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Harnessing the dual role of DMSO in the synthesis
of SbOCl·DMSO: an excellent nonlinear optical
crystal with unique 1D spiral chain†
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Nonlinear optical (NLO) materials are essential for applications such as laser micromachining and optical

parametric oscillations. An ideal NLO material should exhibit a large second-harmonic generation (SHG)

coefficient, moderate birefringence and a short cut-off edge. However, achieving these properties simul-

taneously in a single material remains a significant challenge due to their distinct structural requirements.

In this study, we report the synthesis of a novel NLO material, SbOCl·SO(CH3)2 (SbOCl·DMSO), which fea-

tures an optimized 1D helical chain structure. For the first time, the polar organic molecule dimethyl sulf-

oxide (DMSO) is introduced into the SbCl3 system, where it coordinates with an Sb atom via Sb–O bonds,

modifying the chain structure. This unique 1D [SbOCl]∞ helical chain enhances the compound’s polariz-

ability and optical anisotropy, leading to excellent optical properties. SbOCl·DMSO exhibits a large SHG

coefficient of 4.4 × KDP at 1064 nm, moderate birefringence of 0.084@546 nm and a short UV cut-off

edge of 331 nm, making it a highly promising candidate for NLO applications. This work highlights the

importance of synergistic molecular design and provides a new strategy for the development of high-per-

formance frequency-doubling crystals.

Introduction

Nonlinear optical (NLO) materials are essential components in
ultraviolet (UV) solid-state lasers, which have widespread appli-
cations in laser-driven technologies such as laser photolitho-
graphy, quantum entanglement, medical treatments, and laser
micromachining.1–12 Efficient screening of NLO crystals with
high conversion efficiency under intense laser irradiation
remains a significant challenge. To be effective in UV NLO
applications, an ideal crystal must exhibit the following key
properties: a large NLO coefficient (dij ≥ 0.39 pm V−1), moder-
ate birefringence (0.06–0.12) and a short UV cut-off wavelength
(≤400 nm).13–16 However, achieving these properties simul-
taneously is particularly difficult due to the conflicting struc-
tural requirements for the second-harmonic generation (SHG)

effect and bandgap optimization.17,18 Therefore, it is impera-
tive to explore innovative strategies that can balance these
optical properties and meet all three criteria.

In light of the correlation between structural characteristics
and optical properties, the microscopic properties of func-
tional groups determine the macroscopic properties of
compounds.19,20 Functional groups with high polarizability
and optical anisotropy are beneficial for compounds to exhibit
high frequency doubling effect and large birefringence.
Recently, multiple researchers have proposed that the incor-
poration of metal cation twisted polyhedral, particularly
those featuring stereochemically active lone pair (SCALP)
electrons, will substantially promote total optical anisotropy
and polarizability based on theoretical calculations,21,22

such as Sn2PO4I (0.664@546 nm),23 (C5H5NO)(Sb2OF4)
(12 × KDP, 0.513@546 nm),24 (SbTeO3)(NO3) (2.2 × KDP,
0.081@546 nm),25 etc. Interestingly, the metals (M) with
SCALP electronics exhibit rich coordination modes, e.g. [MO5]
square pyramid, [MO4] seesaw and [MO3] triangular pyramid,
which is beneficial for the target compound to exhibit a rich
structure. However, it is worth noting that these systems con-
taining SCALP electrons are prone to oxidation in air and
hydrolysis in water, and there is an urgent need to explore
appropriate strategies to address this issue.26–29 Recently, our
research group has successfully synthesized a series of high-
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performance frequency doubling crystals by introducing
solvent-free synthesis, ionothermal synthesis, and low-temp-
erature molten salt synthesis, methanol evaporation synthesis
and other methods, such as GeHPO3 (10.3 × KDP,
0.062@546 nm),30 Rb2SbFP2O7 (5.1 × KDP, 0.15@546 nm),31

CsSbF2SO4 (3 × KDP, 0.112@546 nm),32 RbSbSO4Cl2 (2.7 ×
KDP, 0.11@546 nm).33

In our continued exploration of synthesis methods, we
found that polar organic molecule dimethyl sulfoxide (DMSO)
serves multiple roles. First, it acts as a versatile solvent,
capable of dissolving both polar and non-polar compounds,
including various inorganic salts, organic molecules, and poly-
mers. Its exceptional solubility promotes the efficient dis-
solution and uniform distribution of reactants, thus accelerat-
ing chemical reactions. Second, the near-neutral environment
provided by DMSO effectively prevents the hydrolysis of metal
cations (e.g., Sb3+, Ge2+, Sn2+), making it particularly suitable
for reactions sensitive to hydrolysis. Third, the oxygen atom in
DMSO, which possesses a lone pair of electrons, can form
coordination bonds with metal ions34—an attribute frequently
leveraged in the design and synthesis of metal complexes
(Fig. 1). Upon coordination, DMSO induces structural distor-
tions that enhance the anisotropy and polarizability of the
resulting compound, subsequently improving its optical pro-
perties. These characteristics make DMSO especially valuable
in the development of NLO materials.

However, the introduction of metal polyhedra containing
SCALP into the system often results in a red shift in the com-
pound’s band gap, making further enhancement of the band
gap increasingly difficult. This limitation poses a significant
challenge for their practical applications in the UV region.35,36

Previous studies have often addressed this issue by introdu-
cing highly electronegative, relatively light halogen elements
(such as F and Cl) to reduce orbital overlap, thereby widening
the band gap, improving UV transparency, and optimizing the
UV cut-off edge. Examples include compounds such as
NH4B4O6F

37 and ABiCl2SO4 (A = NH4, K, Rb).
38 Furthermore,

halide ions, due to their relatively large anionic polarizability,
can substantially enhance the overall polarizability of crystals,
thereby improving their nonlinear optical properties.
Consequently, by carefully selecting and incorporating
halogens, it is possible to effectively tune critical properties of
compounds, including the band gap, polarizability and
birefringence.

Guided by the insights from previous research, we explored
a system containing SCALP electrons using DMSO as both a
reactant and solvent, while incorporating halide ions into the
system. This approach led to the successful development of an
exceptional UV NLO crystal, SbOCl·SO(CH3)2 (SbOCl·DMSO).
Notably, in this compound, the DMSO molecule is coordinated
to the [SbOCl]∞ 1D chain through an Sb–O bond, marking a
novel feature in existing Sb-based systems. It is well-estab-
lished that in one-dimensional (1D) structures, the orderly
arrangement of chain units along a specific direction facili-
tates more regular charge distribution, which enhances polar-
izability and anisotropy. This, in turn, improves the com-
pound’s nonlinear optical effects and birefringence. The opti-
mized 1D chain structure enables perfect synergy between the
[DMSO] and [SbO3Cl]

4− bifunctional groups, resulting in an
excellent balance of optical properties, including a large
second-harmonic generation (SHG) coefficient (4.4 × KDP),
moderate birefringence (0.084@546 nm) and a short UV cut-
off edge (331 nm). These properties suggest that SbOCl·DMSO
is a highly promising NLO material. This study offers valuable
structural design insights for the future synthesis of high-per-
formance NLO crystals containing SCALP electrons.

Results and discussion
Crystal synthesis

SbCl3 (99.9%, Aaladdin) and DMSO (78.1%, Keshi) were
obtained from commercial sources in analytical grade and
used without additional purification.

SbOCl·DMSO crystals were successfully synthesized using
the solvent evaporation method (Fig. 2a). Initially, SbCl3
(0.228 g, 1 mmol) and DMSO (2 mL) were mixed in a beaker,
and stirred until it is completely dissolved. The solvent was
then allowed to evaporate at room temperature over a period of
5 days. During this process, Sb atoms effectively coordinated
with oxygen atoms from DMSO, forming Sb–O coordination
bonds, which led to the precipitation of block-shaped, trans-
parent SbOCl·DMSO crystals. The yield of the crystals was 46%
(based on Sb) (insert of Fig. 3b).

Crystal structures

The SbOCl·DMSO compound, composed of two independent
Sb atoms, two Cl atoms, four O atoms, and two independent
DMSO molecules (Fig. 2b), crystallizes in the orthorhombic
space group Pca21 (no. 29). In this structure, each Sb atom is
three-coordinated to two O atoms and one Cl atom, forming a
[SbO2Cl]

2− trigonal pyramid (Fig. 2c). The DMSO molecules
are integrated into this chain through Sb–O coordination
bonds, with bond lengths ranging from 2.225 to 2.246 Å,
resulting in a [SbOCl·DMSO]∞ 1D organic–inorganic hybrid
spiral chain. The Sb atom ultimately adopts the [SbO3Cl]

4−

coordination mode (Fig. 2d). This hybrid chain significantly
enhances the compound’s polarizability and optical anisotropy
(Fig. 2e). Finally, these chains are assembled into a 3D frame-
work via van der Waals interactions (Fig. 2f).

Fig. 1 Active bidentate sites locate on [DMSO]. Electrostatic potential
map on [DMSO].
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Chemical phase and stability analysis

As shown in Fig. 3a, the powder X-ray diffraction (PXRD) pat-
terns of compound SbOCl·DMSO show a strong correlation
between the experimentally observed diffraction pattern and
the theoretically calculated pattern based on single crystal

X-ray diffraction data. This agreement confirms the purity of
the experimental sample. In addition, to confirm the stability
of the compound, we exposed the crystal to air for over
120 hours and performed powder XRD analysis on the sample
after exposure. The results indicate that the sample does not
undergo deliquescence and exhibits good stability.

Fig. 2 (a) Schematic diagram of the synthetic route; ball and stick representations of (b) the [DMSO] and (c) [SbO2Cl]
2− triangular pyramids; (d)

[SbO3Cl]
4− seesaw; (e) the 1D [SbOClDMSO]∞ organic–inorganic hybrid spiral chain; (f ) the 3D framework structure of SbOCl·DMSO viewed in the

ac plane.

Fig. 3 (a) XRD patterns of the SbOCl·DMSO; (b and c) UV-vis diffuse reflectance spectra for SbOCl·DMSO (the insert of (b) is the image of
SbOCl·DMSO crystals); (d) birefringence measurement on the SbOCl·DMSO crystal; (e) phase-matching curve of SbOCl·DMSO (the insert is the SHG
signals of SbOCl·DMSO and SbOCl·DMSO’-after being exposed under humid air at room temperature for more than 120 h).
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The thermogravimetric analysis (TGA) curve of
SbOCl·DMSO is shown in Fig. S1a.† It has been demon-
strated that SbOCl·DMSO remains stable up to approxi-
mately 120 °C. PXRD analysis further confirms that
Sb2O4 is the decomposition product of this compound
(Fig. S1b†).

Optical properties

The UV-vis diffuse reflectance spectra of the SbOCl·DMSO
compound are shown in Fig. 3b and c. The compound exhibits
a bandgap of 3.74 eV, with a UV absorption edge around
331 nm, indicating that it possesses a wide transmission range
and qualifies as an excellent NLO crystal.

The IR spectrum of SbOCl·DMSO is shown in Fig. S2.† The
asymmetric stretching vibration of the Sb–O bond is observed
at 607 cm−1, while the bending vibration of the Sb–Cl bond
appears at 501 cm−1. The stretching vibration of the C–S
bond is noted at 783 cm−1. The peaks near 912/1350/
3003 cm−1 can be attributed to the deformation vibration and
asymmetric stretching vibration of CH3 in DMSO. These
vibrations are generally consistent with previously reported in
the literature, confirming the presence of Sb–O/Cl and DMSO
groups.39,40

The birefringence of SbOCl·DMSO was measured using a
Zeiss Axio A5 polarizing microscope. As shown in Fig. 3d, the
compound exhibits moderate birefringence of 0.084@546 nm.
To better understand the relationship between structure and
birefringence, we classified SbOCl·DMSO and other reported
oxygen-containing Sb-based NLO crystals according to their
structural dimensions, categorizing the birefringence ranges
for compounds in each dimension (Fig. 4). The figure reveals
that Sb-based oxygen-containing salts with a 1D structure
dominate the distribution, with the highest proportion of com-
pounds exhibiting moderate birefringence. This suggests that
a 1D structure is more likely to result in moderate birefrin-

Fig. 4 Dimensional distribution statistics and birefringence distribution
maps of the SbOCl·DMSO with the most Sb-based oxygen containing
acid salt NLO crystals in each dimension. All data are available in
Table S5 in the ESI.†

Fig. 5 (a) The angle diagram between the direction of lone pairs and the nmin in SbOCl·DMSO; (b) the orientation of dipole moments in the unit cell
for [SbO3Cl]

4− groups in SbOCl·DMSO, the direction of the overall dipole moments is highlighted by brown arrow; (c) comparison the hyperpolariz-
ability of [SbO2F2], [SbOF3] [SbO2Cl2], [SbO3F], and [SbO3Cl]; (d) the radar plot of band gap Eg, SHG effect dij and Δn for SbOCl·DMSO; (e) the birefrin-
gence and SHG diagram for the SbOCl·DMSO with the most Sb-based oxygen-containing acid salt NLO crystals. All data are available in Table S5 in
the ESI.†
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gence. In the case of SbOCl·DMSO, the excellent 1D helical
chain structure could play a crucial role in its moderate
birefringence.

To further demonstrate the impact of functional groups on
birefringence, we performed an in-depth analysis of the angle
between the functional groups and the minimum optical axis
(nmin). Pan et al. proposed that the smaller the angle between
lone pair orientation and nmin, the greater the contribution of
scalp metal cations to birefringence.41 From the Fig. 5a, we
can find that the angles between the SCALP electrons of Sb3+

and the direction of nmin not large (11.49°–65.33°), which
helps the compound exhibit a large birefringence.

The SHG responses of SbOCl·DMSO were measured using
the Kurtz–Perry method on sieved powder samples,42 with a
1064 nm laser serving as the fundamental wave. As shown in
Fig. 3e, the SHG effect of the compound gradually increased
with increasing powder particles, indicating that the com-
pound was type I phase-matchable. The compound endows a
significant SHG effect of approximately 4.4 times that of KDP.
In addition, we conducted a frequency doubling test on the
sample after being placed in air for more than 120 hours (the
purple line in Fig. 3e), and the test results showed that the

signal of the compound did not change significantly, once
again proving the stability of the compound. To provide a
clearer explanation of the origin of the frequency doubling
effect, the local dipole moments of [SbO3Cl]

4− seesaws were
calculated (Table S4†). The results show that the polarizations
in the x and y components are very small, while the z com-
ponent exhibits a large value of 74.48 D for the superposition,
which is consistent with the direction of the dipole moment of
the [SbO3Cl]

4− triangular pyramid shown in Fig. 5b. In addition,
we compared the hyperpolarizability of [SbO2F2], [SbOF3]
[SbO2Cl2], [SbO3F], and [SbO3Cl] (Fig. 5c). Clearly, the introduc-
tion of Sb–O coordination bonds results in a significant
increase in hyperpolarizability of [SbO3Cl]

4−. These results indi-
cate that the [SbO3Cl]

4− functional group makes significant con-
tribution to the frequency doubling of the compound.

Excessive birefringence can hinder the practical application
of NLO crystals by inducing drift effects and reducing conver-
sion efficiency.43 Therefore, it is crucial to synthesize NLO crys-
tals with moderate birefringence, which balances optical per-
formance and stability. In Fig. 5e, we compare the birefringence
of the title compound with that of other Sb-based oxygen-con-
taining acid salt NLO crystals.24,25,31–33,44–66 Additionally, we

Fig. 6 (a) The total DOS, partial DOS and –COHP; (b) the calculated linear refractive indices; (c) the calculated frequency-dependent SHG coeffi-
cients for SbOCl·DMSO; the SHG density for (d) occupied and (e) unoccupied states in the VE process in SbOCl·DMSO; (f ) the ELF map for
SbOCl·DMSO.
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compare their frequency doubling effects, as a large SHG coeffi-
cient directly enhances the conversion efficiency of NLO
materials. It is evident that the reported compound exhibits a
frequency doubling effect second only to BaSb(H2PO2)3Cl2 (5 ×
KDP, 0.09@546 nm), while maintaining moderate birefringence.
The comparison results show that the compound is an excellent
UV NLO crystal, which exhibits a good balance of large SHG
coefficient (4.4 × KDP), moderate birefringence (0.084@546 nm)
and short UV cut-off edge (331 nm) (Fig. 5d).

Theoretical calculation analysis

To further understand the relationship between the structure
and optical properties of the compound SbOCl·DMSO, we
carried out theoretical calculation using density functional
theory (DFT) method.67 The results show that the theoretical
band gap of SbOCl·DMSO is 3.80 eV. It is basically in agreement
with the experimental value of 3.74 eV, indicating that the calcu-
lation results are reasonable (Fig. S3†). The total and partial
densities of states (TDOS and PDOS) are shown in Fig. 6a. The
top of valence band (VB) is mainly contributed by the Cl 3p, O
2p, S 3p, C 2p and Sb 5p, and the bottom of conduction band
(CB) is mainly contributed by the Sb 5p, S 3p and O 2p. It is
well established that linear and nonlinear optical properties are
predominantly influenced by the states near the Fermi level
(Ef ). Consequently, the synergistic effect of [SbO3Cl]

4− and
[DMSO] contributes significantly to the outstanding optical pro-
perties of the compound. In addition, the –COHP analysis
paired with PDOS highlights the bonding states between Sb and
O that form coordination bonds near the Ef, further explaining
their contribution to the optical properties of the material.

The refractive index dispersion curve of compound
SbOCl·DMSO show that the compound is a biaxial crystal (nb >
nc > na) (Fig. 6b). The theoretical calculation of the birefrin-
gence index is 0.05@546 nm, which closely aligns with our
measured birefringence (0.084@546 nm). According to the
space group and Kleinman symmetry, there exists three non-
zero independent SHG tensor component. And the highest d24
is 6.3 × 10−9 esu@1.165 eV, which is closely with experimental
value (Fig. 6c). Additionally, the SHG-weighted electron density
of d24 for SbOCl·DMSO is investigated to dissect the origin of
SHG response (Fig. 6d and e). Since the virtual electron (VE)
processes of occupied and unoccupied states predominantly
govern the SHG effects, it is evident that Sb atoms, O atoms, S
atoms, and Cl atoms contribute to both occupied and unoccu-
pied electronic states. This reaffirms that the [SbO3Cl]

4− and
[DMSO] groups contributes significantly to the SHG response.
In addition, the electron localization function (ELF) map was
calculated (Fig. 6f), which exhibits the SCALP electrons on Sb
atoms. And the coordination bonds between Sb and O atoms
are proved.

Conclusions

In summary, we have successfully synthesized a novel NLO
material, SbOCl·DMSO, which exhibits a perfect balance of

optical properties: a short UV cut-off edge (331 nm), moderate
birefringence (0.084@546 nm) and a large SHG coefficient (4.4
× KDP). The synergy between the [SbO3Cl]

4− and [DMSO] func-
tional groups in the 1D helical chain structure is key to achiev-
ing these remarkable properties. This work paves the way for
the design of high-performance NLO crystals incorporating
SCALP electron systems and offers new insights into the future
exploration of NLO materials.
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