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The potential applications of the radioisotope *°Zr (t,, =
78.4 h, f* = 22.8%, Egmax = 901 keV) in medical imaging and
therapy have attracted significant attention."™" Deferoxamine
(DFO), known for its excellent biocompatibility, is widely used
as a hexadentate chelator in clinical and preclinical trials for
binding with %Zr."'°>* However, due to the large ionic radius
and octahedral coordination preference of *°Zr,'*?*®’ the
Zr'V-DFO hexadentate chelate often experiences in vivo deme-
tallation, potentially affecting bone uptake,*****® bone
marrow radiation dose, and nuclear medicine diagnostics
precision.'®?"*?"*2 To address DFO’s incomplete coordination,
auxiliary ligands, including water molecules and other anions
in the solution, fill vacant coordination sites. Additional
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Synergistic coordination in 8°Zr-DFO
(deferoxamine) complexes: computational and
experimental insights into auxiliary ligands¥

*aP | jli Wen,P Pingping Zhao,?

© Georg Schreckenbach, (2 *€
ab

This study combines computational and experimental methods to investigate how auxiliary ligands
enhance thermodynamic stability in hexacoordinate 8°Zr-DFO (deferoxamine) complexes. Strong
electrostatic interactions favour HPO42~ over H,0, Cl=, COs%~ and C,04%", indicating superior stability for
advanced medical diagnostics and treatment applications.

research indicates that these auxiliary ligands directly affect
the spectroscopic, magnetic, and electronic structure pro-
perties of the complex. Moreover, they can alter the oxidation
state of the central atom.**”>" Therefore, a systematic investi-
gation of interactions between 5°Zr'"V-DFO complexes and
auxiliary ligands not only reveals the essence of these inter-
actions but also emphasizes the crucial role of auxiliary
ligands in competing for coordination positions.

Small molecules or ions, with minimal susceptibility to
steric repulsion effects, efficiently bind into the first coordi-
nation sphere of metal complexes, demonstrating remarkable
specificity in these interactions.*>**>> As a result, this work
systematically characterizes a range of DFO aqueous complexes
that may form during the synthesis of ®°Zr-labeled
chelators,*****% involving tetravalent Zr'"" coordinated with
both monodentate and bidentate ligands. These auxiliary
ligands that form such complexes are commonly present
under typical experimental conditions, such as H,O (solvent)
Cl™ (for ion exchange or elution), C,0,>~ (for complexation),
and CO,;*~ and HPO,>~ (as buffer components).>® >%¢°

All calculations were performed using density functional
theory at the PBE-D3/TZ2P level; solvent effects were incorpor-
ated into all calculations using the conductor-like screening
solvation model (COSMO), as detailed in Part 1 of ESL.{ The
study comprehensively assesses thermodynamic stability and
intrinsic coordination mechanism through simulations of
interactions between auxiliary ligands and Zr'Y-DFO com-
plexes. Experimentally, thermodynamic stability sequences
were analyzed using radio-thin layer chromatography (radio-TLC)
combined with high-performance liquid chromatography (HPLC),
as detailed in Part 1 of ESL{ This dual approach elucidates the
roles of different auxiliary ligands, providing insights into the
coordination dynamics and stability of Zr'¥~-DFO complexes.

This journal is © the Partner Organisations 2025


http://rsc.li/frontiers-inorganic
http://orcid.org/0009-0004-9508-0820
http://orcid.org/0000-0001-9148-8635
http://orcid.org/0000-0002-9078-5651
http://orcid.org/0000-0002-8979-5844
http://orcid.org/0000-0002-4614-0901
http://orcid.org/0009-0006-8293-8845
http://orcid.org/0000-0001-7847-7704
https://doi.org/10.1039/d5qi00879d
https://doi.org/10.1039/d5qi00879d
https://doi.org/10.1039/d5qi00879d
http://crossmark.crossref.org/dialog/?doi=10.1039/d5qi00879d&domain=pdf&date_stamp=2025-06-19
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5qi00879d
https://pubs.rsc.org/en/journals/journal/QI
https://pubs.rsc.org/en/journals/journal/QI?issueid=QI012013

Open Access Article. Published on 14 April 2025. Downloaded on 1/20/2026 5:43:32 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Inorganic Chemistry Frontiers

We studied the eight possible geometric isomers of DFO,*
where the most stable structure was used for the subsequent
studies (A-N-cis, cis; see Part 2 of the ESI{). Initially, the Zr'"-
DFO complex, atomic plane 1 (green in Fig. 1a), consisting of
O atoms from three N-O bonds, and atomic plane 2 (grey in
Fig. 1a), consisting of O atoms from three C-O bonds, exhibits
a shape reminiscent of a trigonal antiprism (TAP). This
arrangement creates additional space for the complementary
coordination of auxiliary ligands. Concurrently, Fig. 1b illus-
trates the octacoordinated structure of Zr" (see Part 3 of ESI}
for details), resembling a square antiprism (SAP). Upon intro-
ducing auxiliary ligands (Fig. 1c) into Zr'Y-DFO, anionic
ligands with high electronegativity (compared to the H,O
ligand) selectively occupy the synergic coordination (SC) 1 and
2 positions within the octahedral coordination sphere
(depicted in Fig. 1b). This not only induces an expansion of
the first coordination sphere but also leads to an increase in
the twist angles o, and w, (see Part 4 of ESIt). These findings
imply that the integration of auxiliary ligands may improve the
thermodynamic stability of the chelate complex, which has
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()

- \ oA

View Article Online

Research Article
been reported in previous studies.'>®" Furthermore, the com-
puted bond lengths of the Zr™-DFO complex closely corres-
pond to previously reported values,”'*?**%'~%? providing robust
validation for the reliability of our methodology (see Part 5 of
the ESIY).

Intriguingly, the introduction of water molecules unfolds in
a unique way. Occupying the first coordination site, one water
molecule impedes subsequent entry due to repulsion from the
electron density shield formed by its oxygen atoms and those
in DFO.>"?*?7%1 Consequently, access to the first coordi-
nation layer becomes challenging, and it has also been men-
tioned in previous literature that there is at least a very tight
bound intrabulbar water in the complex of Zr'Y-DFO and
H,0,>”"%* which is consistent with the formation of a dyna-
mical fluctuating [Zr'""(DFO)("™H,0)(°"*H,0)]" complex with a
relatively ‘loose’ 7-/8-coordination (see Part 6 of ESIf for
details). This inclination facilitates easy exchange between the
complex and other solvent-coordinated molecules.

Energy decomposition analysis (EDA) combined with the
natural orbitals for chemical valence (NOCV) method was
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Fig. 1 (a) Optimized geometry of Zr'¥—DFO complex and top view of its hexacoordinate sites. (b) Schematic diagram of the transition of Zr" from
hexa-coordinate to octa-coordinate configuration upon the addition of auxiliary ligands. The torsion angles v, 0, ® 1 and o' > define the angles
between the corresponding atoms in atomic plane 1 (P1) and atomic plane 2 (P2), respectively. Pink: Zr'V; red: O; orange: synergic coordination (SC)
atoms. (c) Electrostatic potential maps of mono- and bidentate ligands. Blue surface: electronegative regions; red surface: electropositive regions.
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employed to delve into the chemical bonding properties. The
EDA results indicate that the AE;, values for the anionic
(auxiliary ligands) complexes (—232.17 to —288.72 kcal mol ™)
are significantly more negative than that of the water mole-
cular complex (—28.79 kcal mol™"), suggesting much stronger
interactions (see Part 7 of ESIt). EDA analysis further reveals
that electrostatic interaction (ionic bonds) are consistently
dominant, with orbital interactions (covalent bonding) as
secondary.

The EDA-NOCYV calculations allow for a further breakdown
of AE,y, into pairwise orbital interactions (see Fig. 2).°>°¢ The
results show that the pairwise orbital interactions in the
[zr™(DFO)(HPO,)]” and [Zr"(DFO)(COs)]~ complexes (—45.74
and —46.02 kcal mol™') are more negative than those in the
other complexes, indicating more intense charge transfer. The
Apy of [Zr™(DFO)(HPO,)]” and [Zr"(DFO)(CO;)]” complexes
primarily involves the donation of electrons from the non-
bonding molecular orbitals (NBMO) to the 4d/5s shell orbitals
of Zzr". Similar to actinyl(vi) complexes, small synergistic
ligands with partial = bonding significantly influence the
coordination, supporting our conclusions.** Conversely, the
pairwise orbital interactions in [Zr"(DFO)(™H,0)(°"*H,0)]"
(=15.64 kcal mol ™) are the weakest. Information on other con-
tributions Ap are given in Part 7 of ESL.}

Further, the relative thermodynamic stabilities of the auxili-
ary ligands binding to Zr"V-DFO were evaluated through
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quantum chemical calculations (see Table 1 and Parts 1 and 8 of
ESIt). The results from complex formation and ligand substi-
tution reactions indicate that when an anion undergoes synergis-
tic coordination, the thermodynamic stability of the complex
exceeds that of the corresponding aqueous complex. Specifically,
the sequence is as follows: HPO,*~ (—107.98 kcal mol ™) > CO;>~
(-25.35 kcal mol™) > C,0,>" (-20.65 kcal mol™) > CI~
(—13.95 kecal mol™) > H,0 (~0 kcal mol™, due to water acting as
both the solute and solvent molecules). Notably, the stability of
HPO,”” binding to Zr"V-DFO is significantly superior. Further
theoretlcal simulations of the complex stability constant (logf)
(see Part 1 of ESIf for the calculation details), yielded results
consistent with the thermodynamic stability analysis (see Part 8
of ESIf). To investigate the source of the enhanced stability of
the [Zr"™(DFO)(HPO,>")]” complex, we analyzed the bonding
interactions between the auxiliary ligand and Zr'"-DFO using
bond critical points (BCPs) from the quantum theory of atoms
in molecules (QTAIM). Our analysis revealed that the HPO,>~
ligand forms additional hydrogen bonds with H atoms on the
DFO chain (C-H---Ogg: 1.96 A; C-H---Og,: 1.98 A, further details
are provided in Part 3 of the ESIt). These additional hydrogen
bonds may contribute to the higher thermodynamic stability of
the [Zr™(DFO)(HPO,>")]” complex compared to the other com-
plexes. In contrast, for CO;>~, C,0,>, and CI~, the interactions
with Zr'V are predominantly driven by direct coordination, with
little to no hydrogen bonding.
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Fig. 2 Plots of EDA—-NOCYV deformation densities Ap (isovalue = 0.0015) of the pairwise orbital interactions and the associated fragment molecular
orbitals for the different forms of interacting fragments. Energy values for each interaction are enclosed in brackets (kcal mol™). The charge flow
direction is depicted from green to purple. The labels r, NBMO and c* represent n-bonding, non-bonding and c-antibonding molecular orbitals,

respectively.

4180 | /norg. Chem. Front,, 2025, 12, 4178-4185

This journal is © the Partner Organisations 2025


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5qi00879d

Open Access Article. Published on 14 April 2025. Downloaded on 1/20/2026 5:43:32 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Inorganic Chemistry Frontiers

View Article Online

Research Article

Table 1 Gibbs free energy (kcal mol™) of complex formation reaction and ligand substitution reactions in aqueous solution obtained at PBE-D3/

TZ2P levels

Complex formation reactions

Gibbs free energies (AG)

ZrV(DFO)]" + 2C1” = [ZrIv DFO)(Cl),]~
Zr"V(DFO)|" + CO;>~ [ DFO)(CO3)|~
Zr"V(DFO)|' + C,0,>” = Zr \gDFO)(C ,04)]”
Zr"V(DFO)|" + HPof* (DFO)(HPO,)]~

-13.95
—25.35
—20.65
—107.98

Ligand substitution reactions

Gibbs free energies (AAG)

To date, numerous studies have shown that the radio-thin
layer chromatography (radio-TLC) combined with high-per-
formance liquid chromatography (HPLC) can effectively evalu-

Zr™(DFO)("H,0)(°*"*H,0)]" + 2CI~ = [2r"Y(DFO)(Cl),]” + 2H,0 -13.65
IV + 2

Zr™V(DFO)(""H,0)(°"*H,0)|" + CO;>~ = [Zr"(DFO)(CO,)]™ + 2H,0 -25.05

2" (DFO)(""H,0)(**H,0)]' + C,0,”” = [Zr"(DF0)(C,0,)]” + 2H,0 —20.35
vV + 2 T

Zr"V(DFO)(""H,0)(°"'H,0)]" + HPO,>~ = [Zr"V(DFO)(HPO,)]” + 2H,0 -107.68

ZrIV(DFO)(Cl) L+ co32— Zrl\:‘gDFO) CO;)]” +2CI~ —-11.40

Zr"V(DFO)(Cl),]™ + C,0,*~ (DFO)(C,0,4)]” +2C1~ -6.70

Zr"V(DFO)(Cl),]” + HPO42_ [ZrIV(DFO)(HPO4)] +2CI- —94.03
vV 2. vV 2

Zr"V(DFO)(CO3)|™ + C,0,>~ = [Zr"Y(DFO)(C,0,4)]” + CO5>~ 4.70

ZrIV(DFO)(CO3)] + HPO,>~ = [2r"(DFO)(HPO,)]” + CO5*~ —82.63

Zr"(DFO)(C,0,)]” + HPO,>~ = [Zr"(DFO)(HPO,)]” + C,04>~ —87.33

ate the purity, concentration, and in vitro stability of [**Zr]Zr-
labeled radiopharmaceuticals.*®>>73%%7¢8 Baged on this, we
prepared fresh [*°Zr]Zr-DFO-CO5*~ and [*°Zr]Zr-DFO-HPO,>~
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Fig. 3 Labeling and in vitro stability of [¥°Zr]Zr—-DFO-ligand complexes. (a) Labeling of DFO and auxiliary ligands (HPO42~ and COs27) with 8°Zr. (b)

HPLC results for cold references Zr—DFO-ligand and Zr—

Blue and pink bars represent peak areas corresponding

DFO. (c) Percentage area plot from radio-TLC analysis of [(°Zr]Zr—-DFO-ligand complexes.
to free and chelated ®°7r, respectively. The square and circle symbols represent #°zrizr-

DFO-CO3%~ and [8°Zr1Zr-DFO-HPO,4%". (d) pH changes for [8°Zr]Zr—-DFO-ligand complexes over 144 hours. (e) Radio-TLC results of [8°Zr]Zr-DFO
and [®°Zr]Zr-DFO-ligand complexes. Gray, blue, and red peaks correspond to free 8°Zr, [8°Zr]Zr—-DFO-CO3?~ and [8°Zr]Zr—-DFO-HPO4%~ com-

plexes, respectively.
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complexes to validate the stability sequence (HPO,>~ > CO5>7).
Initially, 8Zr was produced using a cyclotron, followed by sep-
aration, purification, and elution. The radiochemical purity of
purified ¥Zr exceeded 90% (see Part 9 in ESIt). Alkaline solu-
tions of Na,CO; and Na,HPO,, along with p-SCN-Bn-DFO,
were then added to neutralize the mixture to pH 7. The [**Zr]
Zr-DFO-CO;”” and [*Zr]Zr-DFO-HPO,>~ complexes were suc-
cessfully prepared by mixing at 37 °C for 60 minutes, as shown
in Fig. 3a. A more detailed preparation process is provided in
Part 1 of ESL.{

The radiolabeled yield of the complex was measured using
radio-TLC (Fig. 3c and e). For complex systems, specific
labeled complexes are typically identified by measuring reten-
tion factor (Ry) values ranging from 0 to 1. Free **Zr (unbound
R; ~ 1) served as a control (grey area). The [**Zr]Zr-DFO-CO;>~
complex shows two peaks (bound R¢ ~ 0 and unbound Ry = 1),
while the [**Zr]Zr-DFO-HPO,>~ complex shows only one peak
(R¢ ~ 0). Further analysis revealed that the peak area ratios of
the [*°Zr]Zr-DFO-CO;>~ system did not increase linearly over
1, 6, and 24 h (Fig. 3c). The observed decrease in chelation
content after 6 h suggests several important trends, as shown
in our pH data (Fig. 3d): (1) significant pH changes, particu-
larly in the [*°Zr]Zr-DFO-CO,;*~ system, may be due to the
decomposition of carbonic acid. (2) After 6 hours, the pH of
the complex solution showed an inverse correlation with the
[#°Zr]Zr-DFO-CO,*~ complex activity: higher pH values corre-
sponded to lower complex activity. These observations suggest
that two main complex forms exist in solution: [**Zr]Zr-DFO
and [*Zr]Zr-DFO-CO;*". The gradual loss of carbonate ions
over time likely contributes to the observed decrease in [*°Zr]
Zr-DFO-CO;>~ complexation.

On the other hand, a small amount of ZrCl, and alkaline
solutions (Na,CO; and Na,HPO,) were reacted with excess
DFO in water for 60 min under neutral conditions to prepare
the nonradioactive Zr-DFO, Zr-DFO-CO;>~, and Zr-DFO-
HPO,>~ complexes at room temperature. The peaks in HPLC
correspond to individual components, identified by their
retention time. The results indicated that the retention times
of Zr-DFO, Zr-DFO-CO;*~, and Zr-DFO-HPO,>~ were 11.90,
11.03, and 11.04 minutes, respectively, confirming the identity
of each complex (Fig. 3b). These finding highlight HPO,>™’s
superior complexation capacity (thermodynamic stability) with
897r-DFO over time. In addition, at 37 °C, [*°Zr]Zr-DFO-CO;>~
and [*°Zr]Zr-DFO-HPO,>~ were stable in human serum over 7
days. The results are shown in Part 10 of ESL.f In summary,
the thermodynamic stability of **Zr-DFO complexes was rigor-
ously evaluated via radio-TLC and HPLC, conclusively demon-
strating that the [**Zr(DFO)HPO,]” complex exhibits superior
stability compared to other complexes, consistent with theore-
tical predictions discussed above.

Conclusions

In summary, intermolecular electrostatic interactions, specifi-
cally ionic bonding, play a crucial role in determining the char-

4182 | Inorg. Chem. Front,, 2025, 12, 4178-4185
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acter, such as the structure and thermodynamic stability, of
the complexes. Both theoretical and experimental evidence
confirm that HPO,>~ significantly improves the stability of
complexes through its unique coordination pattern and hydro-
gen bonding interactions compared to alternative ligands such
as CO5>~, showing good radiolabelling efficiency and in vitro
stability (7 day integrity in serum). Considering the impact of
different coordinating molecules on the octahedral complex of
897r and practical factors such as the thermal stability of the
complexes and subsequent modifications, we believe that this
study will advance the development of highly stable chelating
agents for 8°Zr, supporting precise quantitative applications of
biomarkers such as immune positron emission tomography
(PET) and prostate-specific membrane antigen (PSMA).
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