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Copper-catalyzed aryl ortho-C–H thiolation of
aldehydes via a transient directing group strategy†
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Transition metal-catalyzed C–H functionalization represents a robust method for the synthesis of aryl

sulfides. The current reactions primarily rely on the use of preinstalled directing groups, which limits their

practical applications. Herein, we report the first example of transient directing group-enabled C–H thio-

lation. Using an aminobenzoic acid as catalyst, aryl aldehydes form the transient imine directing groups

and undergo copper-catalyzed aryl ortho-C–H thiolation. The reactions feature a broad substrate scope,

facilitating easy access to a diverse range of aryl sulfides. Furthermore, the synthetic utilities of these reac-

tions have been demonstrated by their applications to key intermdediates relevant to the synthesis of drug

and bioactive molecule.

Aryl sulfides are important structural motifs that are ubiqui-
tous in pharmaceutical drugs and bioactive molecules,
exhibiting various bioactivities as therapeutic compounds.1

Furthermore, aryl sulfides have significant applications in
functional organic materials, as the introduction of sulfur into
organic molecules profoundly affects their physical and elec-
tronic properties (Scheme 1a).2 Consequently, the development
of new methods for the synthesis of aryl sulfides has been the
subject of extensive research.3 Traditional methods for synthe-
sizing aryl sulfides primarily rely on the direct cross-coupling
of prefunctionalized arene substrates, such as aryl halides,4

and on electrophilic modifications of electron-rich aromatic
compounds.5

In recent years, transition metal-catalyzed C–H functionali-
zation has emerged as a robust tool for the construction of aryl
C–S bonds.6 C–H functionalization eliminates the need for pre-
functionalized substrates, offering significant advantages in
terms of step- and atom-economy compared to traditional syn-
thetic methods that rely on the transformation of functional
groups. Currently, a variety of C–H thiolation reactions have
been developed.7 However, these reactions primarily depend
on the use of directing groups that need additional steps for
installation and removal (Scheme 1b). Since Jun and Yu devel-
oped reactions for aldehydic C–H and aliphatic C(sp3)–H
functionalization,8 the transient directing group (TDG) strategy
has gained significant attention and made considerable
advancements over the past few decades.9 In this strategy, an

imine is typically formed in situ to act as the direcitng group
that promotes C–H activation10 Despite this progress, C–H
thiolation via the transient directing group strategy still
remains underdeveloped. It is important to note that two
major potential obstacles must be overcome to develop such
reactions: (1) catalyst poisoning by strongly coordinating sulfur
atoms4c,6d and (2) the tendency of sulfides to undergo oxi-
dation.11 Furthermore, as strong nucleophiles, thiols could
react with aldehydes and consequently hinder the formation
of transient directing groups.

On the other hand, the majority of TDG-assisted C–H func-
tional reactions involve noble metals such as Pd, Rh, Ru, and

Scheme 1 C–H thiolation of aldehydes via a transient directing group
strategy.
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Ir, which limits their practical applicability. In contrast to
noble metals, the abundant and cost-effective first-row tran-
sition metals offer significant advantages as catalysts.
Recently, the development of C–H functionalization method-
ologies using first-row transition metals, such as Fe, Co, Ni,
and Cu,12 has become a major research focus. Most current
first-row transition metal-enabled C–H activation reactions rely
on strong-coordinating groups, particularly bidentate directing
groups, while C–H activation reactions employing TDG strat-
egies remain scarce.13 Among the first-row transition metals,
copper is particularly attractive as the catalyst due to its abun-
dance, cost-effectiveness, and versatile reactivity. Pioneered by
the work of Yu and Chatani,14 copper-catalyzed/mediated oxi-
dative C–H functionalization has gained significant attention
and a number of reactions have been developed.7a,15 Most of
copper-mediated reactions are also enabled by strong-coordi-
nating groups, and transient directing group-enabled reactions
had not been achieved until the Bull group reported elegant
examples very recently.16 It is significant to develop new
copper-catalyzed C–H activation reactions via a transient
directing group strategy, particularly in the establishment of
new protocols.

Herein, we present an ortho-C–H thiolation reaction of
aldehydes utilizing a transient directing group strategy
(Scheme 1c). The reaction represents the first example of C–H
thiolation via a transient directing group strategy and are
among the rare instances of transition directing group-enabled
C–H functionalization using first-row transition metals. The
practical applications of the C–H thiolation reaction have been
demonstrated.

We first studied copper-catalyzed C–H thiolation of benzal-
dehydes, and the study commenced with an extensive screen-
ing of transient directing groups using 2-methylbenzaldehyde
(1a) and dimethyl disulfide (2a) as model substrates (Table 1).
While glycine (TDG1) failed to facilitate the thiolation reaction,
the desired thiolated product 3a was obtained in a 22% yield
using a β-amino acid (TDG2) in the presence of 50 mol% Cu
(OAc)2 and 2 equivalents of TMSOAc in DMSO. The yield
improved to 37% with the use of 2-aminobenzoic acid (TDG3).
Considering that the electronic properties of the amino group
may influence the formation of the imine and its coordination
with the copper catalyst, we investigated 2-aminobenzoic acids
bearing various substituents. An electron-donating methyl
group enhanced the yield (TDG4), while an electron-withdraw-
ing trifluoromethyl group resulted in a lower yield (TDG5).
Notably, the yield dramatically increased to 69% with the use
of 2-aminobenzoic acid containing a fluoro group (TDG6).
However, the presence of two fluoro groups led to a decrease
in yield (TDG7). These results suggest that the electronic pro-
perties of 2-aminobenzoic acids significantly impact the thiola-
tion reaction. Additionally, 2-aminobenzoate proved to be an
effective catalyst, albeit in a lower yield (TDG8).

Control experiments were conducted to clarify the role of
each reagent and further improve the yield. The reaction did
not yield the thiolated product when AcOH was used instead
of TMSOAc (entry 2). A low yield was observed when the reac-

tion was performed in HFIP (entry 3), which is often employed
as a solvent in transient imine-directed C–H activation. As
anticipated, the reaction did not proceed in the absence of
either Cu(OAc)2 or TDG6 (entries 4 and 5). Decreasing the
amounts of Cu catalyst, TDG6, or TMSOAc led to diminished
yields to varying degrees (entries 6–8). Additionally, a lower
yield was obtained when the reaction time was reduced or
when the reaction was conducted at 120 °C (entries 9 and 10).
Interestingly, the concentration of the reaction mixture signifi-
cantly influenced the catalytic activity of copper. Reducing the
concentration increased the yield to 75%, but further dilution
resulted in a decreased yield (entry 11). Finally, although the
addition of CuF2 slightly improved the yield (entry 12), we
opted not to pursue this option due to economic and practical
considerations. Thus, the optimized reaction conditions were
established as follows: Cu(OAc)2 (50 mol%), TDG6 (40 mol%),
TMSOAc (2 equivalents) in DMSO at 130 °C. It is worth noting
that compound 1a was recovered in 22% yield under the
optimal conditions (entry 11), indicating that the conversion
of 1a is essentially equivalent to the yield.

With the optimal reaction conditions established, the sub-
strate scope of the C(sp2)–H thiolation reaction was explored.
The performance of disulfides was investigated first. As shown
in Table 2, alkyl disulfides containing a bulky cyclohexyl group
or an easily removable benzyl group yielded thiolated products

Table 1 Optimization of reaction conditions for the thiolation of
aldehydesa,b

Entry Variations Yieldb (%)

1 None 69
2 With AcOH (2 equiv.) instead of TMSOAc NR
3 HFIP instead of DMSO 13
4 w/o Cu(OAc)2 NR
5 w/o TDG6 NR
6 Cu(OAc)2 (25 mol%) 34
7 TDG6 (20 mol%) 10
8 TMSOAc (1 equiv.) 41
9 18 h 63
10 120 °C 40
11 DMSO (3 mL) 75c(71d), 49e

12 With CuF2 (2 equiv.) 78

a Reaction conditions: 1a (0.2 mmol), 2a (0.2 mmol), Cu(OAc)2
(50 mol%), TDG (40 mol%), TMSOAc (2 equiv.), DMSO (2 mL), 130 °C,
24 h, N2.

bDetermined by 1H NMR analysis using CH2Br2 as an
internal standard. c 1a was recovered in a yield of 22%. d Isolated
yields. eDMSO (4 mL). NR: no reaction.
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in moderate yields (3ab–3ac). A diverse range of diaryl disul-
fides, featuring various functionalities at the para positions of
the benzene rings, including electron-donating (Me, tert-Bu,
and OMe) and electron-withdrawing (CF3 and F) groups,
underwent the thiolation reaction effectively (3ae–3ai).
Functionalities such as chloro, ester, nitro, and phenyl groups
were well-tolerated, resulting in the desired products being
obtained in moderate to high yields (3aj–3am). Notably, the
method enabled the gram-scale synthesis of compound 3ae,
achieving a yield of 64%. Both electron-donating methoxy
group and electron-withdrawing fluoro group at the meta or
ortho positions were compatible (3an–3aq). Additionally, disul-
fides containing disubstituted phenyl or naphthyl groups were
also suitable substrates (3ar and 3as)

The performance of aryl aldehydes was also investigated
using 2a as the thiolating reagent. A range of electronically
and sterically diverse aldehydes were effectively compatible
(3ba–3ia), including electron-donating groups such as OMe
and electron-withdrawing groups like OCF3, CF3 and F. A
methylthio, phenyl, and even thiophenyl group were also com-

patible. However, for benzaldehyde, which lacks an ortho sub-
stituent, the yield was low (3ga). The reactions of meta- and
para-substituted benzaldehydes were also examined, with a
range of functionalities being well-tolerated (3ja–3oa). It is
noteworthy that dithiolated products were formed for some
meta-substituted aldehydes (3ja and 3la) and for para-substi-
tuted benzaldehydes (3na and 3oa). In the case of 1-naphthal-
dehyde, thiolation occurred not only at the ortho position but
also at the 8 position, yielding mono- and dithiolated products
in a 1 : 1 ratio (3pa). Importantly, heterocyclic aldehydes,
including indole-, benzofuran-, and benzothiophene-2-carbal-
dehydes, also successfully underwent the thiolation reaction
(3qa–3sa). It should be mentioned that meta- or para-functio-
nalized benzaldehyde products were not observed in all
reactions.

To demonstrate the synthetic utility of the C–H thiolation
reactions, we investigated the transformation of the thiolated
products. As exhibited in Scheme 2a, the aldehyde group in
3ae can be reduced or undergo reductive amination to yield
products 4 and 5, respectively. Additionally, 3ae can undergo
TiCl4-mediated cyclization followed by reduction,17 resulting

Table 2 Substrate scope of the thiolation of aldehydes.a,b

a Reaction conditions: 1 (0.2 mmol), 2 (0.2 mmol), Cu(OAc)2
(50 mol%), TDG (40 mol%), TMSOAc (2 equiv.), DMSO (3 mL), 130 °C,
24 h, N2.

b Isolated yield. cGram scale reaction. dOverall yield of mono-
and dithiolated products. eCu(OAc)2 (1.5 equiv.).

Scheme 2 Product transformations. [a] NaBH4 (2 equiv.), MeOH, 0 °C–
r.t., 2 h. [b] NaBH3CN (2.0 equiv.), morpholine (2 equiv.), MeOH, 0 °C–r.
t., 2 h. [c] TiCl4 (4 equiv.), DCM, r.t. 24 h, then Et3SiH (4 equiv.), 12 h, r.t..
[d] Oxone (3 equiv.), THF/H2O (1 : 1), r.t., 3 h. [e] 1, TiCl4 (4 equiv.), DCM,
r.t. 24 h, then H5IO6 (1.75 equiv.), CrO3 (2.5 mol%), 30 min, r.t.. [f ]
N2H4·H2O (8 equiv.), KOH (6 equiv.), DME,140 °C.
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in the formation of compound 6 as the final product. This
reaction provides a straightforward strategy for the synthesis of
9H-thioxanthene. Furthermore, the sulfide group can be oxi-
dized to a sulfone group (7). These products may find appli-
cations in agrochemicals and pharmaceuticals.4d

We also explored the practical applications of the C–H thio-
lation reactions in the synthesis of drug and bioactive mole-
cules (Scheme 2b). Notably, compound 9, a key intermediate
in the synthesis of flupentixol,18 can be readily synthesized
through the thiolation of benzaldehyde 8 followed by sub-
sequent cyclization. Flupentixol is a clinically approved thiox-
anthene-based neuroleptic used in the treatment of schizo-
phrenia and depression.19 Additionally, the C–H thiolation
reaction facilitates easy access to compound 11, which can be
transformed into Vortioxetine, a serotonin modulator and
antidepressant.20

To gain insights into the mechanism of the C–H thiolation
reactions, we conducted mechanistic studies. As illustrated in
Scheme 3, isotope-labeling experiments were first carried out.
In the presence of D2O, when substrate 1a was subjected to the
otherwise standard conditions, D/H exchange occurred at the
ortho positions of the recovered aldehyde, resulting in 12% D
incorporation (Scheme 3a). Additionally, kinetic isotope effect

(KIE) experiments indicate that C–H bond cleavage may be not
the rate-determining step in the C–H thiolation reaction of
aldehydes, with a KIE value of 1.56 (Scheme 3b). The presence
of radical traps such as TEMPO or BHT completely suppressed
the thiolation reaction (Scheme 3c), suggesting that radical
species may be involved. Furthermore, a competition experi-
ment involving an equimolar mixture of 1j and 1k was con-
ducted to assess the electronic preferences of the reaction. The
resulting 2 : 1 ratio of products 3ja and 3ka indicated that the
electron-rich benzaldehyde (1j) exhibited higher reactivity
(Scheme 3d). Additionally, substituting the thiolating agent
with 4-methylbenzenethiol (2e′) also produced the corres-
ponding thiolated products, as well as disulfide 2e
(Scheme 3e). This outcome suggests that interconversion
between thiols and disulfides may occur during the reaction
and could be involved in the catalytic cycle.7g

Conclusions

In conclusion, we have successfully developed transient
directing group-promoted C–H thiolation reactions for the first
time. In the presence of 2-amino-5-fluorobenzoic acid as cata-
lysts, aryl aldehydes form the corresponding imines, which act
as transient directing groups, and undergo copper-catalyzed
aryl ortho-C–H thiolation. The reactions are compatible with a
wide range of disulfides and aldehydes, allowing for easy
access to various aryl sulfides. The thiolated products can be
directly utilized in subsequent reactions without the need for
additional steps to remove the directing group, demonstrating
the practical utility of these reactions. The practical appli-
cations have been validated through product transformations
relevant to the synthesis of drug and bioactive molecules. We
anticipate that these findings will not only provide a new strat-
egy for C–H thiolation but also contribute to a deeper under-
standing of the transient directing group strategy in C–H
functionalization.
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