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Explainable ensemble learning to predict
anisotropic nanomaterial band gap using
atomic-scale structural descriptors

Ziqi Wanga and Kenry *abc

Predicting the electronic band gap of nanomaterials is essential for discovering and developing novel

nanostructures with tailored properties for a myriad of applications, including biomedical and

pharmaceutical applications. Band gap predictions are commonly performed using computational

modeling approaches such as molecular dynamics simulations and density functional theory

calculations. However, the high computational cost and extensive infrastructural requirements of these

methods have impeded their wider adoption and consequently, more rapid and efficient discovery of

high-performance nanomaterials. In this contribution, we demonstrate the use of explainable ensemble

supervised learning to accelerate the prediction of the electronic band gap of anisotropic nanomaterials.

We systematically assess the capacity of several base models and a stacking model in predicting the

band gap of more than 300 polyhedral nanomaterials with varying atomic-scale structural attributes. By

coupling ensemble learning with explainable feature selection, we achieve outstanding performance in

predicting nanomaterial band gap, with R2 values above 0.96 and MSE below 0.004. We anticipate that

this work can further catalyze the development of machine learning and other artificial intelligence

approaches to streamline the prediction of the band gap and other electronic properties of

nanomaterials.

Introduction

One of the most important fundamental properties of nano-
materials is their electronic band gap. It is the energy difference
between the conduction band and the valence band, and the
size of the band gap determines if a nanomaterial is an
electrical conductor, semiconductor, or insulator.1–3 In addi-
tion, the band gap size modulates the optical and thermal
behaviors of the nanomaterials.4–6 Consequently, by control-
ling the size of the band gap, nanomaterials with tunable
physical properties can be designed and developed for specific
applications, particularly for optoelectronics, biosensing, bioi-
maging, and phototherapy.7–10

The electronic band gap of a nanomaterial is influenced by
many factors. These include internal factors like the type and
arrangement of atoms and the presence of lattice defects and
dopants as well as external factors like environmental pressure
and temperature. Due to the central role of electronic band gap

in modulating the many physical properties of nanomaterials,
numerous computational approaches have been developed over
the years to estimate electronic band gap. These methods
include molecular dynamics simulations,11–13 density func-
tional theory (DFT) calculations,14,15 quantum Monte Carlo
methods,16,17 and coupled cluster theory calculations.18,19

While important insights into nanomaterial band gap have
been obtained through these approaches, their high computa-
tional cost and extensive infrastructural requirements have
prevented their wider adoption to facilitate a faster and more
streamlined discovery of nanomaterials with the desired band
gap and other characteristics.

With a vast amount of experimental and simulated data on
nanomaterial properties generated over the past decades,
recent years have seen an increasing implementation of artifi-
cial intelligence and machine learning approaches to accelerate
material discovery.20–26 Compared to conventional methods
like DFT, machine learning models can be easily trained on
huge datasets containing many nanomaterial properties to
accurately predict the band gap of nanomaterials at a much
higher speed with minimal computational resources.27–29 One
of the earliest studies on the use of machine learning for band
gap analysis reported the implementation of support vector
regression and artificial neural network to predict the band gap
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of compound semiconductors based on elemental predictors.30

Separately, a machine learning model leveraging support vector
classification and regression was constructed to predict the
band gap of inorganic solids based on compositional
descriptors.31 As opposed to the band gap values calculated
using DFT, the machine-learning-predicted values were much
closer to the experimentally derived values. More recently,
machine learning classification and regression models were
developed to predict the band gap of perovskite oxides based on
geometric and atomic descriptors.32

It is crucial to highlight that, to date, many studies demon-
strating the use of machine learning for band gap estimations
have focused predominantly on either the development of
novel algorithms or the discovery of combinations of elements
with specific band gap.33–35 Furthermore, these works have
centered largely on certain material classes like perovskites and
two-dimensional materials.36–41 For the limited number of
studies on band gap analysis revolving around less explored
materials, such as metal-based nanostructures, the emphasis
has been on isotropic nanoparticles or ‘‘black box’’ machine
learning models.42–44 Despite the significance of anisotropic
nanomaterials like polyhedral nanostructures,45–50 which have
facet-dependent surface configurations and shape-governed
physicochemical properties, to our knowledge, no study on
the use of explainable machine learning to predict the band
gap of anisotropic metallic nanomaterials has been reported.

In this contribution, we implemented an explainable ensem-
ble learning approach to accelerate the prediction of the
electronic band gap of more than 300 polyhedral silver (Ag)
nanomaterials based on atomic-level structural descriptors.
The predictive capacity of numerous base models and a stack-
ing model was interrogated using datasets with varying number
of features. Interpretable supervised learning based on SHapley

Additive exPlanations (SHAP) values was employed for feature
selection. Through a systematic analysis, we identified the most
optimal combination of supervised learning models and struc-
tural descriptors to realize highly accurate and reliable electro-
nic band gap predictions.

Results and discussion

The workflow of our study is illustrated in Fig. 1. Briefly, a
dataset on simulated anisotropic polyhedral Ag nanomaterials
with various structural attributes and electronic properties was
first acquired from a publicly available database (https://data.
csiro.au/collection/csiro:23472). The original dataset was then
preprocessed to yield 347 entries of nanomaterials with 20
atomic-level structural attributes (e.g., zonohedron of nanoma-
terials, number of atoms, average radius, anisotropy, number of
surface facets, number of Ag–Ag bonds, and so on) as the input
descriptors and electronic band gap as the target output (Excel
file S1). This preprocessed dataset was next randomly split into
70% training and cross-validation dataset and 30% testing
dataset. Since we focused primarily on regression analysis,
the training and testing performances of all models were
evaluated according to mean squared error (MSE), root mean
squared error (RMSE), mean absolute error (MAE), mean abso-
lute percentage error (MAPE), and coefficient of determination
(R2). In parallel, through SHAP values, we determined the
importance of specific structural attributes in influencing the
decisions of the better performing models. Eventually, the most
important attributes were identified to construct separate train-
ing and testing datasets with reduced number of descriptors,
which were then employed for model training and testing,
respectively.

Fig. 1 Schematic illustrating the workflow of supervised learning analysis adopted in this study. The raw dataset was first preprocessed (step 1), followed
by splitting the resultant dataset into 70% and 30% for model training/validation and model testing, respectively (step 2). The training/validation dataset
containing the complete set of 20 features was then used to optimize all algorithm and model hyperparameters based on 10-fold cross-validation (step
3). The tuned hyperparameters were implemented to evaluate the performance of all trained models against the testing dataset (steps 4 and 5). Next,
based on the training/validation dataset, all 20 features were ranked according to their SHAP values, and eight most important features were identified
(step 6). Separate training/validation and testing datasets containing only the eight most essential features were constructed (step 7) and subsequently
employed for model training and hyperparameter tuning (step 8) and model testing (steps 9 and 10).
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To gain an insight into the atomic-scale structural properties
of the polyhedral nanomaterials used in this study, we first
grouped the nanostructures according to their geometric shape
and the number of flat faces. Here, 12 distinct polyhedrons
were identified, notably cuboctahedrons, decahedrons, great
rhombicuboctahedrons, hexoctahedrons, icosahedrons, octa-
hedrons, rhombic dodecahedrons, small rhombicuboctahe-
drons, tetrahedrons, tetrahexahedrons, trapezohedrons, and

trisoctahedrons. Some of the structural properties of these
polyhedral nanostructures were next statistically analyzed
(Fig. 2 and Fig. S1). We noted that, apart from the number of
surface facets and anisotropy (Fig. 2a and b), there was no
statistically significant difference between all polyhedral nanos-
tructures with respect to their other eight atomic-scale struc-
tural properties. Specifically, the 12 types of polyhedral
nanostructures had comparable number of atoms, number of

Fig. 2 Structural properties of the different polyhedral Ag nanomaterials evaluated in this study. (a) Number of surface facets, (b) anisotropy, (c) number
of atoms, (d) average radius, (e) number of Ag–Ag bonds, and (f) average Ag–Ag bond length. n = 7 for cuboctahedron, 193 for decahedron, 9 for great
rhombicuboctahedron, 22 for hexoctahedron, 9 for icosahedron, 17 for octahedron, 13 for rhombic dodecahedron, 12 for small rhombicuboctahedron,
10 for tetrahedron, 24 for tetrahexahedron, 11 for trapezohedron, and 20 for trisoctahedron. **** indicates p o 0.0001 based on the nonparametric
Kruskal–Wallis test followed by Dunn’s multiple comparisons test.
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bulk atoms, number of surface atoms, number of FCC atoms,
average radius, number of Ag–Ag bonds, average Ag–Ag bond
length, and average Ag coordination number (Fig. 2c–f and
Fig. S1). In terms of the number of surface facets, hexoctahedral
nanostructures had the highest median value, while tetrahe-
drons had the lowest median value (Fig. 2a). Additionally,
hexoctahedrons and octahedrons had the widest distributions
of the number of surface facets, although the median value of
hexoctahedrons was much higher than that of octahedrons. In
terms of anisotropy, tetrahedrons had the highest median value,
while the decahedral nanostructures had the largest distribution
of values (Fig. 2b).

We next sought to examine if the same trend in the struc-
tural properties of the polyhedral nanomaterials would be
reflected in their electronic band gap. To this end, we
also statistically evaluated the band gap of the 12 types of
nanostructures (Fig. 3). Similarly, we noted that there was no
statistically significant difference between all polyhedral nano-
materials in terms of their electronic band gap (Fig. 3a). Inter-
estingly, some polyhedral nanostructures like icosahedrons
had a very wide distribution of band gap, ranging from about
0.6 to about 3 eV. Visualization of the two-dimensional spatial
distribution of the polyhedral nanomaterials revealed that most
of the nanostructures had band gap values ranging from
slightly more than 0.5 to 1 eV (Fig. 3b). In addition, nanos-
tructures with band gap values of higher than 1 eV were
predominantly decahedrons. Collectively, all these indicate that
the polyhedral nanomaterials examined in this study had
comparable electronic band gap values.

Although our statistical analysis revealed no strong correla-
tion between the electronic band gap and atomic-scale struc-
tural properties of polyhedral nanomaterials, we were
motivated to evaluate if the nanomaterial band gap could be
predicted based on a particular set of structural attributes using
machine learning.

One of the most widely employed applications of supervised
learning is to predict target outputs based on certain number of
input descriptors. In this part of the study, we were motivated
to leverage supervised learning to predict the band gap of
polyhedral nanomaterials based on their atomic-scale struc-
tural attributes (Fig. 4 and Fig. S2). In particular, we sought to
train, validate, and test several supervised learning models
using a set of 20 structural descriptors and assessed their
performances based on quantitative metrics, i.e., MSE, RMSE,
MAE, MAPE, and R2 values. Five supervised learning algo-
rithms, i.e., linear regression, random forest, extreme gradient
boosting, k-nearest neighbors, and neural network, were
selected to build individual models. These algorithms were
selected due to their distinct learning characteristics. Specifi-
cally, linear regression and neural network rely on model-based
learning, random forest and extreme gradient boosting capita-
lize on ensemble learning, and k-nearest neighbors relies on
instance-based learning. In addition, a stacking model com-
prising an ensemble of three base models of extreme gradient
boosting, k-nearest neighbors, and neural network was con-
structed. Here, the predictions from individual base models
served as the input features for the stacking model. Against the
training dataset and with optimized hyperparameters, the
stacking model emerged as the best performing model (Fig.
S2). In fact, it outperformed all base models with the highest R2

value of 0.983 and the lowest MSE of 0.003, RMSE of 0.053, and
MAE and MAPE of 0.022. For the base models, extreme gradient
boosting exhibited the best performance with an R2 value of
0.979, MSE of 0.004, RMSE of 0.059, MAE of 0.025, and MAPE of
0.024. The k-nearest neighbors and neural network models
were the next best performing models with R2 values of 0.978
and 0.976, respectively, and RMSE of 0.06 and 0.063,
respectively.

Against the testing dataset, we observed that there was a
slight decline in the predictive performance of all models in

Fig. 3 Distribution of the electronic band gap of the different polyhedral Ag nanomaterials evaluated in this study. (a) Quantitative distribution of the
electronic band gap of the polyhedral Ag nanomaterials. (b) Two-dimensional spatial distribution of the polyhedral Ag nanomaterials as visualized
through t-SNE. Shape and color of the icons represent polyhedral shape and electronic band gap, respectively. n = 7 for cuboctahedron, 193 for
decahedron, 9 for great rhombicuboctahedron, 22 for hexoctahedron, 9 for icosahedron, 17 for octahedron, 13 for rhombic dodecahedron, 12 for small
rhombicuboctahedron, 10 for tetrahedron, 24 for tetrahexahedron, 11 for trapezohedron, and 20 for trisoctahedron.
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terms of R2 and RMSE (Fig. 4a). For instance, the R2 value of the
stacking model decreased from 0.983 to 0.959 with the use of
the testing dataset. Its RMSE, on the other hand, increased
from 0.053 to 0.059. Similarly, the R2 value of extreme gradient
boosting dropped from 0.979 to 0.944 and its RMSE increased
from 0.059 to 0.069. The other error metrics of this model also
increased considerably. For k-nearest neighbors, its R2 value
decreased from 0.978 to 0.961, although its RMSE improved
from 0.06 to 0.058. The R2 values of the other three models also
decreased against the testing dataset. It is, nevertheless, impor-
tant to highlight that, with R2 values ranging from 0.944 to
0.961 and with RMSE ranging from 0.058 to 0.069, the base and
stacking models evaluated here still showed outstanding per-
formance in predicting the electronic band gap of the polyhe-
dral nanomaterials.

Comparison of the band gap values predicted by some of the
supervised learning models against the simulated band gap
values further verified the outstanding predictive capacity of these
models (Fig. 4b and c). Specifically, for the base k-nearest neigh-
bors model and the stacking model, the R2 values quantifying the
degree of linear correlation between the predicted and simulated
band gap were 0.9662 and 0.9634, respectively. The strong pre-
dictive capacity of these supervised learning models was particu-
larly evident in analyzing narrow band gap polyhedral
nanomaterials with band gap values between 0.5 and 1 eV.

To gain an insight into the influence of various atomic-scale
structural descriptors on band gap predictions, we acquired the

SHAP values of the descriptors considered by the base and
stacking models during the training and validation processes
(Fig. 5). We noted that, for the stacking model, which was the
best performing model, the number of atoms was the most
important feature modulating the model output (Fig. 5a). The
number of Ag–Ag bonds, average radius, average Ag coordina-
tion number, average Ag–Ag bond length, number of surface
atoms, and number of FCC atoms were the next most impor-
tant features. Like the stacking model, for extreme gradient
boosting, the number of atoms was the most important feature
(Fig. 5b). This was then followed by the average radius, number
of bulk atoms, number of surface atoms, and number of FCC
atoms, which collectively were the top five most essential
features. The number of atoms was also one of the most
significant features for both k-nearest neighbors (Fig. 5c) and
neural network (Fig. 5d), although this feature ranked lower
than the number of Ag–Ag bonds for k-nearest neighbors and
lower than the average Ag coordination number, average Ag–Ag
bond length, average radius, and the number of surface atoms
for neural network. For k-nearest neighbors, the five highest
ranked features were the number of Ag–Ag bonds, number of
atoms, number of FCC atoms, number of bulk atoms, and
number of surface atoms.

Taken together, through SHAP value analysis, we noted that
the decisions of the stacking and base models with stronger
predictive capacity were consistently impacted by several of the
same descriptors. Notably, some of these structural attributes

Fig. 4 Ensemble-learning-assisted prediction of nanomaterial band gap using full set of structural features. (a) Table summarizing the performance
metrics of the different supervised learning models against the testing dataset. (b) and (c) Comparison of the predicted band gap values against the
simulated band gap values for (b) k-nearest neighbors and (c) stacking models.
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were the number of atoms, number of surface atoms, number
of bulk atoms, number of FCC atoms, number of Ag–Ag bonds,
average radius, average Ag–Ag bond length, and average Ag
coordination number. All these suggest that the electronic
band gap of the polyhedral nanomaterials is highly correlated
to their size, as reported in a previous study,42 where the
nanomaterial band gap is inversely proportional to the nano-
material size. We were, therefore, intrigued to probe if the
predictive performance of all supervised learning models would
be affected if only the most essential structural descriptors were
included in our analysis.

In this part of our study, we sought to re-evaluate the
performance of the base and stacking models in predicting
nanomaterial band gap using only the most significant atomic-
scale structural descriptors (Fig. 6 and Fig. S3). To start with, we
modified the training and testing datasets to yield the same
nanomaterial entries, but with only eight structural attributes
(instead of the complete 20 structural attributes). Against the
modified training dataset and with tuned hyperparameters, the
stacking model remained the best performing model during
the training and validation processes (Fig. S3). Specifically, of
the six supervised learning models, the stacking model had the
highest R2 value of 0.985 and the lowest MSE and RMSE of
0.002 and 0.049, respectively. Its MAE and MAPE of 0.021 were
also the lowest of all absolute error values analyzed. Neural
network emerged as the best performing base model with an R2

value of 0.981 as well as MSE and RMSE of 0.003 and 0.056,
respectively. The R2 values of extreme gradient boosting,

k-nearest neighbors, and random forest were 0.979, 0.978,
and 0.977, respectively. These three models had the same
MSE of 0.004.

Like our observations on the predictive performance of the
models against the testing dataset containing 20 structural
features, except for random forest, there was a decline in the
predictive performance of the models in terms of their R2

values with the use of a modified testing dataset (Fig. 6a).
Nonetheless, most of the models experienced improvements in
terms of their RMSE, MAE, and MAPE. Intriguingly, against the
testing dataset containing eight structural features, random
forest had the highest R2 value of 0.98 and the lowest MSE and
RMSE of 0.002 and 0.041, respectively. Comparison of the band
gap values predicted by the random forest model against the
simulated values revealed a high R2 value of 0.9815 (Fig. 6b).
The next best performing model was neural network, with an R2

value of 0.97 and MSE and RMSE of 0.003 and 0.05, respec-
tively. While the stacking model was not the best performing
model, it still had a high R2 value of 0.968 and low MSE and
RMSE of 0.003 and 0.052, respectively. Furthermore, its MAE
and MAPE of 0.019 and 0.018, respectively, were among the
lowest. Assessment of the degree of linear correlation between
the simulated band gap values and those predicted by the
stacking model showed an R2 value of 0.9735 (Fig. 6c), illustrat-
ing its strong ability in predicting polyhedral nanomaterial
band gap.

In assessing the predictive capacity of the supervised learn-
ing models based on the complete and reduced sets of

Fig. 5 Feature importance scoring and ranking. (a)–(d) SHAP values and ranking of the ten most influential structural features considered by the best
performing supervised learning models during the training and validation processes: (a) stacking, (b) extreme gradient boosting, (c) k-nearest neighbors,
and (d) neural network models.
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structural attributes, we noted the advantage of the implemen-
tation of ensemble learning coupled with explainable feature
selection. For instance, during the training and validation
processes, the R2 value of the stacking model, which was the
best performing model, increased from 0.983 to 0.985 as the
dataset with 20 structural descriptors was replaced with that
with eight descriptors (Fig. S2 and S3). In parallel, its MSE and
RMSE improved from 0.003 and 0.053 to 0.002 and 0.049,
respectively. The R2 values and RMSE of neural network and
random forest also improved with the use of training dataset
with reduced number of features. Likewise, enhancements of
the model predictive capacity in terms of R2 values and RMSE
with the use of a smaller dataset were reflected in the model
testing performance. For example, the R2 value of the stacking
model increased from 0.959 to 0.968 and its RMSE decreased
from 0.059 to 0.052 (Fig. 4a and 6a). The three base models of
random forest, neural network, and extreme gradient boosting
also experienced similar improvements in their R2 values and
RMSE when the modified testing dataset with a smaller num-
ber of features was used in place of the initial testing dataset.

While we noted the merit of employing only the most
important structural descriptors in our predictive tasks, it is
worth mentioning that many of the improvements in quanti-
tative metrics were less than 10%. This might seem insignif-
icant in certain cases. However, the advantage of this approach
may become more apparent when dealing with larger datasets

with more structural descriptors. Specifically, with a reduced
number of structural descriptors, the computational time
required to optimize algorithm and model hyperparameters
can be considerably decreased. This is especially significant
when resource-intensive algorithms like extreme gradient
boosting and neural network are used. Therefore, with an
increase in the dataset size and number of features, even a
small enhancement in the predictive performance of super-
vised learning, coupled with a substantial reduction in compu-
tational cost, afforded by explainable feature selection will be
beneficial.

Conclusion

Herein, we explored the use of explainable ensemble learning
to predict the electronic band gap of more than 300 anisotropic
polyhedral nanomaterials based on their atomic-scale struc-
tural descriptors. Using two datasets with different number of
features, where one dataset comprised 20 structural attributes
while the other had only eight structural attributes, we system-
atically assessed the performance of several base models and a
stacking model in band gap predictions. We demonstrated
that, irrespective of the number of features in the datasets,
the predictive capacity of supervised learning during training
and validation could be strengthened using a stacking model.

Fig. 6 Ensemble-learning-assisted prediction of nanomaterial band gap using reduced set of structural features. (a) Table summarizing the performance
metrics of the different supervised learning models against the testing dataset. (b) and (c) Comparison of the predicted band gap values against the
simulated band gap values for (b) random forest and (c) stacking models.
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In parallel, the interpretability of supervised learning models
could be improved using SHAP values, which in turn could be
leveraged to identify the most essential features affecting pre-
dictive outcomes. We eventually showed that by combining
ensemble learning and SHAP-value-guided feature selection, we
could achieve outstanding performance in predicting nanoma-
terial band gap, with R2 values above 0.96 and MSE below 0.004.
Nevertheless, it is important to note that in this study, we
employed only a single dataset containing 347 entries of
nanomaterials with 20 structural attributes. This may poten-
tially limit the generalizability of our findings. Any future work,
therefore, may be extended to include larger and more diverse
datasets containing more nanomaterial entries, nanomaterial
types, and structural attributes. Additionally, it may be inter-
esting to directly compare the predictive performance of differ-
ent supervised learning models against that of established
approaches, which is currently missing from this work. Taken
together, despite the limitations of our study, we expect that it
will further encourage the implementation of machine learning
and other artificial intelligence approaches to streamline the
analysis of the electronic properties of nanomaterials.

Methods
Acquisition and preprocessing of dataset

The original dataset of the simulated polyhedral nanomaterials
used in this study was acquired from CSIRO Data Access Portal
(https://data.csiro.au/collection/csiro:23472). These structures
were optimized using density functional tight-binding method
with self-consistent charges.42 Self-consistent density func-
tional calculations of weakly confined neutral atoms within
the generalized gradient approximation were used to generate
the reference density. The two-center tight-binding matrix
elements within the DFT level were accounted for with a
minimal valence basis set. Using a conjugate gradient metho-
dology, forces on every atom were minimized to be less than
10�4 a.u. (B 5 meV Å�1) to fully relax all structures.

The raw dataset with 425 entries of nanomaterials was then
preprocessed to generate a dataset comprising 347 entries of
nanomaterials with 20 structural attributes as the input descriptors
and electronic band gap as the output target (Excel file S1). The 20
structural attributes of the nanomaterials are zonohedron of
nanomaterials, number of atoms, number of bulk atoms, number
of surface atoms, average radius, anisotropy, number of atoms on
(100) surface facet, number of atoms on (111) surface facet, number
of atoms on (110) surface facet, number of atoms on (311) surface
facet, number of surface facets, average Ag coordination number,
average bulk Ag coordination number, average surface Ag coordi-
nation number, average Ag–Ag bond length, number of Ag–Ag
bonds, total number of FCC atoms, total number of HCP atoms,
total number of ICOS atoms, and total number of DECA atoms.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 10.5.0
(GraphPad Software Inc., United States). All data were first

evaluated for normality based on the Shapiro-Wilk test. The
Kruskal–Wallis test followed by Dunn’s multiple comparisons
test were next used to assess nonparametric data. **** indicates
p o 0.0001.

t-Distributed stochastic neighbor embedding (t-SNE) analysis

t-SNE analysis was performed using Orange Data Mining (Uni-
versity of Ljubljana, Slovenia). Data was normalized and pre-
processing based on principal component analysis was applied.
Here, 15 principal components were selected, and Euclidean
distance metric was used.

Supervised learning analysis and feature selection

Supervised learning analysis and feature selection were carried
out using Orange Data Mining (University of Ljubljana, Slove-
nia). To minimize biased evaluations, the preprocessed data-
sets were first randomly partitioned into 70% training (243
entries) and 30% testing (104 entries) datasets. Five supervised
learning algorithms, i.e., linear regression, random forest,
extreme gradient boosting, k-nearest neighbors, and neural
network, were selected for constructing individual models. In
addition, a stacking model comprising an ensemble of three
base models of extreme gradient boosting, k-nearest neighbors,
and neural network was employed. The specific weight of each
individual base model within the stacking ensemble was not
manually assigned as the meta-model implicitly learned the
most optimal way to combine the predictions of different base
models during the training process. The hyperparameters of all
algorithms and models (Table S1) were optimized using the
training datasets and 10-fold cross-validation to generate the
best performance metrics (Tables S2 and S3). The performance
of the supervised learning models was quantified in terms of
mean squared error (MSE), root mean squared error (RMSE),
mean absolute error (MAE), mean absolute percentage error
(MAPE), and coefficient of determination (R2). Based on the
optimized hyperparameters, the testing performance of all
models was then evaluated. Using the SHapley Additive exPla-
nations (SHAP) values, feature ranking and selection were
performed.
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