activation/Annulation Cascade Reaction with Iodonium Ylides, *Org. Lett.*, 2023, **25**, 4022–4027.

11 (a) H. Meng, H. Xu, Z. Zhou, Z. Tang, Y. Li, Y. Zhou, W. Yi and X. Wu, Recyclable rhodium-catalyzed C-H activation/[4 + 2] annulation with unconventional regioselectivity at ambient temperature: experimental development and mechanistic insight, *Green Chem.*, 2022, **24**, 7012–7021; (b) Y. Li, H. Xu, Z. Zhou, L. Huang, Z. Tang, W. Yi and X. Wu, An unusual four-step cascade reaction for accessing

furo[3,4-c]pyridine-1,4-diones *via* rhodium catalysis, *Org. Chem. Front.*, 2023, **10**, 4658–4664; (c) H. Wang, Y. Li, L. Huang, H. Xu, Y. Jiao, Z. Zhou, Z. Tang, F. Fang, X. Zhang, K. Ding, W. Yi, H. Liu, X. Wu and Y. Zhou, The synthesis of spirocyclopropane skeletons enabled by Rh(III)-catalyzed enantioselective C–H activation/[4 + 2] annulation, *Chem Catal.*, 2023, **3**, 100822; (d) Y. Wang, S. Shi, W. Zhang, Y. Nian and X. Wu, Rhodium-Catalyzed Diastereoselective C–H Activation/[4 + 2] Annulation of α,β -Unsaturated Amides with Bicyclic Alkenes, *Org. Lett.*, 2024, **26**, 483–487; (e) X. Liu, S. Shi, W. Ding, Z. He, Y. Shen, Y. Nian and X. Wu, Accessing 7,8-Dihydroquinoline-2,5-diones via Rh-Catalyzed Olefinic C–H Activation/[4 + 2] Cyclization, *Org.*

Lett., 2024, **26**, 5136–5140; (f) W. Ding, W. Hu, X. Chen, Y. Wang, X. Liu, W. Liu and X. Wu, Direct C–H difluoroallylation of α,β -unsaturated amides and aryl amides by rhodium catalysis, *Chem. Commun.*, 2024, **60**, 13036–13039; (g) T. Yu, W. Liu, B. Chen, Z. He, W. Ding, L. Xu, H. Liu, J. Li, Y. Zhou and X. Wu, Enantioselective Synthesis of Indole-Fused Polycycles Bearing Four Consecutive Stereocenters via Rhodium Catalysis, *Org. Lett.*, 2025, **27**, 1459–1464; (h) X. Liu, S. Zheng, Q. Ge, T. Cao, F. Zeng, F. Tian, Z. He, Z. Gao and X. Wu, Rhodium-Catalyzed C(sp²)-H Activation and [3 + 3] Annulation: Accessing Pyrano[3,2-c]chromene-2,5-diones as TASK-3 Activators, *J. Org. Chem.*, 2025, **90**, 4646–4651.

