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donor complexes
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Rod-shaped neutral carbon ligands such as carbon monoxide and isocyanides play a central role in

organometallic chemistry but are relatively weak electron donors compared to N-heterocyclic carbenes.

Phosphonioacetylides (R3PCC) have been proposed as promising candidates for stronger electron

donation within the class of sp-hybridized carbon ligands. However, their high reactivity has significantly

limited their exploration and isolation. In this study, we report the synthesis and characterization of a novel

phosphonioacetylide, MeR2PCC (R = 1,3-di-tert-butylimidazolidin-2-ylidenamino). While it is highly labile

at ambient temperature, the compound is stable at −40 °C and can be isolated and stored in the form of

alkali metal complexes. The latter undergo efficient transmetallation reactions with a variety of electro-

philes, enabling the formation of Lewis base adducts with both main group elements and transition

metals, including tungsten(0), nickel(0), and rhodium(I). These results demonstrate that alkali metal phos-

phonioacetylides serve as versatile precursors for introducing this highly donating and structurally unique

ligand into coordination complexes.

Introduction

Scientific advances in the field of coordination chemistry,
material science and catalysis in recent decades have been
driven by the development of neutral carbon ligands. New
impetus has come especially from the development of
N-heterocyclic carbenes (NHCs), which possess superior σ-
donor properties compared to classical N- and P-donor
ligands.1–8 In light of the success story of carbene ligands, it is
somewhat surprising that sp-hybridized carbon donor ligands
with comparable donor properties have remained relatively
underexplored. Typical sp-hybridized ligands such as carbon
monoxide and isocyanides9–17 are key components in organo-
metallic chemistry, yet they exhibit weaker σ-donor strength
than their sp2- or sp3-hybridized counterparts.18–20 In this
context, phosphonioacetylides, featuring a linear C2 moiety
bound to a phosphonium center, represent a promising and
conceptually intriguing extension of the family of neutral, rod-
shaped carbon ligands (Fig. 1). The modular nature of these
species, particularly through variation of substituents at the
phosphorus center, offers the potential to fine-tune their

donor strength and vary the ambiphilic character of the
terminal carbon atom.

The first phosphonioacetylide complex (A) was reported in
1970, synthesized via deoxygenation of a carbonyl ligand in
[Mn(CO)5Br] using carbodiphosphorane Ph3PCPPh3

(Fig. 2).21,22 In the following years, various phosphonioacety-
lide complexes were prepared through ligand transformations
at metal centers.23–36 Seeking a more general and direct route
to such ligands, Bestmann and co-workers attempted the syn-
thesis of a free phosphonioacetylide in 1998. They generated
triphenylphosphonioacetylide (Ph3PCC) by desilylation of the

Fig. 1 Selection of sp-hybridized neutral carbon ligands and their reso-
nance structures.
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cationic precursor [Ph3PCCSiMe3]
+ with a fluoride source at

−78 °C and characterized the fleeting intermediate by NMR
spectroscopy (Fig. 2), which could not be isolated because it
proved to decompose rapidly at ambient temperature.37,38 In
2009, Hill and co-workers seized on this work and investigated
the reactivity and ligand properties of Ph3PCC (B). The com-
parison of the frontier molecular orbital energies indicate that
Ph3PCC has similar π-acceptor properties but is a significantly
better σ- and π-donor than methyl isocyanide.39 The first room
temperature stable phosphonioacetylide (C) was reported in
2021 by Zhao, Ong, and Frenking (Fig. 2). Electron-donating
bulky N-heterocyclic imine (NHI) substituents bearing 2,6-
diisopropylphenylgroups (dipp) at the nitrogen atoms of the
heterocycle were used to stabilize the reactive PC2 unit.

40

As part of our ongoing efforts to develop electron-rich
ligands, including phosphines,41–45 pyridines,46,47 and por-
phyrins,48 we utilized the π-donating power and tunability of
NHI substituents49–52 to enhance their electron-donating capa-
bilities. Recently, our focus shifted towards stabilizing neutral
carbon ligands, such as carbenes and cumulenes.53–56 In this
study, we report on our efforts to expand the class of isolable
phosphonioacetylides, as the structural factors governing
their stability remain poorly understood. Addressing
these knowledge gaps could unlock broader applications of
phosphonioacetylides in coordination chemistry and catalysis.
To this end, we investigated how introducing small NHI substi-
tuents at the phosphonium center influences the stability and
ligand properties of phosphonioacetylides.

Results and discussion

In analogy to the previously reported synthetic route,40 ethynyl
phosphine 1 was synthesized using HCCMgCl for alkynylation
of our previously reported phosphenium ion, bearing tert-butyl
groups at the N-heterocyclic nitrogens of the NHI
substituents.57,58 Subsequent methylation with either methyl
iodide or methyl triflate afforded the phosphonium salts [2]X

(X = I, OTf) in good yields. Attempts to deprotonate [2]X using
various inorganic bases, including nBuLi, potassium tert-but-
oxide (KOtBu), potassium hexamethyldisilazide (KHMDS) or
neutral bases including the phosphonium ylide Ph3PCH2 and
the superbasic phosphine P(tmg)3,

59 generally led to unselec-
tive decomposition upon warming to ambient temperature, as
indicated by the presence of multiple phosphorus-containing
species observed by 31P NMR spectroscopy (see the SI). One
notable decomposition pathway appeared to involve cleavage
of the C2 unit, as evidenced by resonance at 69.1 ppm
corresponding to phosphine MePR2.

54 Through extensive
screening of different base/phosphonium salt combinations,
we found that the well-defined lithium complex [R2MePCCLi
(thf)2I] (3) and the labile potassium complex [R2MePCCKOTf]
(4) are both isolable and remain stable at ambient temperature
when stored under an inert atmosphere.

Treatment of [2]I with nBuLi in THF at −40 °C, followed by
immediate evaporation of the volatiles, afforded the lithium
complex 3 as a white solid in very good yield (Fig. 3).
Compound 3 is soluble in both polar and nonpolar solvents,
including THF and toluene. However, 3 decomposes in chloro-
form, DCM and ACN. Successful deprotonation is confirmed
by the disappearance of the alkynyl proton resonance in the
1H NMR spectrum and the appearance of a quartet at
−41.0 ppm (2JPH = 14 Hz) in the 31P NMR spectrum. In the
13C{1H} NMR spectrum, the α and β alkynyl carbon atoms of 3
exhibit significant shifts to higher frequency compared to the
phosphonium precursor [2]+ (3: 106.1 ppm (Cα), 170.6 ppm
(Cβ); [2]+: 81.3 ppm (Cα), 91.9 ppm (Cβ)). In contrast,
the terminal carbon atoms in free phosphonioacetylides B
(228.9 ppm)37,38 and C (208.5 ppm in THF-d8, 218.1 ppm in
C6D6)

40 resonate at even higher frequency, suggesting lithium
coordination in 3. Notably, similar trends have been observed
for lithium complexes of other carbon nucleophiles, such as
Bertrand’s cyclopropenylidene and allenylidene.60,61 Further
evidence for the formation of a lithium-stabilized phospho-
nioacetylide complex is provided by the detection of a distinct
7Li{1H} NMR signal at 1.4 ppm. The 1H NMR spectrum also
indicates coordination of the lithium cation by two additional
THF molecules. Single-crystal X-ray diffraction (SCXRD)
analysis revealed that 3 adopts a dimeric structure in the solid
state (Fig. 3d). Each lithium cation is tetrahedrally coordinated
by two THF molecules and two bridging phosphonioacetylide
ligands, resulting in a four-membered Li2C2 ring with iodide
as counterion. The C1–C2 bond length of 1.220(2) Å is consist-
ent with a typical triple bond (1.21 Å; cf. double bond:
1.33 Å),62 the P1–C2 bond length with 1.742(14) Å is between
typical phosphorus carbon single and double bonds (single
bond: 1.87 Å, double bond: 1.67 Å)63 and the P–C–C bond
angle approaches linearity at 176.5(13)°.

A second viable synthetic route to an isolable
phosphonioacetylide alkali metal complex was identified via
deprotonation of the triflate salt [2]OTf using a slight excess of
KHMDS. Treatment of [2]OTf with KHMDS in THF afforded
the phosphonioacetylide complex 4, which was isolated as a
white solid in 67% yield after workup. The potassium complex

Fig. 2 Milestones of phosphonioacetylides: the first phosphonioacety-
lide complex A (left), the first free phosphonioacetylide identified spec-
troscopically at −78 °C (B, middle), the first room-temperature stable
free phosphonioacetylide C (right).
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exhibits good solubility in THF, toluene and benzene, and its
spectroscopic features are consistent with the presence of the
PC2 moiety. Notably, the 31P NMR spectrum displays a signal
at −43.8 ppm (quartet, 2JPH = 14 Hz), while the 13C NMR spec-
trum shows a resonance at 105.2 ppm corresponding to Cα,
closely resembling the data obtained for the lithium complex
3. The 13C NMR signal for the terminal carbon atom (Cβ) was
observed at 201.0 ppm in deuterated THF. Compared with the
lithium complex 3 (170.6 ppm), this resonance is significantly
shifted to higher frequency suggesting a much weaker carbon-
potassium interaction. Compound 4 can be stored as a solid
under an inert atmosphere. Notably, the isolated material con-
sistently retained sub-stoichiometric amounts of Et2O, THF
and HMDS, which could not be completely removed even after
extended drying under reduced pressure. Consequently, com-
pound 4 was typically generated in situ for subsequent ligand
transfer reactions (vide infra).

Liberation of the free phosphonioacetylide was attempted
via sequestration of the lithium and potassium metal ions
using 12-crown-4 and [2.2.2]cryptand, respectively. Treatment
of 3 with stoichiometric amounts of 12-crown-4 resulted in the
formation of the lithium complex 5. The analysis of the NMR

data reveals a shift in the 13C resonance of the terminal β
carbon to 183.5 ppm, suggesting a weakening of the coordina-
tive bond. Furthermore, a significant shift to lower frequency
in the 7Li NMR to −0.3 ppm is observed, consistent with the
replacement of THF by 12-crown-4 in the lithium coordination
sphere.64 Complex 5 proved to be highly labile, as the removal
of solvent followed by redissolution led to partial decompo-
sition. Moreover, the addition of more than one equivalent of
12-crown-4 resulted in the complete decomposition of the
phosphonioacetylide. This behaviour suggests successful
cleavage of the lithium-carbon bond, as lithium ions are
known to coordinate with two crown ether molecules.65

Similarly, the addition of stoichiometric amounts of [2.2.2]
cryptand to a THF solution of complex 4 caused the 13C reso-
nance of the β carbon to shift to higher frequency (215.6 ppm).
This chemical shift falls within the range observed for B
(228.9 ppm) and C (208.5 ppm), suggesting that the liberation
of the phosphonioacetylide was either successful or that the C
terminus remains weakly coordinated to the potassium ion
within the cryptand cage. The latter possibility aligns with pre-
vious observations by Rosokha and coworkers for other rod-
shaped ligands.66 Supporting this interpretation, attempts to

Fig. 3 (a) Synthesis of the alkali metal phosphonioacetylide complexes 3–6. Solid-state structures of (b) 1, (c) [2]OTf, (d) 3 and (e) 6’. Hydrogen
atoms except the hydrogen attached at Cβ and counter ions (triflate for [2]OTf, iodide for 3) are omitted for clarity. Ellipsoids are displayed at 50%
probability. Selected structural data is shown in Table 1.
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separate the free phosphonioacetylide by benzene extraction
were unsuccessful. However, when the reaction mixture was
stored at −40 °C, two distinct types of crystals formed: color-
less blocks and brown needles. Structural analysis via SCXRD
identified these as the salt [K(cryptand)]OTf and the free phos-
phonioacetylide 6′, respectively (Fig. 3e). Notably, the C1–C2
bond length of 6′ (1.203(5) Å) is slightly shorter than in
complex 3, while the P1–C1 bond length is elongated to 1.765
(2) Å.

Collectively, the deprotonation and sequestration experi-
ments demonstrate that the generation of the phosphonioace-
tylide requires stabilization through the formation of alkali
metal complexes, which prevent decomposition via reaction
with the phosphonium precursor. Furthermore, the liberation
of the phosphonioacetylide by sequestration of the alkali
metals is achievable. While the free ligand is stable at low
temperatures, it appears to be transient and unstable at room
temperature.

Next, the hydrolytic stability of 3 was investigated.
Treatment of 3 in THF with ten equivalents H2O quantitively
yielded the precipitation of the protonated alkynyl salt [2]I,
which already suggests that the free phosphonioacetylide is
highly basic, as lithium hydroxide is generated in the reaction.

Treatment of 3 with the Lewis acid B(C6F5)3 led to the
corresponding borane adduct 7, which was isolated as a white
solid in 50% yield. The carbon signal of Cβ in the 13C NMR
spectrum (123.0 ppm) is shifted to lower frequency by
47.6 ppm compared to that of 3. In addition, the boron reso-
nance at −21.5 ppm in the 11B{1H} NMR spectrum confirms
the formation of a borate species, as this chemical shift is sig-
nificantly shifted to lower frequency compared to free B(C6F5)3
(60 ppm).67 Further evidence for the adduct formation comes
from the 31P{1H} NMR spectrum, which shows distinct boron-
phosphorus coupling, observed as a doublet with a coupling
constant of 3JBP = 4 Hz. These spectroscopic features are con-
sistent with alkynylphosphonium borates previously reported
by Bestmann, Stephan and Erker.32,33,37,38,68,69 Notably, the 7Li
NMR spectrum of the isolated solid of 3 indicated the presence
of trace amounts of lithium iodide, even after extraction and
recrystallization, although an SCXRD study confirmed the suc-
cessful separation (vide infra). This observation indicates a
limitation of using 3 in transmetallation reactions, as the
nitrogen atoms of the NHI groups can act as chelating ligands
for lithium salts, thereby making the separation more difficult.
Moreover, an additional potentially undesired reaction
pathway was observed when 3 was treated with [Rh(cod)Cl]2.
This reaction produced a mixture of rhodium complexes [Rh
(CCPMeR2)(cod)Cl] (11) and [Rh(CCPMeR2)(cod)I] (11′) due to
anion scrambling (Fig. S73). Anion scrambling, particularly
with halogens, is a well-documented issue.70,71 It is typically
mitigated by avoiding reactants with different halogens or by
replacing chloride in [Rh(cod)Cl]2 with silver triflate in the
presence of coordinating solvents such as acetonitrile or THF.
However, anion scrambling between halogens and triflates is
uncommon due to the much weaker coordination properties
of the latter. Therefore, we used the triflate complex 4 in sub-

sequent transmetallation studies, which was generated in situ
via deprotonation of [2]OTf with suitable potassium bases.

The reaction with TMSCl and the transition metal com-
plexes [W(CO)5(thf)] and [Rh(cod)Cl]2 resulted in complete
conversion to the corresponding terminal phosphonioacetylide
complexes 8, 9 and 11 (Fig. 4a, right). These complexes were
isolated in moderate yield after workup and separation of the
potassium salts. In contrast, the reaction with [Ni(CO)4] led to
the formation of a side product, which complicated the
separation process and thus gave 10 in low yield. 31P NMR
spectra of the phosphonioacetylide complexes show reso-
nances as quartets with coupling constants of 2JPH = 14–15 Hz,
and their chemical shifts fall within a very similar range
(Table 1). For complex 11, an additional coupling constant of
3JPRh = 4 Hz was observed, consistent with the terminal coordi-
nation of the C2 unit in this complex. An overview of the 13C
NMR resonances for the acetylide units in the phosphonioace-
tylide complexes is provided in Table 1. The Cα and Cβ signals
were assigned based on their distinct coupling constant to the
phosphorus nucleus. These signals follow a trend of shifting
to lower frequency as the covalency of the carbon–element
bond increases, whereas they appear at higher frequency for
more ionic carbon–element bonds.

SCXRD studies of complexes 7, 9, 10 and 11′ confirmed the
formation of terminal phosphonioacetylide complexes (Fig. 4).
Selected structural parameters are summarized in Table 1. The
observed CuC and the P–C bond lengths are comparable to
those in the lithium complex 3. However, when compared to
the phosphonium cation 2, the CuC bonds are elongated, and
the P–C bonds are shortened. This suggests a significant alle-
nylidene-type character of the PCC moiety due to
π-backbonding from the anionic acetylide moiety into the σ*
orbitals of the phosphonium unit. Further supporting the
presence of allenylidene character, the PCC angles deviate
more significantly from linearity than the CCE bond angles.
This systematic deviation is thus unlikely to arise from crystal
packing effects.

With complex 10 in hand, the donor strength of the new
phosphonioacetylide ligand was determined using the Tolman
electronic parameter (TEP)72 The symmetric A1 carbonyl
stretching frequency of complex 10 was experimentally
observed in DCM at 2050.1 cm−1. Notably, a significantly lower
TEP value of 2023 cm−1 was reported for phosphonioacetylide
C, which, however, was converted from the corresponding
rhodium complex [Rh(CO)2Cl(C)].

73 To investigate this discre-
pancy, DFT calculations were performed to compute the TEP
values for both phosphonioacetylides, following the method
reported by Gusev.74 The calculated TEP derived from complex
10 (2055.0 cm−1) and from [Ni(CO)3C] (2051.1 cm−1) are in
close agreement with the experimentally observed A1 stretch-
ing frequency of 10, highlighting the new phosphonioacetylide
ligand as a strong donor with an overall donor ability
comparable to that of classical N-heterocyclic carbenes.75,76

Additionally, for [Ni(CO)3B], a TEP value of 2068.3 cm−1 was
calculated, demonstrating a significant impact of NHI group
substitution at the phosphonium on the ligand’s donor

Inorganic Chemistry Frontiers Research Article
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Fig. 4 (a) Transmetallation reactions using either the lithium salt 3 or the potassium salt 4. The latter was generated in situ by deprotonation of
[2]OTf with KHMDS or KOtBu. Solid-state structures of (b) 7, (c) 9, (d) 10 and (e) 11’. Hydrogen atoms and solvent molecules are omitted for clarity.
Ellipsoids are displayed at 50% probability. Selected structural data is shown in Table 1. R = di-tert-butylimidazolidin-2-ylidenamino.

Table 1 Selected solution NMR data and structural parameters of the solid-state structures of compounds 1–10

Compound

31P NMR shift in
ppm

13C NMR shift
of Cα in ppm

13C NMR shift
of Cβ in ppm

CuC bond
length in Å

P–C bond
length in Å

P–C–C bond
angle in °

C–C–E bond angle
in °

%
Vbur

f

1 53.2 (s)a 93.3 (d, 1JCP =
46 Hz)a

85.4 (d, 2JCP =
5 Hz)a

1.180(3) 1.8138(19) 170.35(19) — —

2 −41.7 (p, JPH = 15
Hz)b

81.4 (d, 1JCP =
190 Hz)b

91.9 (d, 2JCP =
34 Hz)b

1.185(3) 1.769(2) 174.4(2) — —

3 −41.0 (q, 2JPH = 14
Hz)a

106.1 (d, 1JCP
= 164 Hz)a

170.6 (br)a 1.220(2) 1.7417(14) 176.52(13) 136.06(14) (X =
Li1), 151.85(15) (X
= Li1′)

18.6

4 −43.9 (q, 2JPH = 14
Hz)a

104.3 (d, 1JCP
= 159 Hz)d

201.0 (d, 2JCP
= 9 Hz)d

— — — — —

5 −42.9 (q, 2JPH = 14
Hz)a

101.8 (d, 1JCP
= 170 Hz)a

183.5 (br)a — — — — —

6 −48.8 (q, 2JPH = 14
Hz)d

103.7 (d, 1JCP
= 155 Hz)d

215.6 (d, 2JCP
= 15 Hz)d

— — — — —

6′ — — — 1.203(5) 1.765(2) 174.0(3) — 18.9
7 −39.6 (m)c/−39.6 (d,

3JBP = 4 Hz)c,e
90.0 (d, 1JCP =
197 Hz)c

123.0 (br)c 1.206(3) 1.7437(18) 168.02(17) 175.44(19) 18.2

8 −41.4 (q, 2JPH = 15
Hz)b

102.2 (d, 1JCP
= 175 Hz)b

111.1 (d, 2JCP
= 23 Hz)b

— — — — —

9 −42.3 (q, 2JPH = 14
Hz)a

104.9 (d, 1JCP
= 197 Hz)a

151.7 (d, 2JCP
= 20 Hz)a

1.214(4) 1.727(3) 175.5(3) 178.0(3) 19.8

10 −41.5 (q, 2JPH = 15
Hz)a

104.6 (d, 1JCP
= 193 Hz)a

170.5 (d, 2JCP
= 15 Hz)a

1.220(2) 1.7300(15) 160.66(14) 176.07(14) 20.5

11/11′ −40.7 (qd, 2JPH = 14
Hz, 3JPRh = 4 Hz)a

— — 1.2196(18) 1.7314(13) 156.95(12) 175.78(11) 19.3

a Recorded in C6D6.
bRecorded in CD3CN.

c Recorded in CD2Cl2.
d Recorded in THF-d8.

e 31P{1H} NMR shift. f Bondi radii scaled by 1.17, sphere
radius = 3.5, Cβ selected to coordinate to centre of the sphere with distance of 2.0, mesh spacing for numerical integration = 0.1, H atoms not
included.

Research Article Inorganic Chemistry Frontiers
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properties. These findings are consistent with the well-estab-
lished influence of substituents on phosphines, as described
by Tolman’s substituent parameter, χi.

77 The steric bulk of the
new phosphonioacetylide ligand was evaluated by calculating
the buried volume (%Vbur)

78–80 based on the solid-state struc-
tures of the corresponding complexes (Table 1). Due to
the rod-shaped structure of the ligand, the bulky NHI groups
have minimal influence on the coordination sphere around
the metal centre, confining the 3.5 Å sphere to a %Vbur
value of 18.2–20.5%. This analysis indicates that the new
phosphonioacetylide ligand exhibits steric properties
comparable to those of triphenylphosphonioacetylide (%Vbur =
17.5 for complex [W(CCPPh3)(CO)5]),

36 but it is significantly
less sterically demanding than phosphonioacetylide C (%Vbur
= 32.4 for complex [Au(C)2]

+).73

The reactivity studies presented here highlight the high
nucleophilicity and basicity of the new phosphonioacetylide 6′,
as well as its ability to function as a strong donor ligand. Like
other common neutral C- and P-donor ligands, such as NHCs
and phosphines, 6′ readily forms transition metal complexes.
However, its unique rod-shaped structure allows it to form
Lewis adducts even with bulky Lewis acids, such as tris(penta-
fluorophenyl)borane, which typically resist adduct formation
with bulky phosphines or NHCs, often resulting in frustrated
Lewis pair systems.81–83

Density functional theory calculations at the B3LYP/6-311G(d)
level were carried out to gain an insight into the ligand
properties of phosphonioacetylide 6′ and investigate how these
are influenced by phosphorus substituents and interactions
with alkali metal cations. As demonstrated by Wagler and co-
workers, the frontier orbital energies relevant for σ-, π-donor
and π-acceptor interactions reveal that common sp-hybridized
ligands, such as carbon monoxide and isocyanides, are signifi-
cantly weaker σ and π donors compared to phosphonioacety-
lide B (Fig. 5). The introduction of NHI substituents destabi-
lizes both donor and acceptor orbitals by approximately 1 eV,
leading to superior donor and weaker π-acceptor ability in the
case of 6′. This trend aligns with natural bond orbital (NBO)
analysis, which shows that NHI substitution increases the
negative charge on the C2 unit by 0.11 eV, with the most pro-
nounced increase at Cβ (Table 2). Simultaneously, Wiberg
bond indices indicate reduced backbonding from the C2 unit
to phosphorus. The phosphorus atom carries a large positive
charge, which is further amplified by the electronegative nitro-
gen atoms of the NHI substituents. The charge distribution
supports the resonance structure shown in Fig. 5, with the
NHI substituents promoting increased donation of the Cα

negative charge toward Cβ. This is further corroborated by
Wiberg bond indices, which show a higher Cα–Cβ bond order
for 6′ (2.59) compared to B (2.53). Notably, coordination to
alkali metals significantly reduces the polarity of the C2 unit
by redistributing charge toward Cβ and increasing the Cα–Cβ

bond order, while the overall negative charge of the C2 unit
increases only slightly. This effect is more pronounced with
the strongly polarizing lithium cation. These results support
experimental observations that 6′ is effectively stabilized by

coordination to alkali metal ions, particularly lithium.
Furthermore, they suggest that lithium complexes of other
phosphonioacetylides, such as B, should also be isolable and
stable under ambient conditions.

Experimental section

All experimental details are included in the SI.

Conclusions

In summary, a new rod-shaped phosphonioacetylide ligand is
reported including its synthesis, properties, and coordination
chemistry. By employing less bulky NHI groups at the phos-
phonium centre compared to the isolable phosphonioacetylide
C, we successfully tuned the steric and electronic properties of
this largely unexplored ligand class. Due to the better

Fig. 5 Relative energies of the frontier orbital relevant for σ-, π-donor
and π-acceptor interactions calculated with B3LYP/6-311G(d).

Table 2 Selected calculated natural atomic charges and Wiberg bond
indices with B3LYP/6-311G(d). R = di-tert-butylimidazolidin-2-
ylidenamino

Compound P in e Cα in e Cβ in e Li/K in e P–Cα Cα–Cβ Cβ–Li/K

Ph3PCC-Li
+ 1.57 −0.66 −0.42 0.95 1.01 2.80 0.09

Ph3PCC-K
+ 1.57 −0.76 −0.29 0.97 1.03 2.74 0.01

Ph3PCC (B) 1.57 −0.97 0.00 — 1.11 2.53 —
R2MePCC-Li+ 1.98 −0.65 −0.53 0.94 0.90 2.84 0.11
R2MePCC-K+ 1.98 −0.75 −0.40 0.95 0.93 2.79 0.09
R2MePCC (6′) 1.98 −0.98 −0.10 — 1.02 2.59 —
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accessibility of the reactive C2 unit, the free ligand is highly
labile at ambient temperature but sufficiently stable at −40 °C
to allow its structural characterization. In contrast, the corres-
ponding lithium and potassium complexes (3 and 4) can be
stored at ambient temperature, making them suitable for
further reactivity studies. These alkali metal complexes readily
undergo transmetallation with various electrophiles, providing
straightforward access to terminal phosphonioacetylide
complexes.

The new ligand exhibits high basicity and nucleophilicity,
clearly outperforming common sp-hybridized neutral carbon
ligands such as carbon monoxide and isocyanides in terms of
donor strength. Its donor ability is comparable to that of clas-
sical N-heterocyclic carbenes, while its low steric bulk
enhances its versatility. With this unique combination of
strong donor properties and minimal steric hindrance, the
rod-shaped ligand is expected to be of significant interest in
coordination chemistry, particularly in systems requiring
multiple strong donor ligands.
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