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A general rhodium-catalyzed regioselective C–H
functionalization: accessing heteroarylated and
alkenylated arenes†
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Herein, an efficient and general rhodium-catalyzed C–H heteroarylation and alkenylation of pyridotria-

zoles and ortho-aryl heterocycles with iodonium ylides is reported. This strategy enables the synthesis of

a wide array of heteroarylated and alkenylated heterocycles and arenes under mild reaction conditions.

The triazole moiety in pyridotriazoles serves exclusively as an intrinsic directing group, showcasing distinct

reactivity compared to previous reports. In addition, this transformation accommodates various

N-containing heterocycles and oximes as directing groups, highlighting its versatility for heterocycles and

arenes functionalization. This protocol exhibits broad substrate scope, good functional group tolerance,

operational simplicity, air compatibility, and scalability with low catalyst loading. Moreover, a low kinetic

isotope effect value indicates C–H bond cleavage is unlikely to be the rate-determining factor.

Introduction

Nitrogen-containing heterocycles frequently appear in bio-
active compounds, natural products, and organic functional
materials.1 Thus, developing efficient methods for incorporat-
ing heterocyclic moieties would be beneficial and can rapidly
increase molecular complexity. C–H functionalization remains
a pivotal strategy in organic synthesis, offering a direct
pathway to diverse chemical architectures.2 In this context,
rhodium-catalyzed C–H activation has attracted considerable
interest for its capability to enable challenging transform-
ations in recent years.2,3

Over the past decade, pyridotriazoles have usually served as
a source of metal carbenoids in transition metal-catalyzed
denitrogenative transformations, facilitating the synthesis of

various molecules with N-heterocyclic moieties (Scheme 1a).4–7

Additionally, iodonium ylides, recognized for their stability
and reactivity, frequently serve as versatile carbene precursors
in C–H functionalization reactions.8,9 For instance, a Rh-cata-
lyzed C–H activation/annulation involving pyridotriazoles and

Scheme 1 Rh-catalyzed C–H functionalization of pyridotriazoles and
ortho-aryl heterocycles.
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iodonium ylides was developed recently, where the triazole
component of pyridotriazoles serves both as a directing group
and a carbene precursor.10

Inspired by previous studies4–10 and driven by our continu-
ous pursuit of novel drug-like heterocyclic compounds,11 we
herein develop an efficient and mild rhodium-catalyzed C–H
heteroarylation and alkenylation of pyridotriazoles and ortho-
aryl heterocycles with iodonium ylides, accessing various het-
eroarylated and alkenylated arenes (Scheme 1b). Notably, the
triazole moiety in pyridotriazoles acts exclusively as an intrin-
sic directing group, displaying a different chemical reactivity
compared to previous reports.4–7,10 In addition, various
N-containing heterocycles and oximes as directing groups are
also compatible in this reaction, indicating the potential for
general heteroarylation and alkenylation of arenes.

Results and discussion

An optimization study was conducted using pyridotriazole 1a
and 3-(phenyl-λ3-iodaneylidene)chromane-2,4-dione 2a as sub-
strates. Initially, various metal catalysts were tested with
NaOAc as an additive in TFE solvent (Table 1, entries 1–6). The
results showed that Cp*Co(CO)I2, [RuCl2(p-cymene)]2, Pd
(OAc)2, Rh2(esp)2, and Rh2(OAc)4 did not facilitate the reaction.
In contrast, [Cp*RhCl2]2 exhibited moderate catalytic activity,
yielding the desired product 3a in 39%. Next, a range of addi-
tives, including KOAc, CsOAc, Zn(OAc)2, and NaHCO3, were
evaluated. Zn(OAc)2 proved to be the most effective, providing

the highest yield of 3a (89%) in both HFIP (entry 9) and TFE
(entry 13) when used with [Cp*RhCl2]2. The solvent effect was
also examined using 1,4-dioxane, MeOH, THF, and DCM
(entries 11–15). These solvents delivered significantly lower
yields, with some reactions resulting in no product or only
trace amounts. In addition, when Na2CO3 and Zn(OTf)2 was
used instead of Zn(OAc)2, only a trace amount of 3a was
obtained (entries 16 and 17). HFIP and TFE consistently out-
performed other solvents, delivering the highest yields. The
optimal reaction conditions were determined to be
[Cp*RhCl2]2 as the catalyst, Zn(OAc)2 as the additive, and
either HFIP or TFE as the solvent, achieving an impressive
yield of 89% under air at room temperature.

With optimal conditions established, the substrate scope of
pyridotriazoles, ortho-aryl heterocycles, and iodonium ylides
under rhodium catalysis was then investigated (Scheme 2).
First, pyridotriazoles with methyl (3b) and methoxy (3c) on the
phenyl ring delivered excellent yields, indicating enhanced
reactivity. Additionally, electron-withdrawing groups, such as
fluoro (3d, 3k) and chloro (3e), produced slightly lower yields
but demonstrated good compatibility. Electron-withdrawing
groups at the phenyl ring like trifluoromethyl (3h) maintained
high efficiency, whereas cyano (3i) slightly reduced the yield,
likely due to its strong electron-withdrawing nature. Bulky sub-
stituent, tert-butyl (3g), showed minimal steric effect on the
reaction outcome. Regarding heterocyclic directing groups,
nitrogen-containing heterocycles, such as quinoline (3l), pyri-
dine (3m), pyrimidine (3n), pyrazole (3o), benzoxazole (3r),
and oxazoline (3s) exhibited good to excellent yields. Besides,
1-(2yridine-2-yl)-1H-indole and 1-(pyrimidin-2-yl)-1H-indole
also performed well, affording the corresponding products 3p
and 3q smoothly. In addition, replacing the directing group
with a phthalazine-1,4-dione, pyridazine-3,6-dione, or
O-methyl oxime moiety still enabled the reaction to proceed
smoothly, affording the corresponding products 3t–3v. The
results demonstrate the broad applicability of the Rh(III)-cata-
lyzed system across a wide range of functional groups and
N-containing heterocyclic directing groups, underscoring the
potential for diverse functionalization.

The substrate scope of iodonium ylides with pyridotriazole
was subsequently explored. Halogen substituents on the cou-
marin ring, such as fluoro (3w), bromo (3x), and chloro (3y),
exhibited a trend of increasing yields with larger halogens.
Electron-donating groups, including methyl (3z, 3zb) and
methoxy (3za, 3zd), produced excellent yields, underscoring
their positive influence on reactivity. Similarly, the electron-
withdrawing fluoro group (3zc) maintained high efficiency,
demonstrating the reaction’s broad tolerance to various func-
tional groups. When the coumarin ring was replaced with
other heteroaryl rings, such as 4-hydroxy-1-methylquinolinone,
4-hydroxy-thiochromenone, 4-hydroxy-6-methyl-pyranone,
6-hydroxy-2-phenylpyrimidinone, and 4-hydroxy-2H-pyrido[1,2-
a]pyrimidinone, the desired products (3ze–3zi) were obtained
smoothly, showcasing excellent compatibility with diverse
heterocyclic frameworks. Additionally, aliphatic rings such as
cyclohexane-1,3-dione and 5,5-dimethylcyclohexane-1,3-dione

Table 1 Optimization of reaction conditionsa

Entry Catalyst Additive Solvent Yieldb

1 Cp*Co(CO)I2 NaOAc TFE NR
2 [RuCl2(p-cymene)]2 NaOAc TFE NR
3 Pd(OAc)2 NaOAc TFE NR
4 [Cp*RhCl2]2 NaOAc TFE 39%
5 Rh2(OAc)4 NaOAc TFE NR
6 Rh2(esp)2 NaOAc TFE NR
7 [Cp*RhCl2]2 KOAc HFIP 31%
8 [Cp*RhCl2]2 CsOAc HFIP 31%
9 [Cp*RhCl2]2 Zn(OAc)2 HFIP 89%
10 [Cp*RhCl2]2 NaHCO3 HFIP NR
11 [Cp*RhCl2]2 Zn(OAc)2 Dioxane NR
12 [Cp*RhCl2]2 Zn(OAc)2 MeOH 19%
13 [Cp*RhCl2]2 Zn(OAc)2 TFE 89%
14 [Cp*RhCl2]2 Zn(OAc)2 THF Trace
15 [Cp*RhCl2]2 Zn(OAc)2 DCM 33%
16 [Cp*RhCl2]2 Na2CO3 HFIP Trace
17 [Cp*RhCl2]2 Zn(OTf)2 HFIP Trace

a Reaction conditions: 1a (0.2 mmol), 2a (0.24 mmol), catalyst
(5 mol%), additive (0.2 mmol), under air, room temperature, solvent
(2.0 mL), 12 h. b Isolated yield. NR = no reaction.
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(3zj, 3zk) also worked. Moreover, the reaction does not tolerate
non-cyclic iodonium ylides, Dess–Martin periodinane, Togni
Reagent II, or (diacetoxyiodo)benzene. Overall, this method-
ology demonstrates good functional group tolerance, compat-
ibility with diverse heterocyclic moieties and high efficiency. It
efficiently delivers structurally complex products across diverse
frameworks, including phenyl, heteroaryl, and aliphatic rings,
emphasizing its potential for versatile functionalization.

In addition, scale-up synthesis and subsequent transform-
ation experiments were carried out to demonstrate the practi-
cality and versatility of the developed methodology (Scheme 3).
For the scale-up synthesis, pyridotriazole 1a was treated with
2a in HFIP at room temperature for 12 hours, affording com-
pound 3a in 85% yield when 2.0 mol% [Cp*RhCl2]2 was used.
Furthermore, when the reaction was conducted with 1.0 mol%
[Cp*RhCl2]2, compound 3m was obtained in 79% yield, high-

lighting the scalability and efficiency of the reaction. In the
transformation assays, 3a underwent etherification with iodo-
cyclopentane in the presence of K2CO3 in CH3CN to afford 4a
(62%). Additionally, further functionalization of 3a was
achieved via C–H activation using [Cp*RhCl2]2 and NaOAc with
diphenylacetylene in TFE at 60 °C, providing 4b in good yield.
These results underscore the synthetic utility of these reac-
tions, enabling the efficient generation of structurally diverse
compounds and expanding its applicability for further
functionalization.

In the deuterium incorporation experiments (Scheme 4a),
reactions were conducted in a mixture of HFIP and CD3OD
(1 : 1) with [Cp*RhCl2]2. The resulting products, 1a-Dn and 3a-
Dn, showed negligible deuterium incorporation (<5% D). In
the KIE study (Scheme 4b), parallel reactions of 1a and fully
deuterated 1a-D5 with 2a under standard conditions yielded 3a

Scheme 2 Reaction conditions: 1 (0.2 mmol), 2 (0.24 mmol), [Cp*RhCl2]2 (5.0 mol%), Zn(OAc)2 (0.2 mmol), under air, HFIP (2.0 mL), rt, 12 h; isolated
yields are reported. a[Cp*RhCl2]2 (3.0 mol%), AgSbF6 (0.3 equiv.), under air, TFE (2.0 mL), rt, 12 h.
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and 3a-D4, respectively. The calculated KIE value of 1.62,
derived from the relative reaction rates (kH/kD), suggests a mod-
erate isotopic influence on the reaction mechanism.

Based on preliminary mechanistic studies and existing
literatures,8,10 the proposed catalytic cycle illustrates the trans-
formation of substrate 1a into product 3a using the rhodium
catalyst [Cp*RhCl2]2 in the presence of iodonium ylide 2a and
Zn(OAc)2 (Scheme 4c). The cycle begins with the activation of
the rhodium catalyst to generate the active catalytic species
Cp*Rh(OAc)2. This species undergoes C–H bond activation
with 1a, forming the rhodium–arene complex A while releasing
acetic acid. Subsequently, compound 2a reacts with intermedi-
ate A to generate the rhodium-carbenoid intermediate B. This
intermediate then undergoes migratory insertion, forming
intermediate C. Finally, protonolysis of C with acetic acid
releases the desired product 3a, while regenerating the active
rhodium catalyst to close the cycle. This process elegantly inte-
grates C–H activation and carbene transfer, enabling efficient
and selective product formation.

Conclusions

In summary, we present an efficient and general rhodium-cata-
lyzed methodology for the C–H heteroarylation and alkenyla-
tion of pyridotriazoles and ortho-aryl heterocycles using iodo-
nium ylides as coupling partners. This approach unlocks
access to a broad range of heteroarylated and alkenylated het-
erocycles and arenes under mild conditions. Notably, the tri-
azole moiety in pyridotriazoles functions exclusively as an
intrinsic directing group, exhibiting distinct chemical reactiv-
ity compared to prior studies. The scope of this transformation
is further demonstrated by its compatibility with diverse
N-containing heterocycles, including quinoline, pyridine, pyri-
midine, pyrazole, benzoxazole, oxazoline, phthalazine-1,4-
dione, pyridazine-3,6-dione, and O-methyl oxime moiety, high-
lighting the methodology’s adaptability for ortho-aryl hetero-
cycle functionalization. Good functional group tolerance, oper-
ational simplicity, air compatibility, and scalability with low
catalyst loading are also demonstrated. In addition, the low
KIE value indicates the C–H bond cleavage is unlikely to be the
rate-determining step.
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Scheme 3 Scale-up synthesis and transformation.

Scheme 4 Mechanism study.
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