Piezoelectric polymers and their applications in antimicrobial fields
Abstract
Bacterial resistance poses a significant threat to human beings, highlighting the crucial need to explore new antimicrobial strategies. Piezoelectric polymers, as innovative macromolecules, can exhibit antimicrobial effects through the generation of electric fields when triggered by mechanical energy. Recent research studies have highlighted piezoelectric polymers as promising antimicrobial strategies due to their unique piezoelectric characteristics, lower susceptibility to bacterial resistance, and superior biocompatibility. These polymers exert antimicrobial effects in response to external mechanical stimuli, offering the advantages of precise treatment and remote control, showing application potential in various areas, such as healthcare, textile manufacturing, food packaging, and environmental protection. This review summarizes the antimicrobial effects, mechanisms, biocompatibility, and applications of piezoelectric polymers in the antimicrobial fields, aiming to provide a theoretical basis and practical guidance for their further in-depth explorations and innovative applications.
- This article is part of the themed collections: 2024 Materials Chemistry Frontiers Review-type Articles and 2024 Materials Chemistry Frontiers HOT articles