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Improper narrow bandgap molecular ferroelectrics
enable light-excited pyroelectricity for broadband
self-powered photoactivities

Jialu Chen,?® Liwei Tang,® Chen Gong,? Linjie Wei,? Jingtian Zhang,®
Xingguang Chen,? Xiaoyu Zhang,®® Yi Liu,**< Junhua Luo {2 ¢ and
Zhihua Sun (2 &<

Narrow bandgap ferroelectrics are emerging as critical components for assembling high-performance
optoelectronic devices with a broadband spectral response, yet integrating narrow bandgap and robust
ferroelectricity in a single-phase material system remains a huge challenge. Herein, we report a narrow
bandgap improper molecular ferroelectric, (DMAPA)Bils (1, DMAPA = dimethylaminopropyl ammonium),
which has a bandgap of 1.94 eV and a spontaneous polarization (P,) value of 1.38 uC cm™. It is notable
that 1 exhibits unusual dielectric bistability near its Curie temperature (T.) = 372 K, along with only quite
small variation in dielectric constants. This characteristic of improper ferroelectricity endows 1 with large
pyroelectric figures-of-merit. Strikingly, light-induced change of its electric Ps leads to ultraviolet-to-
near-infrared pyroelectricity in a wide spectral region (266-980 nm), thus achieving broadband self-
powered photoactivities. High-quality thin films of 1 fabricated via a spin-coating process also exhibit
excellent light-induced pyroelectric effects. The integration of photoactivities in narrow bandgap impro-
per ferroelectrics offers a promising pathway toward scalable broadband optoelectronic device
application.

Curie temperature (7.), with values consistently at least an
order of magnitude lower than those of proper

Ferroelectrics have been developed as an indispensable class
of electroactive materials, which are characterized by reversible
switching of spontaneous polarization (P;) under external elec-
tric fields."™ The inherent absence of inversion symmetry in
ferroelectrics gives rise to a series of coupled physical pro-
perties, including pyroelectricity, piezoelectricity, and optical
nonlinearity.*” These multifunctional properties have a wide
range of high-performance electronic and optoelectronic appli-
cations, such as piezoelectric sensors, switchable diodes, and
self-powered photodetectors.”” In normal ferroelectrics, P;
serves as the primary order parameter during phase tran-
sitions. Conversely, for improper ferroelectrics, P acts as a
second-order parameter induced by structural distortions, spin
ordering, or charge ordering.*'® Improper ferroelectrics
usually show small variation in dielectric constants near the
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ferroelectrics.">'? Dielectric bistability refers to switchable
dielectric states, characterized by the presence of two stable
phases that remain nearly temperature invariant during phase
transitions. The relatively small dielectric constant values may
indicate the presence of improper ferroelectricity, thereby
enabling dramatic pyroelectric figures-of-merit (FOMs) or
light-induced pyroelectricity."®> Conventional inorganic oxide
ferroelectrics such as PbTiO;, PbZrO;, and NaNbO; typically
possess wide bandgaps (3.5-4.1 eV),"* limiting their ability to
harvest solar energy efficiently across the visible and near-
infrared (NIR) spectra. Although ferroelectric materials with
narrow bandgaps are highly desirable for applications such as
broadband photodetection and solar-powered energy harvest-
ing,"® the associated increase in leakage current often compro-
mises polarization stability and deteriorates ferroelectric per-
formances.'® Therefore, realizing the coexistence of a narrow
bandgap and stable ferroelectricity is a crucial bottleneck in
the development of multifunctional optoelectronic materials.
Recently, organic-inorganic hybrid perovskites (OIHPs)
have emerged as a versatile platform for the development of
new ferroelectric materials with tunable optical and electronic
properties.””'® OIHPs are formed through chemical self-
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assembly of inorganic metal-halogen frameworks and organic
cations.'® These architectures combine the design flexibility
and solution processability of organic molecules with the func-
tional robustness of inorganic networks.?® Inorganic metal-
halide frameworks play a dominant role in determining the
energy band structure.”"**> Thus, the engineering of metal and
halide compositions (e.g., Cl, Br, and I) can effectively tailor
the band edge positions and optical bandgap.>***
Simultaneously, the incorporation of polar organic cations can
induce lattice distortions that support ferroelectric behavior,
yielding both efficient light absorption and polarization
switching capability.>>?° This unique combination establishes
OIHPs as promising optoelectronic candidates, positioning
them as cornerstone architectures for new molecular ferroelec-
tric systems.

As the emerging ferroelectric subclass of OIHPs, bismuth
(Bi)-based alternatives have attracted increasing attention due
to their flexible electronic structures and superior environ-
mental compatibility.””*” In this work, we have developed a
new Bi-based molecular ferroelectric with a narrow bandgap
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(~1.94 eV), (DMAPA)BIl; (1), which exhibits bistable dielectri-
city and improper ferroelectricity. Strikingly, light-induced pyr-
oelectricity in the ultraviolet (UV)-to-near-infrared (NIR) spec-
tral region achieves broadband self-powered photoactivity. The
successful fabrication of high-quality thin films further high-
lights its potential for scalable integration into advanced opto-
electronic systems.

Results and discussion
Variable-temperature structure analyses

High-quality red-black crystals of 1 were obtained by slowly
cooling its solution in HI, as depicted in Fig. 1a. The powder
X-ray diffraction (XRD) results match well with the simulated
pattern, verifying the phase purity of 1 and its phase stability
over 120 days (Fig. S1). Thermogravimetric analysis (TGA) indi-
cates that 1 can be thermally stable up to 571 K without any
thermal decomposition (Fig. S2). To elucidate structural fea-
tures and correlate them with functional properties, single-
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Fig. 1 Crystal structures of 1 at different phases. (a) Bulk crystal obtained by the temperature-cooling method. (b) N—H---I hydrogen-bonding inter-
actions between organic cations and inorganic frameworks at 273 K. (c) Packing diagram as viewed in the direction of the c-axis at 273 K (ferroelec-
tric phase, FEP). The small cation configuration at the ferroelectric phase is highlighted within the blue rectangle. (d) Packing structure observed at
400 K (paraelectric phase, PEP). (e) The comparison of SHG signals of 1 and KDP. (f) Variable-temperature SHG intensities.
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crystal X-ray diffraction analysis was performed. At 273 K, 1
crystallizes in the monoclinic chiral space group P2,. The basic
structure adopts a 1D chain-like topology spiraling along the
a-axis, composed of organic cations and extended inorganic
framework chains formed by the face sharing Bils octahedra
(Fig. 1c). Since an ideal octahedron requires uniform bond
lengths and angles, 1 exhibits stereochemical geometry distor-
tion characterized by bond length variations (2.961-3.351 A)
and angular deviations (167.25°-171.58°), as quantified in
Fig. S3 and Table S3. Each organic (DMAPA)** cation contrib-
utes two fully protonated ammonium groups, with N-H:-I
hydrogen bonds anchoring the inorganic chains (Fig. 1b).

Two adjacent cations parallel to the g-axis exhibit mutual
tilting at a specific angle. Structurally, the directional align-
ment of organic cations combined with Bils octahedral tilting
facilitates electric polarization. The high-temperature phase
(HTP) of 1 crystallizes in the nonpolar orthorhombic space
group P2,2,2,. Organic cations display significantly expanded
thermal ellipsoids compared to the low-temperature phase
(LTP), indicating an order-disorder transformation (Fig. 1d).
Furthermore, variable-temperature second harmonic gene-
ration (SHG) served as an effective technique for symmetry
breaking across the phase transition (Fig. 1e). At the LTP, the
SHG signal exhibits a sharp intensity, approximately 0.2 times
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that of KH,PO, (KDP), confirming that 1 crystallizes in a non-
centrosymmetric space group at room temperature. Upon
heating, the SHG signals exhibit an abrupt decrease above T,
with the intensity reduced to approximately 0.1 times that of
KDP (Fig. 1f). This result unambiguously confirms that 1
undergoes a phase transition and that the space group P2,2,2,
is consistent with its noncentrosymmetric structure in the
HTP. This process corresponds to the symmetry breaking
characterized by the Aizu notation of 222F2."** The number of
symmetric elements reduces from 4 (E, C,, Cy,, C,/) to 2 (E, Cy),
consistent with Landau phase transition theory (Fig. S4). In
this context, the ferroelectric phase transition of 1 represents a
temperature-driven order-disorder transition driven by the
molecular motion of (DMAPA)>" cations.

Ferroelectric and phase transition properties

The structural changes of 1 are closely correlated with its
phase transition behavior, preliminarily confirmed by differen-
tial scanning calorimetry (DSC) measurements. As shown in
Fig. 2a, a pair of endothermic/exothermic peaks at 372/370 K
are clearly observed during heating and cooling processes,
indicating a reversible phase transition in 1. Specific heat
capacity (C,) measurement further corroborates this transition
(Fig. S5). Besides, distinct step-like dielectric anomalies are

ke e 300 kHz
w— 300 kHZ
0041 et 500 kHz e 500 kHz
E 24 4 o 003 e 1 MHz
8 <
[7/] F 002
S
0.01
S 22-
-E 320 330 340 350 360 370 380
[3) Temperature (K)
K
[}
o 20
18 T T T T T T T
320 330 340 350 360 370 380
(d) Temperature (K)
31 321K |
04 ——
-3 I @25 Hz
2 J T T T T T T
R 339K l
E 0+ == e
£ I
5 3. @ 25Hz
L
o 3 J T ) ; T L] T T L]
355K |
04 — = — = — — =—————
@ 25 Hz
-3 4 |
-60 -40 -20 0 20 40 60

Electric Field (kV/cm)

Fig. 2 Structural phase transition and related physical properties of 1. (a) DSC curves measured upon heating and cooling. (b) Temperature depen-
dence of the dielectric constant. Inset: the corresponding dielectric loss. (c) P—E hysteresis loops obtained at different temperatures (f = 25 Hz). (d)

The current loop of 1 measured at different temperatures (f = 25 Hz).
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also observed near to 372 K, as depicted in Fig. 2b. The dielec-
tric constant (g,) of 1 exhibits a very small change from 20 to
23 at 300 kHz during the phase transition, and two stable
dielectric plateaus are observed upon heating. 1 exhibits
minimal dielectric loss (tan §) variation from 0.008 to 0.04 at
300 kHz near its T, (Fig. 2b). The minimal temperature-depen-
dent variations in the dielectric constant and dielectric loss
across broad thermal ranges hint at the improper ferroelectric
characteristics of 1."°?° Such temperature-dependent pro-
perties near the 7. demonstrate dielectric bistability in 1,
where P functions as a secondary order parameter of improper
ferroelectrics. It is proposed that exploiting dielectric bistabil-
ity in improper ferroelectrics provides an effective strategy for
optimizing pyroelectric FOMs.

The definitive characteristic of ferroelectric materials is the
reversible switching of Py direction under applied external elec-
tric fields.*® This can be verified through polarization-electric
field (P-E) hysteresis loop measurement. As illustrated in
Fig. 2c, the well-defined P-E hysteresis loops measured at
different temperatures provide solid evidence for the ferroelec-
tricity in 1. At 321 K, the P-E loop gives a P value of approxi-
mately ~1.4 pC cm™? and a coercive field (E.) of ~17 kV cm™,
significantly lower than the values for inorganic ferroelectric
BaTiO; (E. = 30 kV cm™") and polymer PVDF (E. = 500 kv
em ™ 1).*"*? When the temperature exceeds its 7. (372 K), the
remanent polarization drops to zero, and 1 transforms to the
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level. (d) Bandgap comparison of 1 and several typical ferroelectrics.
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paraelectric phase. The two opposing current peaks in the
current-voltage (J-E) curves at various temperatures also serve
as conclusive evidence of ferroelectricity in 1 (Fig. 2d).

Band gap calculation theory and comparative analysis

To investigate the optical properties of 1, the UV-vis absorption
spectrum was recorded at room temperature. As shown in
Fig. 3a, the spectrum exhibits a strong absorption onset at the
band edge (639 nm). By analyzing the power law dependence
of the absorption coefficient on photon energy (inset of
Fig. 3a), the bandgap was determined to be 1.94 eV. The
bandgap value obtained from first-principles band structure
calculations is 1.86 eV (Fig. 3b), being consistent with the
experimentally determined result. PDOS analysis reveals that
the valence band maximum (VBM) and the conduction band
minimum (CBM) at the G-point are primarily constituted by
I-5p and Bi-6p orbitals (Fig. 3c). This finding underscores the
decisive role of the inorganic framework in modulating the
bandgap and electronic structure. Notably, the bandgap of 1
remains relatively narrow among known ferroelectrics
(Fig. 3d).”*™*® The core advantage of narrow bandgap mole-
cular ferroelectrics lies in their broadened spectral response
range, which manifests pronounced light-induced pyroelectric
effects via synergistic interplay with the ferroelectric polariz-
ation field.*
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(a) Temperature-dependent pyroelectric currents and P deduced by integrating pyroelectric current. (b) The simulated two FOMs of F, and

Fp. (c) I-t curves measured under 404 nm irradiation at zero bias (5.44 mW cm™2). (d) Photoactivities of 1 under light illumination at different wave-
lengths. (e) /-t curves measured under 520 nm laser irradiation with different densities at zero bias.

Pyroelectric effect and broadband photoinduced response

Subsequently, we investigated the pyroelectric properties of 1
using single crystals, which demonstrate a sharp pyroelectric
current arising from charge displacement near the T, (Fig. 4a).
The temperature dependence of polarization obtained through
pyroelectric measurements gives a Pg value of approximately
1.4 pC cm™>. As another important parameter, the pyroelectric
coefficient (p., ie., |0P,/dT|) is also estimated to be 2.5 x 107>
pC em™> K at room temperature, which increases to 0.64 pC
em~? K™! near the T, (Fig. S6). The room-temperature value is
smaller than those of conventional pyroelectric materials, such
as triglycine sulfate (TGS, p. ~ 5.5 x 107> pC cm™> K™ ') and
Bag g5Ca0.15Z10 1 Tig 605 (BZT, pe ~ 9.8 X 107> pC em > K 1).>%3!
For pyroelectric detection, two key pyroelectric FOMs are
voltage responsivity Fy = pe/(eoercy) and detectivity F, = pe/
[co(€oer tan 6)%], where &, denotes the vacuum permittivity, c,
represents the volumetric heat capacity, and tan § is the dielec-
tric loss. These FOMs quantify the maximum pyroelectric
voltage per energy input and the weak-signal detection capa-
bility, respectively.”> At room temperature, the F, and Fp
values of 1 are estimated as ~3.0 x 10~* ecm? pC™" and ~1.24 x
107° Pa~'2, respectively. Owing to its improper ferroelectric, 1

This journal is © the Partner Organisations 2025

exhibits significantly reduced ¢, and tan é values compared to
proper ferroelectric counterparts. This results in a dramatic
enhancement of the pyroelectric FOMs in the vicinity of the T,
(Fig. 4b).

To further study photosensitivity, light-induced pyroelectric
measurements were performed at room temperature. Taking
the 404 nm laser (5.44 mW cm™?) as an example, the abrupt
temperature increase at the crystal surface upon illumination
reduces the polarization. This process disrupts the initial
alignment of electric dipoles and generates a positive pyroelec-
tric current. Under continuous illumination, the stabilization
of temperature correlates with a steady photovoltaic current
plateau. Upon light termination, the sudden surface cooling
induces polarization variation that produces a transient pyro-
electric current with the opposite direction, which rapidly
decays to the dark state during prolonged darkness (Fig. 4c).
Thermal equilibrium analysis reveals an integrated charge of 2
x 107> pC em™ over the temperature-rise fluctuation (red
region, Fig. 4c and S7), yielding a p. value of 2.33 x 107> pC
em™> K™ at this irradiance. This value coincides with that
obtained from the pyroelectric measurement.

Fig. 4d displays light-induced pyroelectric currents
measured along the polar b-axis at different wavelengths. For

Inorg. Chem. Front.
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Fig. 5

(a) Image of the flexible ferroelectric film of 1. (b) XRD patterns of the ferroelectric film based on the substrate platform and theoretical data.

(c) AFM image of the thin film of 1. (d) Schematic diagram of the thin-film device fabrication process. (e) /-t curves measured under 520 nm laser

irradiation with different densities at zero bias.

incident light with wavelengths below the bandgap
(266-637 nm), the transient pyroelectric current (Ipyr,) and the
steady photovoltaic current (Iphoto) coexist. This coupling exhi-
bits strong wavelength dependence, with maximum output
emerging near 404 nm. Under above-bandgap wavelength
irradiation, the attenuated I,no, nearly vanishes at photon
energies far below the bandgap since low-energy photons
cannot directly enhance charge carrier migration in 1.
However, distinct transient Iy,
ultraviolet-to-infrared spectral range (up to 980 nm). The

peaks persist across a broad

measured currents at fixed radiation intensity exhibit wave-
length-dependent characteristics, which gradually decrease
with increasing wavelength. Fig. 4e shows the corresponding
current-time (/-t) curves under 520 nm laser irradiation at
zero bias. With increasing incident power, the I, peaks
intensify significantly and demonstrate intensity-dependent
behaviors. These results confirm that the coupling of photovol-
taic Iyhoto and light-induced I, would enhance photo-
responsivity. In addition, photostability measurement at
404 nm (115.79 mW cm™>) shows stable transient photopyro-
electric outputs over multiple cycles without degradation
(Fig. S8). Crystalline devices retain approximately 100% of

Inorg. Chem. Front.

their initial performance after two-months of ambient
exposure (115.79 mW cm™>, Fig. S9), demonstrating excep-
tional stability for practical application. Critically, all pro-
perties of 1 are achieved without external power (at zero bias),
which establishes these polarization-directed characteristics as
a promising platform for broadband photoactivity, particularly

in self-powered photodetection.

Thin film characterization and photoinduced pyroelectric
effects

Another striking feature is that 1 can be easily deposited on
flexible plastic substrates via spin-coating. The films exhibit
uniform red transparent surfaces (Fig. 5a) devoid of visible
pinholes, indicative of high crystallite distribution. The scan-
ning electron microscopy (SEM) image also confirms this con-
clusion (Fig. S10). The structure of the thin film is verified by
XRD measurements, which shows good crystallinity and phase
purity (Fig. 5b). Fig. 5c presents the height topography image
of the ferroelectric thin film acquired using atomic force
microscopy (AFM). AFM analysis reveals that the spin-coated
film exhibits complete substrate coverage and exceptional
surface uniformity, demonstrating nanoscale flatness with a

This journal is © the Partner Organisations 2025
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root mean square roughness of 3.68 nm. Profilometry
measurements reveal a film thickness of 107.05 nm and a
surface roughness of 3.92 nm (Fig. S11). This corroborates the
superior film continuity, where the ultra-low defect density
enables efficient charge transport and rapid response kine-
tics.>® Furthermore, thin film devices were fabricated by sput-
tering gold electrodes on the surface of high-quality thin films
(Fig. 5d). As shown in Fig. 5e, under zero bias and 520 nm
laser illumination, the characteristic four-stage photoresponse
behavior of the current over time is clearly observed, where the
peak photocurrent gradually increases with higher incident
light intensities. The consistency in response between thin-
film and single-crystalline devices highlights the light-induced
pyroelectric properties of 1 across different morphologies.

Conclusion

In summary, we have reported a molecular ferroelectric
material, (DMAPA)Bil5, that combines a narrow bandgap (1.94
eV) with excellent ferroelectricity. Furthermore, the improper
ferroelectric nature of 1 endows it with a large pyroelectric
FOM with the Fy and Fp, peaks far exceeding those of conven-
tional ferroelectric materials. Critically, 1 not only achieves
broadband (266-980 nm) self-powered photoactivities in
single-crystalline form but also demonstrates exceptional light-
induced pyroelectric effects in thin-film devices. This study
marks a critical step forward for molecular ferroelectrics, over-
coming long-standing material morphology limitations while
opening new avenues for autonomous optoelectronic device
engineering.
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