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[2.2]Paracyclophane-substituted quinolines by
skeletal editing strategies†

Tilman Köhler, a Olaf Fuhr b and Stefan Bräse *a,c

The synthesis of 2- and 3-substituted [2.2]paracyclophanyl quinolines using two distinct skeletal editing

strategies is described. The first approach relies on indole ring expansion and furnishes 3-aryl quinolines

with the paracyclophanyl substituent in the 2-position. In contrast, the second uses a paracyclophane-

derived carbene precursor and delivers the complementary 3-[2.2]paracyclophanyl quinolines, highlight-

ing skeletal editing as a powerful tool for advancing the synthetic chemistry of [2.2]paracyclophanes.

Introduction

[2.2]Paracyclophane (PCP) 1 ranks among the most versatile
organic scaffolds, owing to its unique electronic properties
and the inherent planar chirality of monosubstituted
derivatives.1–4 While incorporating heteroaromatic residues
into the PCP scaffold has traditionally been challenging due to
its unusual chemical reactivity, heterocyclic [2.2]paracyclo-
phanes have been known since the 1960s.5–7 Today, a broad
spectrum of these derivatives is synthetically accessible,
encompassing compounds where the heterocycle is directly
attached to the PCP core or fused to the aromatic rings or ali-
phatic bridges.8 The motivation for this research arises from
the potential to introduce planar chirality to the heterocycles,
as this feature has been repeatedly shown to impart a diverse
array of biological activities. For instance, indoloparacyclo-
phanes demonstrated highly selective aryl bioisosteric activity
as D4 receptor ligands, while [2.2]paracyclophanyl thiazole
conjugates exhibit promising anticancer properties.9–13

Moreover, such compounds are frequently employed as chiral
ligands in stereoselective synthesis.14–16 As a result, there is
substantial ongoing interest in developing novel synthetic
methodologies for heterocyclic [2.2]paracyclophanes.17,18

Skeletal editing is the precise manipulation of the mole-
cular framework, achieved through the insertion, deletion, or

replacement of single atoms via highly selective
transformations.19–21 Although still an emerging field, it could
significantly impact organic synthesis by streamlining syn-
thetic pathways and enabling the rapid diversification of core
structures, all while circumventing the need for costly and
labor-intensive de novo synthesis. Among the available tech-
niques, the development of the Ciamician-Dennsted chemistry
for the synthesis of quinolines through indolocyclopropane
rearrangement has recently undergone substantial advance-
ments in substrate compatibility, rendering it a very powerful
synthetic tool. The current state of the indole ring-expansion
involves the use of various types of carbene precursors, such as
chloroform, arylchlorodiazirines, α-halodiazoacetates, dibro-
mofluoromethanes, and hydrazone-derived diazo compounds
with reactions proceeding either catalyzed or uncatalyzed.22–28

A review of existing heterocyclic [2.2]paracyclophane com-
pounds highlights the lack of straightforward synthetic routes
to PCP-substituted quinolines. To our knowledge, only Minuti
et al. have described the synthesis of a furoquinoline and qui-
nolinyl cyclophane via a complex synthetic approach, while
Kryvenko et al. have reported the formation of a 4-[2.2]paracy-
clophanyl benzoquinoline as a by-product obtained in very low
yield.29,30 Inspired by the advances in skeletal editing method-
ology, we explored these strategies for the synthesis of novel
[2.2]paracyclophane quinoline derivatives. We hypothesized
that the newly developed indole ring-expansion techniques
could provide a convenient route to 2- and 3-paracyclophane-
substituted quinolines and enable the rapid diversification of
the target structures (Scheme 1).

Results and discussion

Our approach toward the synthesis of (rac)-2-[2.2]paracyclopha-
nylquinolines relied on a three-step synthetic sequence com-
prising the synthesis of the paracyclophane indoles 4a–4d
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through Bischler–Möhlau reaction, as reported by Kryvenko
et al. and Thennakoon et al., followed by indole ring-expansion
using arylchlorodiazirines as carbene precursors.29,31 Among
the numerous protocols for indole ring expansion, the method
developed by the Levin group was deemed particularly promis-
ing due to its mild thermolytic conditions, requiring only
simple heating at 50 °C for carbene generation, which was
assumed to be compatible with the challenging [2.2]paracyclo-
phane substrates as well as the tolerance for the 2-indole sub-
stitution motif (see ESI for mechanistic rationale†).

Using this approach, 4-bromoacetyl [2.2]paracyclophane (3)
was obtained in varying yields, with a maximum of 72% on a
400 mg scale. However, on a gram scale, moderate yields of
around 40% were consistently achieved, with unreacted [2.2]
paracyclophane constituting the remainder of the material.
Subsequently, electron-rich indoles 4a–4d were synthesized in
good to moderate yields, whereas attempts to prepare an elec-
tron-deficient PCP-indole using 4-(trifluoromethyl)aniline were
unsuccessful. Single crystals of indole 4a suitable for X-ray
diffraction analysis were obtained through slow evaporation of
a chloroform solution, unambiguously confirming the target
structure. Thus, several examples of electron-rich substrates
with varying steric profiles and substitution patterns were
available (Scheme 2). With these compounds in hand, we pro-
ceeded to evaluate the ring expansion of PCP-indoles using
arylchlorodiazirines as carbene precursors. To our delight, the
desired [2.2]paracyclophanyl quinoline product 5a was
obtained in 51% yield under initial testing conditions, employ-
ing acetonitrile as a solvent and sodium carbonate as a base.
However, further optimization of reaction conditions consist-
ently resulted in diminished yields (see ESI†). Single-crystal
X-ray analysis of product 5a unequivocally confirmed its mole-
cular structure (Scheme 3).

The diversification of the quinoline target compounds was
readily achieved by varying the combinations of arylchlorodia-
zirines and PCP-based indoles, enabling the synthesis of a
library comprising 25 novel PCP-quinoline candidates. When
exploring the scope of the transformation, it was observed that

the sterically more demanding indole substrates 4b–4d con-
sistently produced lower yields than the unsubstituted deriva-
tive 4a. Similarly, and consistent with earlier reports,23,24 the
electronic properties of the arylchlorodiazirines played a sig-
nificant role. Strongly electron-deficient and electron-rich dia-
zirines, as in the cases of quinolines 6h and 6i, resulted in
lower yields. In contrast, haloquinolines 5b–5h, 6b–6g, and
8a–8c were obtained in relatively good yields around 50%.
Highly electron-rich 4-methoxyphenylchlorodiazirine failed to
yield any product, underscoring the need for a careful balance
of electronic effects in diazirine selection. Different substi-
tution patterns on the diazirine were generally well tolerated.
para- and meta-Substitution produced reasonable yields between
40% and 52%, though meta-substitution often resulted in
slightly reduced yields possibly due to increased steric hin-
drance. For ortho-substituted quinoline 5h, a diastereomeric
mixture of rotamers in a 5 : 4 ratio was isolated in 63% yield,
confirmed through high-temperature NMR analysis (see ESI†).
The incorporation of heteroaryl diazirines proved more challen-
ging. Only 2-pyridyl diazirine produced its corresponding quino-
line 5k, but five equivalents were required instead of the stan-
dard three. To evlauate the influence of the paracyclophanyl
substituent, we performed the ring expansion of 2-(o-tolyl)-1H-
indole with 4-bromo-1H-chlorodiazirine. The corresponding qui-
noline product was obtained in a comparable 51% yield, indicat-
ing that the transformation generally achieves moderate yields
with ortho-substituted 2-aryl indoles. The structures of the pro-
ducts were elucidated by spectral analysis, including NMR spec-
troscopy and mass spectrometry. Additionally, well-defined crys-
tals of quinolines 5b, 6b, and 6h were obtained through layering
techniques, allowing for definitive structural characterization
through single-crystal X-ray analysis (Scheme 3).

Having established a convenient access to 2-paracyclo-
phane-substituted quinolines, we envisioned that a comp-

Scheme 1 PCP-quinoline synthesis via two distinct skeletal editing
strategies.

Scheme 2 Synthesis of PCP-indoles 4a–4d through Bischler–Möhlau
reaction.
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lementary strategy using a PCP-based carbene species could
provide a straightforward route to the 3-substitution motif.
However, aside from the PCP-diazo compound 11,31 no suit-
able PCP-carbene precursor candidates are available in the lit-
erature. Moreover, due to the inherent instability of donor-
diazo compounds, attempts to directly employ PCP-diazo 11 in
synthetic transformations were unsuccessful. However, the
well-established strategy of in situ generation of diazo com-
pounds from a suitable diazo surrogate appeared promising
for addressing this issue.28,32–35

Therefore, we aimed to synthesize the PCP-triftosyl hydra-
zone 10, which can release the corresponding PCP-diazo com-
pound 10 upon reaction with sodium hydride base. The trifto-
syl group is easily introduced to unsubstituted PCP 1 via a two-
step synthetic route, including formylation followed by con-
densation with triftosyl hydrazine, performed on a gram scale
without chromatographic purification (Scheme 4).

Subjecting the PCP-triftosyl hydrazone 10 to initial testing
conditions employing silver(I) triflate as a catalyst, sodium
hydride base, and TBS-protected indole 12a resulted in the
desired 3-quinoline 13a, but only in 12% isolated yield.
Through optimization of the reaction conditions, moderate to
good yields were achieved. Notably, the key to the successful

Scheme 3 Scope of 2-[2.2]paracyclophanyl-3-arylquinolines.

Scheme 4 Synthesis of PCP-triftosyl hydrazone 10.

Table 1 Optimization of the Ciamician-Dennstedt reaction employing
a PCP-derived carbenea

Catalyst/solvent Yield of 13ac (%)

1 AgOTf 18(12)
2 AgTp(CF3)2(THF) 18
3 Rh(OAc)2 15
4 Rh2(esp)2 84(80)
5 Rh2(S-DOSP)4 70
6 Rh2(S-PTAD)4 66
7 Rh2(S-TCPTAD)4 92
8 Rh2(S-BTPCP)4 4
9 Dirhodium(II) tetrakis(caprolactam) n.d.
10 Rh(III)Cl2Cp* n.d.
11 FeTPPCl n.d.
12 DCMb 76
13 DCEb 70
14 THFb 10
15 Dioxaneb 52

a Reaction conditions: 10 (0.06 mmol) and 12a (2.00 equiv.) with silver
catalyst (20 mol%) or rhodium catalyst (5 mol%), NaH (2.00 equiv.)
and PhCF3 or specified solvent (1 mL) at 60 °C for 16 h. bWith
Rh2(esp)2 catalyst at reflux temperature. c 19F NMR yield. Isolated yield
in parentheses.
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transformation was the switch from the silver-catalyzed system
to rhodium catalysis. With the optimized conditions, quino-
line 13a was obtained in 80% yield, and X-ray diffraction dis-
tinctly confirmed the molecular structure. Furthermore, a
concise scope of haloquinolines 13b–13h and quinoline 13e
was synthesized, achieving moderate to high yields ranging
from 62% to 80%. Although not explored in this work, enantio-
merically pure 3-[2.2]paracyclophanyl quinolines could, in
principle, be accessed through chiral resolution of the PCP-
aldehyde 9. Importantly, to our knowledge, this work rep-
resents the first reported application of a PCP-derived carbene
species in an intermolecular transformation (Table 1,
Scheme 5 and see ESI for mechanistic ratio†).

Conclusions

In conclusion, we achieved the facile synthesis of 2- and 3-sub-
stituted [2.2]paracyclophanyl quinolines using two distinct
skeletal editing strategies. This work highlights the potential
of skeletal editing in [2.2]paracyclophane chemistry, enabling
broader functional diversification and unlocking access to
novel compound classes that hold promise for applications in
materials science, catalysis, and, due to their biological
activity, in medicinal research. Additionally, the PCP-triftosyl
hydrazone 10 exhibits broad synthetic utility, which is cur-
rently under investigation.

Data availability

The data that support the findings of this publication are avail-
able in the repository Chemotion (https://www.chemotion-
repository.net). All DOIs minted for the data are linked to the
specific experiments in this section and a summary of all new
data obtained in this publication can be gained with the col-
lection https://doi.org/10.14272/collection/TIK_2024-02-02.36

The data supporting this article have been also included as
part of the ESI.†

Crystallographic data for compounds 4, 4a, 4b, 5b, 5h, 13a,
and 13e reported in this paper have been deposited with the
Cambridge Crystallographic Data Centre as ESI no. CCDC
2422599–2422605.†
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