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Beyond HAT: harnessing TBADT for
photocatalyzed Giese-type C(sp3)–C(sp3) bond
formation through reductive decarboxylation†

Matteo Leone, a,b Dalila Arnaldia and Maurizio Fagnoni *a

The decatungstate anion as a tetrabutylammonium salt (TBADT) facilitates a variety of chemical trans-

formations under mild conditions, primarily through hydrogen atom transfer (HAT) and marginally

through single electron transfer (SET) mechanisms. This study explores the dual ability of TBADT to cleave

C–H bonds and initiate SET processes, leading to efficient C(sp3)–C(sp3) coupling reactions. We address

the main limitations of direct HAT by leveraging the doubly-reduced form of TBADT [W10O32]
6− to acti-

vate redox-active esters (RAEs), enabling the formation of alkyl radicals for Giese-type additions. An

extensive screening of various hydrogen donors showed their pivotal role in the selective generation of

the reduced form of TBADT and in suppressing any undesired C–H activation. Our optimized conditions,

using γ-terpinene as the hydrogen donor, gave high yields in alkylations of various olefins, demonstrating

the versatility and robustness of the proposed strategy. This methodology extends the application of

TBADT in sustainable organic synthesis and in late-stage functionalization of complex molecules for the

synthesis of pharmaceutical building blocks.

Introduction

In recent years, photocatalysis has emerged as a powerful and
sustainable approach for developing novel and efficient syn-
thetic routes.1 Among various photocatalysts, the decatung-
state anion [W10O32]

4− (mainly as a tetrabutylammonium salt,
TBADT) has garnered significant attention due to its excep-
tional photochemical activity, particularly its ability to facili-
tate a wide range of chemical reactions under mild con-
ditions.2 Since the earliest reports,3,4 TBADT has entered its
golden age in photocatalytic organic transformations thanks to
its peculiar properties. Mechanistic studies have shown that in
its excited state, TBADT undergoes a ligand-to-metal charge
transfer (LMCT) mechanism, imparting partial radical charac-
ter to the monocoordinated oxygen centers. This enables it to
homolytically cleave C(sp3)–H and formylic C(sp2)–H bonds in
various aliphatic derivatives through a hydrogen atom transfer
(HAT) mechanism (Scheme 1A).5 For many years, this feature
has been exploited for the direct activation of C–H bonds

under mild conditions, facilitating effective C–C couplings,6

C–N couplings,7 fluorinations,8 oxygenations,9 and dehydro-
genations.10 Additional studies evidenced that in the presence
of TBADT, synergistic control by polar and steric effects allows,
to some extent, selective C–H functionalization at competitive
sites.11 The ability of TBADT to homolytically cleave unacti-
vated C–H bonds with high bond dissociation energies (BDEs)
has (in part) restricted its use in the functionalization of
complex molecules, where the presence of multiple active sites
can lead to competing reactions.12 Nevertheless, the appli-
cation of TBADT is thus mostly confined to HAT processes
hiding its propensity toward photoredox catalyzed processes.
In fact, TBADT has a remarkably high redox potential in the
excited state (E([W10O32]

4−*/[W10O32]
5−) ≈ +2.5 V vs. SCE),13

comparable to the most commonly used strong photo-oxi-
dants,14 making it ideal for activating a vast array of substrates
via oxidative single-electron transfer (SETox, Scheme 1B).15 To
this end, TBADT has been applied to photoredox promoted
desilylation of alkyl16a and acyl16b silanes, decarboxylative ben-
zylations17a and ring opening of cyclopropanols.17b However,
one of the major limitations of this approach is the potential
competition between HAT and SET processes deriving from
the same excited state, which could lead to unpredictable reac-
tivity.18 On the other hand, the final catalytic step of TBADT
reveals intriguing characteristics for SET processes that cir-
cumvent this limitation, a feature that was largely overlooked
until recent years. In fact, the reduced form of the decatung-
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state anion [W10O32]
5− can disproportionate, regenerating the

ground state photocatalyst [W10O32]
4− and forming doubly-

reduced decatungstate [W10O32]
6−, a good reductant (Ered1=2

([W10O32]
5−/[W10O32]

6−) = −1.48 V vs. SCE)19 (Scheme 1C). The
reducing potential of TBADT was useful when merging a
photocatalyst with a transition-metal (TM) catalyst in dual cata-
lyzed cross-couplings.20 The authors proposed that [W10O32]

6−

undergoes SET with TMn+1 to restore the active TMn. Inspired
by this, numerous novel transformations have been developed,
merging TBADT with transition-metal catalysis (Scheme 1D,
left part).21 We were, however, surprised by the limited appli-
cations of TBADT as a versatile direct reductant of organic
compounds22 even though this approach could overcome the
inherent limitations of direct HAT.23 As a matter of fact, this
strategy could (i) eliminate dependence on bond dissociation
energy (BDE), (ii) reduce the need for excess precious hydrogen
donors, (iii) give access to the more elusive 1° radicals and (iv)
enable late-stage functionalization (LSF) without site compe-
tition in complex molecules (Scheme 1D, right part).
Additionally, the redox potential of the doubly-reduced form of
TBADT is suitable for most SOMOphiles, since these are

mostly difficult to reduce compared to the most commonly
used redox active functional groups, preventing unwanted
side-reduction processes.24 On this basis, we envisioned the
forging of new C(sp3)–C(sp3) bonds starting from ubiquitous
alkyl carboxylic acids, ideal starting materials present in
natural products and pharmaceuticals.25

We hypothesized that in the presence of a suitable hydro-
gen donor (D-H), [W10O32]

6− could accumulate in solution and
may reduce various redox-active esters (RAEs) via SETred
(Scheme 1E).26 Hydroxyphthalimide (NHPI) esters are well-
suited for the reaction thanks to their reduction potential (Ered1=2
≈ −1.3 V vs. SCE).27 The resulting alkyl radicals, derived from
the mesolytic cleavage of the N–O bond followed by CO2 loss,
could then undergo Giese-type additions with a wide range of
SOMOphiles, potentially yielding the target molecules of
pharmaceutical interest. Photocatalyzed reductive decarboxyl-
ation is a well-established and extensively studied method for
generating carbon-centered radicals, widely applied in Giese-
type additions.28 Therefore, we envisioned this transformation
as an excellent platform to investigate the reactivity of TBADT
as a photoreductant.

Scheme 1 A) Application of TBADT in HAT transformations. (B) TBADT mediated photo-oxidations. (C) General mechanism for the photocatalytic
pathways of TBADT. (D) TBADT mediated photo-reductions. (E) Development of a novel approach for TBADT photocatalyzed Giese type additions.
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Results and discussion

Building on previous studies and our expertise29 it is apparent
that the choice of the sacrificial D-H would be critical in the
reaction mechanism for effectively generating the desired
product.30 An efficient initial hydrogen atom abstraction is the
key step to accumulate the blue colored species ([W10O32]

6−) in
the reaction medium, thus promoting the entire process.
Therefore, we aimed to select an ideal D-H that should have
very labile C–H bonds, facilitating the initial HAT step.30 The
donor (a commercially available and cost-effective compound)
should be easily separable from the reaction medium and the
resulting radical (D•) should not interfere with the reaction
course. Saying so, we began our study with a model reaction
using NHPI ester 1a as the radical precursor, 2a as the radical
acceptor, and TBADT as the photocatalyst (Table 1). In our
initial attempts, we screened various alcohols (e.g. 3a-H, BDE
(C–H) ca. 94 kcal mol−1)31a as H-donors32 (Table S1 ESI†), but
these mostly resulted in competitive radical addition onto 2a,
leading to low yields of the desired product 4a. Consequently,
we shifted our focus to more stabilized allylic radical precur-
sors,33 hypothesizing that the stability of the resulting radical
may hamper the interaction with the SOMOphiles. With tetra-
methylethylene 3f-H (BDE(C–H) ca. 85 kcal mol−1)31b and
cyclohexadiene 3g-H (BDE(C–H) = 75 kcal mol−1),31a we
observed a clean reaction, free from competitive addition to
2a, yielding 4a in promising amounts (entries 2 and 3).
However, due to the high cost and volatility of these alkenes,
which could result in partial evaporation, we turned our atten-
tion to low volatility γ-terpinene 3h-H. γ-Terpinene, a natural
product found in medicinal and aromatic plants,34 is commer-
cially available (0.53€ per g)35 and possesses all the required

features for our target reaction (calculated BDE(C–H) is ca.
70 kcal mol−1).33b Accordingly, the reaction carried out in an
acetonitrile/dichloromethane (ACN/DCM) 9 : 1 mixture gave 4a
in 92% yield (entry 4). When shifting to a greener solvent,
such as acetone,36 the yield slightly increased (95%, entry 5).
Conducting the reaction under 390 nm Kessil lamp irradiation
for 24 h resulted in incomplete conversion of 1, although no
significant side products were observed, indicating that the
reaction proceeds at a slower rate (entry 6). Further variation
by adjusting the catalyst loading or the equivalents of 2a or 3h-
H led to lower yields (see Table S2, ESI†). Control experiments
confirmed that the reaction was completely inhibited in the
absence of light, the photocatalyst, or the D-H (entries 7–9).

Encouraged by these results, we proceeded to explore the
addition of radicals derived from NHPI esters onto phenyl
vinylsulfone 2a or benzylidenemalononitrile 2b (Scheme 2).
We began by screening the reactivity of primary (1°) radicals,
which are challenging to generate and capture through direct
HAT.37

We successfully isolated products 4b and 4c in moderate to
good yields. In the latter case, the formation of 4c benefits
from substantial stabilization of the radical from the adjacent
nitrogen group. Notably, switching to the more reactive radical
trap 2b 38 enabled the incorporation of additional primary rad-
icals, affording products 4j and 4k in good yields.
Interestingly, the use of 2b, a more easily reducible
SOMOphile [E1/2 = −1.35 V vs. SCE],39 led to the formation of
benzylmalononitrile as a byproduct in approximately 10%

Table 1 Conditions optimization

Entry H-donor Solvent (0.1 M) Yielda (%) Deviations

1 3a-H ACN 20%
2 3f-H ACN 41%
3 3g-H ACN/DCM 9/1 84%
4 3h-H ACN/DCM 9/1 92%
5 3h-H Acetone 95%
6 3h-H ACN/DCM 9/1 53% 390 nm
7 3h-H ACN/DCM 9/1 — No photocatalyst
8 3h-H ACN/DCM 9/1 — No light
9 — ACN/DCM 9/1 — No H-donor

Reaction conditions: 1a (0.1 mmol), 2a (0.12 mmol), 3-H (1.0 mmol)
and TBADT (2 mol%) in 1.0 mL of solvent under N2. Reactions were
irradiated with a 40 W Kessil lamp (370 nm) for 24 h. a 1H NMR yield
of 4a was determined by using CH2Br2 as an internal standard.

Scheme 2 Reaction conditions: 1 (0.2 mmol), 2a (0.24 mmol), 3h-H
(2.0 mmol) and TBADT (2 mol%) in 2.0 mL of acetone under N2.
Reactions were irradiated with a 40 W Kessil lamp (370 nm) for 24 h; iso-
lated yields. a Reaction performed in ACN/DCM 9/1 (0.1 M). b 2-
Benzylmalononitrile was isolated in ca. 10% yield.
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yield. This observation suggests a possible SET event between
the doubly reduced form of TBADT and the radical trap.

Next, we were particularly interested in applying our strat-
egy to compounds where TBADT might activate multiple C–H
sites, potentially leading to several side products. Accordingly,
we screened a diverse range of secondary (2°) radicals, achiev-
ing good to excellent yields of products 4d–4g. Satisfactorily,
we observed no competitive formation of undesired α-amido
radicals via direct HAT, due to the efficient role of γ-terpinene
as a H-donor which completely quenched the catalytic activity
of TBADT as a hydrogen atom abstractor. We were then able to
synthesize the desired products 4f and 4g, which are difficult
to obtain through direct HAT when omitting the NHPI moiety.
Building on these promising outcomes with various carboxylic
acid derived radical precursors, we further investigated the
functionalization of potential bioactive compounds, such as
clofibric acid40 and a dipeptide (Boc-Ala-Ala-OH).41 In both
cases, we successfully isolated the desired products 4h and 4i
in more than 80% yield. We then investigated the feasibility of
our strategy for the alkylation of various α,β-unsaturated
ketones, esters, nitriles etc. (Scheme 3). Notably, the Giese
adducts (4l–4q) were formed in a shorter reaction time (16 h)
mostly in >70% yield, with product 4n being obtained in
nearly quantitative yield. Lower yields were observed for 4r,
attributed to the lower electrophilicity of the olefin, which led
to partial reduction of 1g to N-Boc piperidine. Remarkably, the
reaction could also be applied to more complex molecules
having stereogenic centers, such as menthol 4s, cholesterol 4t,
and cedrol 4u derivatives. These desired products were isolated
with exceptional yields, without unwanted C–H activations (or

racemization) catalyzed by TBADT of starting 1g and 2. These
findings underscore the potential of this strategy for late-stage
functionalization of complex molecules by maintaining their
structural features. We then extended our methodology to the
synthesis of promising commercially relevant molecules.
Considering the growing global demand for unnatural
α-amino acids, and their potential as valuable building blocks
in bioactive compounds,42 we explored the possibility of apply-
ing our approach for their preparation in one step and under
mild conditions by adopting suitable radical acceptors
(Scheme 4A). To this end, we screened various NHPI esters in
the presence of 2l and 2m, as α-amino acid precursors
(Scheme 4B). In positive case, this methodology may lead to
the formation of racemic products but may represent the start-
ing point for future synthesis of enantiopure α-amino acids by
adopting an enantioselective variant.43 We evaluated the
behaviour of primary (1°), secondary (2°), and tertiary (3°) rad-
icals. To our delight, we successfully incorporated 1° radicals
(compounds 4v and 4w). Subsequently, screening different 2°
radicals yielded excellent results for 4x–4ad. In particular, car-
boxylic acids with multiple functional groups exhibited high
reactivity, producing good yields for 4x–4z and showing excel-

Scheme 3 Reaction conditions: 1g (0.2 mmol), 2 (0.24 mmol), 3h-H
(2.0 mmol) and TBADT (2 mol%) in 2.0 mL of acetone under N2.
Reactions were irradiated with a 40 W Kessil lamp (370 nm) for 16 h; iso-
lated yields. a Endo configuration b N-Boc piperidine as a byproduct.

Scheme 4 Reaction conditions: 1 (0.2 mmol), 2 (0.24 mmol), 3h-H
(2.0 mmol) and TBADT (2 mol%) in 2.0 mL of acetone under N2.
Reactions were irradiated with a 40 W Kessil lamp (370 nm) for 16 h; iso-
lated yields.
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lent compatibility with our methodology. Finally, 3° radicals
(4ae–4ag) gave the desired products in up to 70% yields. As for
compounds 4aa–4ad it was possible to obtain derivatives
showing orthogonality of the protecting groups of the nitrogen
atoms.44 To further demonstrate the practicality of this proto-
col, we scaled-up the synthesis of 4a up to a 1 mmol scale
using different setups (see Fig. S2 and S3 ESI†). The reaction
performed well under both batch and flow conditions (>80%
yield), thereby confirming the robustness of the methodology
(Scheme 5).

We also tested the reaction under solar simulated light and
achieved a good yield of 4a (88% yield) (see Fig. S4 ESI†). This
suggests that diverse building blocks can be efficiently
accessed using sunlight as a green energy source.2a,45

Additionally, a reaction performed with TEMPO (5 equiv.)
as a radical scavenger was completely inhibited, indicating
that a radical step is involved in the reaction pathway. Finally,
a light ON–OFF experiment provided no evidence of a radical
chain propagation mechanism (see Fig. S5–S8 ESI†).

On the basis of the experiments performed and literature
precedents, we propose the mechanistic scenario detailed in
Scheme 6.46 Previous reports point to a smooth hydrogen
abstraction of allylic hydrogens in tetramethylethylene and
cyclohexene by excited TBADT.47 In addition, cyclohexadiene
derivatives are known to be excellent H-donors in photocata-
lyzed HAT reactions. In fact, the rate constant for abstraction
of the C–H bond in 1,4-cyclohexadiene (CHD) by excited
TBADT is very high (3 × 108 M−1 s−1).48 Moreover, the rate con-
stant for H-atom abstraction by OH• radicals is 1.7 times
higher for γ-terpinene than for CHD.49 This opens the way for
the use of γ-terpinene as an elective H-donor in photocatalyzed
reactions.50 Thus, the TBADT excited state cleaves exclusively
the weak allylic C–H bond in γ-terpinene, producing
[W10O32]

5− and radical 3h•. Selective HAT from the allylic C–H
bonds of 3h-H is due to its high H-donor capability along with
its high concentration in solution causing no competitive clea-
vage of other C–H bonds present in other reaction partners.
The so formed 3h• is a pro-aromatic radical51 that easily under-
goes aromatization to p-cymene 5 (a well-documented
process)48,49,52 which was confirmed by GC-MS analysis (see
Fig. S9 ESI†). At this stage, direct reduction of NHPI esters

Scheme 5 Synthesis of 4a on a 1 mmol scale under (a) batch, (b) flow,
and (c) solar simulated conditions. Isolated yields of 4a.

Scheme 6 Proposed mechanism. All the redox potentials are referred to the SCE.
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seems unlikely due to the insufficient redox potential of the
reduced TBADT [W10O32]

4−/[W10O32]
5− (E = −0.97 V vs. SCE).19a

Accordingly, the disproportionation of [W10O32]
5− to regener-

ate [W10O32]
4− along with 2H+[W10O32]

6− can be envisaged. In
its doubly-reduced form, [W10O32]

5−/[W10O32]
6− (E = −1.48 V

vs. SCE),19 TBADT can undergo an exergonic SET with NHPI 1
[Ered ≈ −1.3 V vs. SCE]27 (Scheme 6), while direct reduction of
the SOMOphiles was safely excluded due to their higher redox
potentials [Ered ≈ −2.5 V vs. SCE]24 except for the case of 2b.39

The resulting alkyl radical 1• undergoes a Giese-type addition
to the electron-poor olefin 2, forming the radical adduct 6. The
presence of an excess of 3h-H did not cause, however, the con-
version of 1 to R–H (the rate constant of H-abstraction of alkyl
radicals on CHD is ca. 4–5 × 105 M−1 s−1).53 Two pathways may
be hypothesized at this stage for the release of the final
product 4. First, the interaction of 6 with H+[W10O32]

5− by
back-HAT or reduction followed by protonation seems more
plausible. The occurrence of the latter pathway is witnessed
because the redox potential [Ered = −0.97 V vs. SCE] of
H+[W10O32]

5− is enough to reduce 6 (Ered [≈−0.6 vs. SCE])16b to
the corresponding anion. An alternative pathway leveraging
hydrogen abstraction from 3h-H by 6, however, may not be
safely excluded.54

Conclusions

In summary, we have developed a practical and sustainable
alkylation method based on SET processes with TBADT
serving as an efficient reductant. γ-Terpinene is the elective
hydrogen donor for the full exploitation of our methodology to
synthesize key building blocks (e.g. unnatural α-amino acids)
under robust and mild conditions. The reaction could be
carried out in a 1 mmol scale (under batch or flow conditions
or under solar simulated sunlight). We extended the appli-
cation of TBADT beyond its conventional role in C–H acti-
vation, demonstrating that this photocatalyst has yet to reveal
its full potential.
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