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(1,4)-Cycloaddition and C–X bond activation
reactions of monovalent group 13 diyls†
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Monovalent group 13 diyls of the type LM (L = HC[C(Me)NAr]2; Ar = 2,6-iPr2C6H3) are group 13 analogues

of NHCs. While LAl is known to undergo (1,4)-cycloaddition with a variety of dienes including arenes, LGa

only reacted with acyclic dienes, i.e., butadiene and Danishefsky’s diene, via (1,4)-cycloaddition to give

LGa(C6H10) (1) and LGa(C8H16O2Si) (2), whereas LIn completely failed to react with these substrates.

However, LGa and LIn both reacted with the electron-poor hexachlorobutadiene with oxidative addition

of the allyl C–Cl bond to give L(Cl)M(C4Cl5) (M = Ga 3; In 4). Similarly, L(X)MR (X = Cl, R = Bn, M = Ga 5, In

6; X = Br; R = Et, M = Ga 7, In 8) were obtained from oxidative addition with alkyl halides. Compounds

3–8 did not react with benzaldehyde, whereas the cation [LGaCH2Ph]
+ (10), obtained by reaction of L(Cl)

GaBn with AgOTf and NaB(C6F5)4, reacted rapidly, but no defined reaction product was identified.

The syntheses and structural characterization of monomeric
group 13 diyls LM (Al,1 Ga,2,3 In,4 Tl5) stabilized by the steri-
cally demanding, N,N‘-chelating β-diketiminate substituent
(L = HC[C(Me)NAr]2; Ar = 2,6-iPr2C6H3) represent milestones in
low-valent main group element chemistry. These monovalent
carbenoidic compounds, in which the metal centers adopt the
oxidation state +1, are highly reactive toward a wide range of
substrates.6–11 In particular, their potential to activate small
molecules in oxidative addition reactions has raised tremen-
dous interest since such reactions are typically a domain of
transition metal complexes.

The transition metal-like behaviour of group 13 diyls results
from the presence of an energetically high-lying donor orbital
(HOMO) and a low lying acceptor orbital (LUMO).6–11,12 The
HOMO–LUMO energy gap was found to increase with increasing
atomic number of the group 13 element resulting from a more
stabilised HOMO (lower in energy) and a destabilized LUMO
(higher in energy).13 As a consequence, both alanediyl LAl and
gallanediyl LGa are far more reactive than indanediyl LIn.

The ability of both LAl and LGa to undergo oxidative
addition reactions was demonstrated in several reactions with

compounds containing E–H bonds (Al: E = H, Si, B, Al, C, N, P,
O;14 Ga: H, Sn, O, N, P, Sb, Bi15) and C–F bonds (Al,16 Ga17),
respectively. Moreover, insertion reactions of LM (M = Al, Ga,
In) into E–E bonds of group 1518 and 1619 elements, which rep-
resent oxidative addition reactions to the group 13 diyl, and
the synthesis of metallapnictenes LMPnM(X)L with M–Pn
double bonds,20,21 dipnictenes [L(X)MPn]2 with Pn–Pn double
bonds,22 and pnictogen-centered radicals [L(X)M]2Pn

•21,23 (M =
Al, Ga, In; Pn = P, As, Sb, Bi) by reactions of LM with PnX3

(Pn = halide, NR2, OR) have been reported. Interestingly, the
activity of a homobimetallic β-diketiminate Ga(I) compound
for bond activation reactions was found to be even larger com-
pared to that of monometallic LGa, indicating a beneficial
cooperative effect of the two Ga(I) centers.17,24

While bond activation reactions have been reported, (1,4)-
cycloaddition reactions of neutral group 13 diyls are rather
unexplored and to the best of our knowledge limited to reac-
tions of LAl with conjugated C–C double bond systems includ-
ing (substituted) butadienes (Scheme 1),25 whereas (1,4)-cyclo-

Scheme 1 Structurally characterized (1,4)-cycloaddition products of
alanediyl LAl with conjugated organic π-systems.
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addition reactions with LGa and LIn were only reported for
heteroatomic diene systems, i.e. α-diketones.26 (1,4)-cyclo-
addition reactions of LAl were also observed with benz-
aldehyde derivatives, and as-formed products were used in
cross-coupling reactions with unsaturated substrates.27

We herein report on systematic reactivity studies of group
13 diyls with different dienes as well as on oxidative addition
reactions with alkyl and aryl halides.

Results and discussion

LGa reacted with both 2,3-dimethylbutadiene and (E)-1-
methoxy-3-trimethylsilyloxy-1,3-butadien (Danishefsky’s
diene28) at elevated temperature (80–90 °C) in good yields to
compounds 1 (64%) and 2 (54%) (Scheme 2), whereas any
attempts to react these diyls with cyclic dienes, i.e. 1,3-cylohex-
adiene, 1,3-cyclooctadiene, 1,3,5-cycloheptatriene, 1,3,5,7-
cyclooctatetraene, failed. In marked contrast, the corres-
ponding alanediyl LAl was found to react also with aromatic
dienes at ambient temperature,25c,d whereas LIn did not react
with any of these dienes. Since Ga and Al have almost identical
covalent radii,29 steric effects cannot be responsible for the
lower reactivity of LGa compared to LAl but rather their
different frontier orbital energies. Interestingly, neutral LGa as
well as the charged gallanediyl species [(dpp-bian)Ga]+ (dpp-
bian = N-protonated 1,2-bis[(2,6-diisopropylphenyl)imino]ace-
naphthene) and [Ga(PDIdipp)]− (PDI = 2,6-(2,6-iPr2C6H3NCMe)2-
C5H3N) also show different reactivities towards the diene.
While the cycloaddition reaction with 2,3-dimethyl-1,3-buta-
diene and [Ga(PDIdipp)]−, similar to that of LGa, required a
reaction time of one day at 80 °C, the reaction with [(dpp-bian)
Ga]+ was almost instantaneous at ambient temperature.30

As the cationic Ga(I) species reacts rapidly with electron-
rich dienes in contrast to the neutral and anionic species, we
became interested to investigate how the latter react with elec-
tron-poor dienes. However, both LGa and LIn both reacted
with the electron-poor hexachlorobutadiene at room tempera-
ture selectively with oxidative addition of the secondary C–Cl
bond to give compounds 3 (51%) and 4 (40%), respectively.

Neglecting the fact that the primary chlorine atoms are less
sterically constrained, the insertion should statistically occur
in a two-to-one ratio at the primary C centre. However, the
chlorine atoms at the secondary carbon atom are of allylic
nature, which weakens the Cl–C bond. Consequently, this
stabilizes both ionic and radical intermediate and transition
states, thereby activating the bond for the oxidative addition
with group 13 diene. The selectivity toward the formation of
compound 3 is likely higher than the isolated yield suggest,
and hence no other reaction products were isolated (see
Fig. S30†).

Compounds 1–4 show the expected resonances in their 1H
and 13C NMR spectra including the characteristic singlets for
the γ-H proton (approx. 5 ppm) and the symmetrically equi-
valent Me groups of the β-diketiminate ligand (1.5–2 ppm) as
well as sets of doublets (0.5–2 ppm) and septets (2.5–4.5 ppm)
for the iPr groups of the aryl groups (Table S1†). The 13C NMR
spectra also clearly prove the formation of the cycloaddition
products due to characteristic resonances for an unsaturated
GaC4 heterocycle (Table 1), with the deshielded C centers at
the double bond and the shielded C centers proximal to the
heteroatom. Unfortunately, due to the absence of protium in 3
and 4, the detection and assignment of the diene by 13C NMR
spectroscopy was difficult, and the proximal carbon atom for 3
and 4 could not be observed.

Oxidative addition reactions of C–X bonds to group 13 diyls
have been frequently reported for LGa, which was shown to
react with several chloromethanes and -silanes as well as
bromoalkanes.31,32 In contrast, LIn is less reactive, and so far
only C–Br and C–I bond activation reactions with bromo- and
iodoalkyls were reported, respectively.33 We therefore became
interested in expanding our studies to reactions of LM with
alkyl/aryl halides.

LGa and LIn reacted with benzylchloride (BnCl) and EtBr
with C–X bond activation (X = Cl, Br) and formation of L(X)MR
(M = Ga, In; X = Cl, Br; R = Et, Bn, 5–8, Scheme 3) in good
yields (5 91%, 6 61%, 7 90%,31 8 85%). Unlike the cyclo-
addition reactions 1 and 2, which required elevated tempera-
tures or did not react at all in the case of LIn, this oxidative
addition proceeds readily at ambient temperature. Hence, the
cycloaddition reaction of LGa with hexachlorobutadiene seems
to be thermodynamically and kinetically favored.

Compounds 5–8 show the expected resonances of the L
ligand and the alkyl/aryl groups in the 1H and 13C NMR
spectra (Table S1†). Due to the electropositive nature of the
group 13 metal, the resonances of the metal-bound CHx group

Scheme 2 Synthesis of compounds 1–4 by (1,4) cycloaddition and oxi-
dative addition reactions of substituted butadienes with gallanediyl and
indanediyl (TMS = SiMe3).

Table 1 Selected 13C NMR chemical shifts δ [ppm] of the GaC4 ring
(Scheme 2) of 3–6

Scheme 2 C1 C2 C3 C4

1 20.5 132.7 132.7 20.5
2 15.6 158.5 112.8 80.0
3 Not obs. 115–135 ppm
4 Not obs. 115–135 ppm
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are found at a higher field (5 δ 1.94 (19.2), 6 2.15 (19.9), 7 0.47
(3.5), 8 0.67 (5.7) ppm, C in parenthesis) compared to the start-
ing substrate.

Due to the diagonal relationship of Ga and Mg and the use
of benzyl Grignard reagents as benzyl transfer reagents in
organic synthesis, we became furthermore interested in reac-
tions of 5 and 6 with benzaldehyde. Unfortunately, no reaction
was observed even under drastic reaction conditions. For
instance, 5 did not react even at high temperatures of up to
115 °C in toluene-d8 solution within 4 h and 6 failed to react at
60 °C over a period of one day. These findings point to either a
less nucleophilic benzyl group in 5 and 6 or indicate a larger
steric hindrance of 5 and 6 compared to benzyl Grignard
reagents. We therefore became interested in the synthesis of
the corresponding tricoordinate LGaR+ cation, which was
expected to show a higher reactivity compared to the neutral
counterpart. Since the Cl-abstraction reaction of 5 with NaB
(C6F5)4 failed, we reacted 7 with Ag(OTf) to give the triflate-sub-
stituted compound L(TfO)GaCH2Ph (9), which then reacted
with NaB(C6F5)4 to [LGaCH2Ph][B(C6F5)4] (10) containing the
cation [LGaCH2Ph]

+ (10+) as well as several by-products
(Scheme 4). Salt 10 was difficult to isolate and only a very few

crystals were hand-picked for sc-XRD analysis. The addition of
benzaldehyde to in situ formed 10 resulted in a colour change
of the solution from colourless to yellow indicating a fast reac-
tion. However, we were not able to isolate any product from
this reaction mixture.

Compounds 1–8 are stable in the solid-state and benzene
solutions at ambient temperature under an inert gas atmo-
sphere. They were characterized by IR and heteronuclear (1H,
13C) NMR spectroscopy, whereas 9 and 10 were only prepared
in NMR-scale reactions and characterized by in situ 1H NMR
spectroscopy. Table S1† summarizes selected resonances of
the 1H and 13C NMR spectra of 1–10. The 1H NMR resonances
of the β-diketiminate ligand of the products 1–10 are shielded
compared to the parent group 13 diyls.

Structural characterisation

Suitable single crystals of compounds 1–6 and 10 were formed
upon recrystallization from the solvent in which the reaction
was performed or from either n-hexane or n-pentane (see
experimental details), respectively. Compounds 1, 5, 6, and 10
crystallize in triclinic space groups, compound 4 in a monocli-
nic space group, and compounds 2 and 3 in orthorhombic
space groups (Table S2†). The structure of compound 7 has
been reported previously.31 Owing to very similar bond radii of
Ga and Al,29 LGa(C6H10) (1) and LAl(C6H10)

25f crystallize in an
isomorphic crystal structure with almost identical cell data.
Selected molecular structures (LGa(C6H10) 1, L(Cl)Ga
(CH2C6H5) 5, [LGa(CH2C6H5)]

+ 10+) are shown in Fig. 1 and
those of all other compounds in Fig. S31–S37.† Table 2 sum-
marizes selected bond lengths and angles.

The β-diketiminate N–M bond lengths are inverse to the
positive charge at the group 13 center. The M–N bond lengths
of all compounds are much shorter compared to the starting
diyls LM, whereas the M–N bond length observed in cation 10+

is even shorter compared to neutral tetra-coordinated com-
pounds. The differences are less pronounced for compounds
1–7, but the shortest M–N bond was found for compounds 3

Scheme 3 C–X bond activation reactions of LM (M = Ga, In).

Scheme 4 Synthesis of compounds 9 and 10.

Fig. 1 Molecular structure of LGa(C6H10) (1), L(Cl)In(C4Cl5) (4), L(Cl)Ga(CH2C6H5) (5) and [LGa(CH2C6H5)]
+ (10) in the crystal. H atoms are omitted

for clarity and displacement ellipsoids are drawn at the 50% probability level. The 2,6-diispropylphenyl groups are displayed as a wireframe.
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and 4 containing the perchlorinated organic ligand. Similarly,
the Ga–C bond length in the cation 10+ (1.9373(14) Å) is also
shortened compared to the neutral compound 5 (1.9643(9) Å).
Compared to 1, LAl(C6H10) has shorter M–N bonds (1.9053
(16), 1.9234(15) Å) and slightly shorter M–C bonds (1.975(2),
1.9640(16) Å).25f This is inconsistent with the smaller sum of
covalent single bond radii of Ga–N (1.95 Å) compared to Al–N
(1.97 Å).29 However, the Al–N bond lengths are also signifi-
cantly shorter than the sum of the covalent radii due to an
additional ionic contribution resulting from its electropositive
nature (bond polarity).

Apart from the zwitterion L(tBu)GaB(C6F5)3, [LGaAd][An]
(Ad = 1-adamantyl, An = [HB(C6F5)3]

− or [B(C6F5)4]
−) are the

only reported complexes containing a tricoordinate Ga centre
substituted by a β-diketiminate substituent and one additional
organyl group. However in contrast to compound 10,
[LGaAd][B(C6F5)4] was obtained directly from the salt meta-
thesis reaction of L(Br)GaAd with NaB(C6F5)4. Both complexes
were used for the catalytic reduction of CO2 with Et3SiH, yield-
ing H2C(OSiEt3)2.

34

The Ga center in the cations of compound 10 and
[LGaAd][B(C6F5)4] are trigonal planar coordinated with the
sum of bond angles of 359.87(9)° and 359.70(6)° (see Table 2).
The Ga–C bond length (1.969(2) Å) of [LGaAd][B(C6F5)4] is
elongated and the N–Ga–N bond angle (99.76(8)°) is slightly
more acute compared to 1.9373(14) Å and 101.62(5)° for 10.
However, both differences are probably just a reflection of the
higher steric demand of the adamantyl group compared to a
benzyl group.

Conclusions

We investigated the ability of group 13 diyls to undergo cyclo-
addition reaction with conjugated CvC double bond systems.
In contrast to LAl, which is known to react with a variety of
different dienes, we found that only LGa reacted in (1,4) cyclo-
addition reactions with acyclic dienes to give spiro compounds
1 and 2, whereas LIn failed to react. However, both LGa and
LIn reacted with electron poor hexachlorobutadiene selectively
with oxidative addition of the allyl C–Cl bond to give com-

pounds 3 and 4, respectively. Oxidative addition was also
observed in reactions of both group 13 diyls with BnCl and
EtBr to give compounds 5–8. Finally, [LGaCH2Ph][NaB(C6F5)4]
10 containing the three-coordinate Ga cation [LGaCH2Ph]

+

(10+) was synthesized by reaction of L(TfO)GaCH2Ph 9 with
NaB(C6F5)4 and structurally characterised.

Experimental section
General procedures

All manipulations were carried out using standard Schlenk
and glovebox techniques under a dry and O2-free argon atmo-
sphere. Toluene, diethyl ether, n-pentane, n-hexane, and
CH2Cl2 (DCM) were dried using an MBraun Solvent
Purification System. Benzene and deuterated benzene were
freshly distilled from Na/K alloy. DCM-d2 was distilled from
CaH2 and activated Alox. All solvents were degassed and stored
over activated molecular sieves. The starting reagents LGa,2,35

LIn (LK was isolated),4 Na[B(C6F5)4],
36 and L(Br)Ga(CH2CH3)

(7)31 were prepared according to literature methods. 1H
(400 MHz, 600 MHz) and 13C{1H} (100.7 MHz, 150.9 MHz), 19F
(376.4 MHz, 564.6 MHz) NMR spectra were recorded using a
Bruker Avance Neo 400 MHz or a Bruker Avance III HD 600
spectrometer and referenced to internal C6D5H (1H: δ = 7.16),
C6D6 (

13C: δ = 128.06), or CDHCl2 (
1H: δ = 5.32), CD2Cl2 (

13C: δ
= 54.00) and for 19F via the chi-values (χ). Heteronuclear NMR
experiments were proton decoupled by default. The assign-
ment was assisted by 2D-NMR experiments. IR spectra were
recorded in a glovebox using a Bruker Alpha FT-IR spectro-
meter equipped with a single reflection ATR sampling module.
Microanalyses were performed at the Elemental Analysis
Laboratory of the University of Duisburg-Essen.

Synthesis of LGa(C6H10) (1)

2,3-Dimethylbutadiene (40.5 mg, 492 μmol) was added to a
solution of LGa (200 mg, 410 μmol) in 5 ml of benzene. The
resulting clear yellow solution was stirred at 80 °C for 1 h
during which the colour faded. The solution was concentrated
to 1 ml and layered with n-hexane. Small amounts of a colour-
less solid were removed by filtration and the filtrate was con-

Table 2 Selection of bond length [Å] and angles [°] of 1–7 and 10

M–C/X C–M–C/X M–N N–M–N

LGa3 2.0560(14), 2.0528(15) 87.53(5)
LIn4 2.2682(9), 2.276(3) 81.12(10)
1 1.9845(8), 1.9732(8) 94.26(3) 1.9572(6), 1.9782(6) 95.17(3)
2 1.993(2), 2.0189(19) 96.40(7) 1.9673(17), 1.9674(18) 93.61(8)
3 1.9842(19), 2.1823(5) 103.31(5) 1.9231(10), 1.9232(10) 99.76(6)
4 2.169(4), 2.3828(8) 110.60(12) 2.117(3), 2.144(4) 90.03(11)
5 1.9643(9), 2.2154(3) 114.71(3) 1.9447(7), 1.9330(7) 96.58(3)
6 2.1542(15), 2.3887(4) 118.41(5) 2.1372(11), 2.1338(12) 89.73(5)
731 1.9655(16), 2.3805(2) 113.99(5) 1.9339(12), 1.9477(12) 96.21(5)
10 1.9373(14) 359.70(6)a 1.8622(11), 1.8755(11) 101.62(5)
[LGaAd], [B(C6F5)4]

34b 1.969(2) 359.70(9)a 1.8812(19), 1.8842(19) 99.76(8)

a Σ of bond angles.

Research Article Inorganic Chemistry Frontiers
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centrated to incipient crystallization (approx. 0.5 ml). Storage
at ambient temperature yielded 150 mg of 1 as a colourless
crystalline solid suitable for sc-XRD. Yield: 150 mg (263 μmol,
64%).

Anal. calcd for C35H51GaN2: C, 73.81, H, 9.03; N, 4.92 wt%.
Found: C, 73.0, H, 8.85; N, 4.76 wt%. ATR-IR: ν 2962, 2868,
1555, 1524, 1460, 1438, 1392, 1386, 1316, 1260, 1177, 1136,
1100, 1082, 1059, 1020, 934, 867, 798, 759, 693, 643, 630, 531,
481 cm−1. 1H NMR (400 MHz, C6D6, 25 °C): δ 7.07 (s, 6 H,
C6H3-2,6

iPr2), 4.74 (s, 1 H, γ-CH), 3.45 (sept, 3JHH = 6.8 Hz, 4 H,
CH(CH3)2), 1.72 (s, 6 H, Ga(CH2CCH3)2), 1.55 (s, 6 H,
ArNCCH3), 1.32 (d, 3JHH = 6.8 Hz, 12 H, CH(CH3)2), 1.16 (d,
3JHH = 6.8 Hz, 12 H CH(CH3)2), 1.12 (s, 4 H, Ga(CH2CCH3)2).
13C NMR (100.6 MHz, C6D6, 25 °C): δ 168.8 (ArNCCH3), 144.1,
141.6, 127.1, 124.4 (ArC), 132.7 (Ga(CH2CCH3)2), 95.8 (γ-CH),
28.5 (CH(CH3)2), 25.1, 24.8 (CH(CH3)2), 23.5 (ArNCCH3), 21.5
(Ga(CH2CCH3)2), 20.5 (Ga(CH2CCH3)2).

Synthesis of LGa(C8H16O2Si) (2)

To a solution of 100 mg LGa (205 μmol) in 2 ml of toluene,
53.0 mg of Danishefsky’s diene (308 μmol) was added. The
clear yellow solution was stirred at 90 °C for 1 h during which
the yellow colour faded. The almost colourless solution was
then concentrated to incipient crystallization and stored at
−6 °C overnight. 2 was obtained as a colourless crystalline
solid by filtration suitable for sc-XRD. Yield: 73 mg (111 μmol,
54%).

Anal. calcd for C37H57GaN2O2Si: C, 67.37, H, 8.71; N,
4.25 wt%. Found: C, 67.3, H, 8.63; N, 4.25 wt%. ATR-IR:
ν 2964, 2928, 2868, 2790, 1616, 1551, 1516, 1460, 1438, 1388,
1316, 1282, 1251, 1165, 1086, 1018, 936, 910, 840, 796, 759,
642, 529, 487 cm−1. 1H NMR (400 MHz, C6D6, 25 °C):
δ 7.23–7.01 (m, 6 H, C6H3-2,6

iPr2), 5.57 (m, 1 H, Ga(CH2)
(COSiCH3)3(CH)(CHOCH3)), 4.74 (s, 1 H, γ-CH), 4.07 (m, 1 H,
Ga(CH2)(COSiCH3)3(CH)(CHOCH3)), 3.62 (sept, 3JHH = 6.7 Hz,
1 H, CH(CH3)2), 3.53 (sept, 3JHH = 6.7 Hz, 1 H, CH(CH3)2), 3.36
(sept, 3JHH = 6.7 Hz, 1 H, CH(CH3)2), 3.31 (sept, 3JHH = 6.7 Hz,
1 H, CH(CH3)2), 3.15 (s, 3 H, Ga(CH2)(COSiCH3)3(CH)
(CHOCH3)), 1.55 (s, 3 H, ArNCCH3), 1.52 (s, 3 H, ArNCCH3),
1.50 (d, 3JHH = 6.8 Hz, 3 H, CH(CH3)2), 1.37 (d, 3JHH = 6.7 Hz,
3 H, CH(CH3)2), 1.33 (d, 3JHH = 6.8 Hz, 3 H, CH(CH3)2), 1.28 (d,
3JHH = 6.8 Hz, 3 H, CH(CH3)2), 1.24 (d, 3JHH = 6.8 Hz, 3 H, CH
(CH3)2), 1.16 (d, 3JHH = 6.7 Hz, 3 H, CH(CH3)2), 1.15 (d, 3JHH =
6.8 Hz, 3 H, CH(CH3)2), 1.37 (d, 3JHH = 6.7 Hz, 3 H, CH(CH3)2),
1.27, 1.22, 1.11, 1.07 (m, 2 H, Ga(CH2)(COSiCH3)3(CH)
(CHOCH3)), 0.07 (s, 9 H, Ga(CH2)(COSiCH3)3(CH)(CHOCH3)).
13C NMR (100.6 MHz, C6D6, 25 °C): δ 169.4, 168.8 (ArNCCH3),
158.5 (Ga(CH2)(COSiCH3)3(CH)(CHOCH3)), 145.3, 144.1, 143.9,
143.9, 142.0, 141.2, 127.3, 127.2, 124.7, 124.6, 124.4, 124.1
(ArC), 112.8 (Ga(CH2)(COSiCH3)3(CH)(CHOCH3)), 96.3 (γ-CH),
80.0 (Ga(CH2)(COSiCH3)3(CH)(CHOCH3)), 57.9 (Ga(CH2)
(COSiCH3)3(CH)(CHOCH3)), 28.5, 28.5, 28.5, 28.4 (CH(CH3)2),
25.6, 25.5, 25.4, 25.2, 25.0, 24.9, 24.8, 24.8 (CH(CH3)2), 23.9,
23.4 (ArNCCH3), 15.6 (Ga(CH2)(COSiCH3)3(CH)(CHOCH3)), 0.8
(Ga(CH2)(COSiCH3)3(CH)(CHOCH3)).

29Si NMR (79.5 MHz,
C6D6, 25 °C): δ 0.8 (Ga(CH2)(COSiCH3)3(CH)(CHOCH3)).

Synthesis of L(Cl)Ga(C4Cl5) (3)

To a suspension of 250 mg LGa (513 μmol) in 25 ml of
n-hexane stirred at −80 °C, 88.1 μl of hexachloro-1,3-butadiene
(147 mg, 513 μmol) was added. The suspension was warmed to
ambient temperature overnight and all solids were dissolved
under mild heating. Storage at −30 °C afforded 195 mg of 3 as
a crystalline solid suitable for sc-XRD. Yield: 195 mg
(261 μmol, 51%).

Anal. calcd for C33H41Cl6GaN2: C, 52.98, H, 5.52; N,
3.74 wt%. Found: C, 53.2, H, 5.74; N, 3.93 wt%. ATR-IR:
ν 3058, 2969, 2928, 2868, 1582, 1533, 1435, 1396, 1365, 1357,
1316, 1305, 1264, 1251, 1172, 1124, 1105, 1024, 947, 904, 811,
796, 757, 708, 619, 527, 438 cm−1. 1H NMR (400 MHz, C6D6,
25 °C): δ 7.15–7.05 (m, 5 H, C6H3-2,6

iPr2), 7.00 (m, 1 H, C6H3-
2,6iPr2), 4.76 (s, 1 H, γ-CH), 3.51 (sept, 3JHH = 6.6 Hz, 1 H,
CH(CH3)2), 3.40 (sept, 3JHH = 6.8 Hz, 1 H, CH(CH3)2), 3.33 (m,
3JHH = 6.6 Hz, 2 H, CH(CH3)2), 1.56 (s, 3 H, ArNCCH3), 1.54 (s,
3 H, ArNCCH3), 1.52 (d, 3JHH = 6.7 Hz, 3 H, CH(CH3)2), 1.50 (d,
3JHH = 6.6 Hz, 3 H, CH(CH3)2), 1.48 (d, 3JHH = 6.8 Hz, 3 H, CH
(CH3)2), 1.44 (d, 3JHH = 6.7 Hz, 3 H, CH(CH3)2), 1.18 (d, 3JHH =
6.7 Hz, 3 H, CH(CH3)2), 1.14 (d, 3JHH = 6.7 Hz, 3 H, CH(CH3)2),
1.09 (d, 3JHH = 6.8 Hz, 3 H, CH(CH3)2), 1.03 (d, 3JHH = 6.9 Hz, 3
H, CH(CH3)2).

13C NMR (100.6 MHz, C6D6, 25 °C): δ 170.8,
170.6 (ArNCCH3), 145.2, 144.8, 144.6, 140.3, 140.1, 128.2,
128.2, 124.8, 124.7, 124.6, 124.5 (ArC), 132.6, 120.1, not all qua-
ternary signal could be detected (GaC4Cl5), 97.2 (γ-CH), 29.6,
29.4, 28.4, 28.3 (CH(CH3)2), 25.6, 25.6, 25.4, 25.0, 24.7, 24.6,
24.1 (CH(CH3)2), 24.5, 24.4 (ArNCCH3).

Synthesis of L(Cl)In(C4Cl5) (4)

To a suspension of 100 mg LIn (188 μmol) in 10 ml of
n-pentane, 35.2 μl of hexachloro-1,3-butadiene (58.8 mg,
225 μmol) was added under light exclusion. After 16 h, the
slightly cloudy solution was filtered, and concentrated. Storage
at −30 °C afforded 4 as a crystalline solid (suitable for sc-XRD).
Yield: 60 mg (76 μmol, 40%).

Anal. calcd for C33H41Cl6InN2: C, 49.97, H, 5.21; N,
3.53 wt%. Found: C, 50.3, H, 5.42; N, 3.50 wt%. ATR-IR:
ν 3061, 2928, 2868, 1594, 1543, 1518, 1462, 1456, 1435, 1384,
1361, 1318, 1264, 1178, 1118, 1102, 1023, 939, 891, 857, 809,
794, 772, 757, 730, 613, 562, 521, 448, 438 cm−1. 1H NMR
(600 MHz, C6D6, 25 °C): δ 7.12–7.05 (m, 4 H, C6H3-2,6

iPr2),
7.04 (t, 3JHH = 4.6 Hz, 1 H, C6H3-2,6

iPr2), 7.00 (m, 1 H, C6H3-
2,6iPr2), 4.72 (s, 1 H, γ-CH), 3.61 (sept, 3JHH = 6.8 Hz, 1 H,
CH(CH3)2), 3.43 (sept, 3JHH = 6.8 Hz, 1 H, CH(CH3)2), 3.36
(sept, 3JHH = 6.7 Hz, 1 H, CH(CH3)2), 3.26 (sept, 3JHH = 6.8 Hz,
1 H, CH(CH3)2), 1.57 (s, 3 H, ArNCCH3), 1.55 (s, 3 H,
ArNCCH3), 1.52 (d, 3JHH = 6.8 Hz, 3 H, CH(CH3)2), 1.47 (d,
3JHH = 6.7 Hz, 3 H, CH(CH3)2), 1.37 (d, 3JHH = 6.8 Hz, 6 H, CH
(CH3)2), 1.17 (d, 3JHH = 6.8 Hz, 3 H, CH(CH3)2), 1.16 (d, 3JHH =
6.7 Hz, 3 H, CH(CH3)2), 1.14 (d, 3JHH = 6.9 Hz, 3 H, CH(CH3)2),
1.10 (d, 3JHH = 6.7 Hz, 3 H, CH(CH3)2).

13C NMR (150.9 MHz,
C6D6, 25 °C): δ 171.5, 171.5 (ArNCCH3), 144.4, 144.1, 143.3,
143.0, 142.1, 141.8, 127.7, 127.7, 125.0, 124.8, 124.5, 124.3
(ArC), 130.2, 127.8, 119.9 (InC4Cl5), 96.6 (γ-CH), 29.1, 28.9,
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28.8, 28.6 (CH(CH3)2), 25.1, 25.0, 24.9, 24.9, 24.8, 24.8, 24.8,
24.6, 24.6 (CH(CH3)2 and ArNCCH3).

Synthesis of L(Cl)Ga(CH2C6H5) (5)

To a suspension of 300 mg LGa (616 μmol) in 5 ml of
n-hexane, 106.2 μl of benzyl chloride (116.8 mg, 225 μmol) was
added. LGa slowly dissolved while a colourless precipitate
formed. The mixture was stored at −6 °C for 12 h and filtered.
Storage of a saturated n-hexane solution at 8 °C gave crystals of
5 suitable for sc-XRD. Yield: 346 mg (564 μmol, 92%).

Anal. calcd for C36H48ClGaN2: C, 70.43, H, 7.88; N,
4.56 wt%. Found: C, 71.0, H, 7.91; N, 5.04 wt%. ATR-IR:
ν 3058, 3023, 2960, 2925, 2865, 1661, 1591, 1553, 1520, 1458,
1435, 1386, 1369, 1361, 1316, 1258, 1178, 1124, 1099,1054,
1019, 939, 870, 796, 769, 753, 695, 619, 549, 530, 460, 441,
403 cm−1. 1H NMR (400 MHz, C6D6, 25 °C): δ 7.21–7.07 (m,
6 H, C6H3-2,6

iPr2), 6.92–6.84 (m, 2 H, CH2C6H5), 6.85–6.79 (m,
1 H, CH2C6H5), 6.44–6.39 (m, 1 H, CH2C6H5), 4.87 (s, 1 H,
γ-CH), 3.73 (sept, 3JHH = 6.7 Hz, 2 H, CH(CH3)2), 3.25 (sept,
3JHH = 6.9 Hz, 2 H, CH(CH3)2), 1.94 (s, 2 H, CH2C6H5), 1.56 (s,
6 H, ArNCCH3), 1.33 (d, 3JHH = 6.9 Hz, 6 H, CH(CH3)2), 1.18 (d,
3JHH = 6.6 Hz, 6 H, CH(CH3)2), 1.16 (d, 3JHH = 6.9 Hz, 6 H, CH
(CH3)2), 1.15 (d, 3JHH = 6.8 Hz, 6 H, CH(CH3)2).

1H NMR
(400 MHz, DCM-d2, 25 °C): δ 7.34 (t, 3JHH = 7.6 Hz, 2 H, C6H3-
2,6iPr2), 7.28–7.23 (m, 4 H, C6H3-2,6

iPr2), 6.79–6.72 (m, 3 H,
CH2C6H5), 6.13–6.05 (m, 2 H, CH2C6H5), 5.29 (s, 1 H, γ-CH),
3.40 (sept, 3JHH = 6.7 Hz, 2 H, CH(CH3)2), 3.18 (sept, 3JHH =
6.9 Hz, 2 H, CH(CH3)2), 1.87 (s, 6 H, ArNCCH3), 1.70 (s, 2 H,
CH2C6H5), 1.41 (d, 3JHH = 6.9 Hz, 6 H, CH(CH3)2), 1.20 (d,
3JHH = 6.9 Hz, 6 H, CH(CH3)2), 1.15 (d, 3JHH = 6.8 Hz, 6 H, CH
(CH3)2), 0.90 (d, 3JHH = 6.7 Hz, 6 H, CH(CH3)2).

13C NMR
(100.6 MHz, C6D6, 25 °C): δ 169.6 (ArNCCH3), 146.3, 142.8,
140.7, 127.7, 125.8, 123.9 (C6H3-2,6

iPr2), 140.7, 128.2, 127.9,
123.3 (CH2C6H5), 97.6 (γ-CH), 29.3, 28.0 (CH(CH3)2), 26.5, 25.0,
24.5, 24.0 (CH(CH3)2), 23.4 (ArNCCH3), 19.2 (CH2C6H5).

13C
NMR (100.6 MHz, DCM-d2, 25 °C): δ 170.3 (ArNCCH3), 146.3,
143.3, 141.2, 140.6, 128.2, 128.0, 127.8, 125.8, 124.3, 123.2
(ArC), 97.6 (γ-CH), 29.6, 28.1 (CH(CH3)2), 26.4, 25.2, 24.7, 24.2
(CH(CH3)2), 23.9 (ArNCCH3), 19.2 (CH2C6H5).

Synthesis of L(Cl)In(CH2C6H5) (6)

To a suspension of 100 mg LIn (188 μmol) in 3 ml of n-hexane,
32.4 μl of benzyl chloride (35.6 mg, 282 μmol) was added. All
LIn dissolved slowly and the resulting solution was stirred for
12 h. The solution was concentrated and stored at −30 °C to
give 6 as a yellow crystalline solid. Yield: 76 mg (115 μmol,
61%).

Anal. calcd for C36H48ClInN2: C, 65.61, H, 7.34; N,
4.25 wt%. Found: C, 65.3, H, 7.25; N, 4.63 wt%. ATR-IR:
ν 3055, 3020, 2966, 2925, 2868, 1597, 1550, 1516, 1458, 1435,
1386, 1367, 1342, 1316, 1264, 1207, 1175, 1102, 1086, 1016,
934, 861, 794, 751, 695, 543, 524, 445 cm−1. 1H NMR
(400 MHz, C6D6, 25 °C): δ 7.15–7.04 (m, 6 H, C6H3-2,6

iPr2),
6.88–6.82 (m, 2 H, CH2C6H5), 6.80–6.75 (m, 1 H, CH2C6H5),
6.47–6.37 (m, 1 H, CH2C6H5), 4.77 (s, 1 H, γ-CH), 3.73 (sept,
3JHH = 6.7 Hz, 2 H, CH(CH3)2), 3.23 (sept, 3JHH = 6.9 Hz, 2 H,

CH(CH3)2), 2.15 (s, 2 H, CH2C6H5), 1.56 (s, 6 H, ArNCCH3),
1.27 (d, 3JHH = 6.9 Hz, 6 H, CH(CH3)2), 1.22 (d, 3JHH = 6.6 Hz,
6 H, CH(CH3)2), 1.18 (d, 3JHH = 6.8 Hz, 6 H, CH(CH3)2), 1.10 (d,
3JHH = 6.8 Hz, 6 H, CH(CH3)2).

13C NMR (100.6 MHz, C6D6,
25 °C): δ 170.3 (ArNCCH3), 145.0, 142.7, 142.0, 127.2, 125.5,
123.9 (C6H3-2,6

iPr2), 140.7, 128.6, 127.6, 123.5 (CH2C6H5), 96.9
(γ-CH), 29.1, 27.9 (CH(CH3)2), 26.5, 24.7, 24.4, 24.2 (CH(CH3)2),
24.0 (ArNCCH3), 19.9 (only observed in HSQC, CH2C6H5).

Synthesis of L(Br)In(CH2CH3) (8)

To a suspension of 50 mg LIn (94 μmol) in 3 ml of n-hexane,
10 μl of bromoethane (15.3 mg, 140 μmol) was added. All LIn
dissolved and the solution was stirred for 12 h. The solution
was concentrated and stored at −30 °C to yield 8 as a pale
yellow crystalline solid. Yield: 51 mg (79.5 μmol, 85%).

Anal. calcd for C31H46BrInN2: C, 58.05, H, 7.23; N,
4.37 wt%. Found: C, 57.9, H, 7.32; N, 4.12 wt%. ATR-IR:
ν 3062, 2966, 2923, 2865, 1562, 1529, 1465, 1440, 1397, 1364,
1319, 1273, 1258, 1235, 1179, 1114, 1063, 1025, 942, 858, 797,
780, 764, 729, 709, 645, 628, 602, 529, 494, 443 cm−1. 1H NMR
(400 MHz, C6D6, 25 °C): δ 7.14–7.03 (m, 4 H, C6H3-2,6

iPr2),
7.03 (dd, 3JHH = 7.4 Hz, 1.9 Hz, 2 H, C6H3-2,6

iPr2), 4.83 (s, 1 H,
γ-CH), 3.89 (sept, 3JHH = 6.7 Hz, 2 H, CH(CH3)2), 3.21 (sept,
3JHH = 6.8 Hz, 2 H, CH(CH3)2), 1.58 (s, 6 H, ArNCCH3), 1.47 (d,
3JHH = 6.6 Hz, 6 H, CH(CH3)2), 1.24 (dd, 3JHH = 6.8, 5.3 Hz, 12
H, CH(CH3)2), 1.08 (d, 3JHH = 6.8 Hz, 6 H, CH(CH3)2), 0.86 (t,
3JHH = 7.9 Hz, 3 H, InCH2CH3), 0.73–0.62 (m, 2 H, InCH2CH3).
13C NMR (100.6 MHz, C6D6, 25 °C): δ 169.7 (ArNCCH3), 144.6,
142.4, 141.9, 126.8, 125.0, 123.4 (C6H3-2,6

iPr2), 96.8 (γ-CH),
28.7, 27.6 (CH(CH3)2), 27.3, 24.4, 23.9, 23.8 (CH(CH3)2), 23.7
(ArNCCH3), 11.0 (InCH2CH3).

Synthesis of L(TfO)Ga(CH2C6H5) (9)

Equimolar amounts of 5 (75 mg, 122 μmol) and AgOTf (32 mg,
123 μmol) were dissolved in 5 mL of DCM. After stirring for
30 min all volatiles were removed in vacuo and the residue was
extracted with toluene, yielding almost pure 9. Further purifi-
cation and growing of crystals for sc-XRD failed. Yield: 76 mg
(104 μmol, 85% disregarding the impurities).

1H NMR (400 MHz, DCM-d2, 25 °C): δ 7.35 (t, 3JHH = 7.6,
2 H, C6H3-2,6

iPr2), 7.29 (dd, JHH = 7.8; 1.8 Hz, 2 H, C6H3-
2,6iPr2), 7.20 (dd, JHH = 7.6; 1.9 Hz, 2 H, C6H3-2,6

iPr2),
6.80–6.70 (m, 3 H, CH2C6H5), 6.14–6.08 (m, 2 H, CH2C6H5),
5.58 (s, 1 H, γ-CH), 3.50 (sept, 3JHH = 6.7 Hz, 2 H, CH(CH3)2),
2.79 (sept, 3JHH = 6.8 Hz, 2 H, CH(CH3)2), 1.95 (s, 2 H,
CH2C6H5), 1.94 (s, 6 H, ArNCCH3), 1.19 (d, 3JHH = 6.7 Hz, 6 H,
CH(CH3)2), 1.09 (d, 3JHH = 6.8 Hz, 6 H, CH(CH3)2), 1.07 (d,
3JHH = 6.8 Hz, 6 H, CH(CH3)2), 1.02 (d, 3JHH = 6.7 Hz, 6 H, CH
(CH3)2).

1H NMR (400 MHz, C6D6, 25 °C): δ 7.19–7.09 (m, 6 H,
C6H3-2,6

iPr2), 6.98 (dd, JHH = 6.4; 2.9 Hz, 2 H, CH2C6H5),
6.78–6.73 (m, 3 H, CH2C6H5), 5.15 (s, 1 H, γ-CH), 3.84 (sept,
3JHH = 6.7 Hz, 2 H, CH(CH3)2), 2.74 (sept, 3JHH = 6.8 Hz, 2 H,
CH(CH3)2), 1.99 (s, 2 H, CH2C6H5), 1.60 (s, 6 H, ArNCCH3),
1.37 (d, 3JHH = 6.6 Hz, 6 H, CH(CH3)2), 1.25 (d, 3JHH = 6.8 Hz, 6
H, CH(CH3)2), 0.96 (d, 3JHH = 6.8 Hz, 6 H, CH(CH3)2), 0.92 (d,
3JHH = 6.8 Hz, 6 H, CH(CH3)2).
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Synthesis of [LGaCH2Ph][B(C6F5)4] (10)

11 mg of NaB(C6F5)4 (14 μmol) was added to a solution of
10 mg (14 μmol) of L(TfO)Ga(CH2C6H5) (9) in DCM-d2 in a
J-Young NMR tube. The formation of [LGaCH2Ph][B(C6F5)4]
(10) was confirmed by 1H NMR spectroscopy. Single crystals
suitable for sc-XRD were grown by layering the DCM solution
with toluene in an NMR tube and storage at −30 °C in the glo-
vebox freezer.

1H NMR (400 MHz, DCM-d2, 25 °C): δ 7.59–7.51 (m, 2 H,
C6H3-2,6

iPr2), 7.38 (d, 3JHH = 7.8 Hz, 2 H, C6H3-2,6
iPr2),

6.98–6.93 (m, 1 H, CH2C6H5), 6.89–6.84 (m, 2 H, CH2C6H5),
6.10 (s, 1 H, γ-CH), 6.11–6.07 (m, 2 H, CH2C6H5), 2.66 (sept,
3JHH = 6.8 Hz, 4 H, CH(CH3)2), 2.47 (s, 2 H, CH2C6H5), 2.16 (s,
6 H, ArNCCH3), 1.26 (d, 3JHH = 6.8 Hz, 12 H, CH(CH3)2), 1.01
(d, 3JHH = 6.9 Hz, 12 H, CH(CH3)2).

Crystallographic details

Crystals were mounted on nylon loops in inert oil. Data of
were collected on a Bruker AXS D8 Kappa diffractometer (1, 3,
5, 10) with APEX2 detector (monochromated MoKα radiation,
λ = 0.71073 Å) and on a Bruker AXS D8 Venture diffractometer
(2, 4, 6) with Photon II detector (monochromated CuKα radi-
ation, λ = 1.54178 Å, microfocus source) at 100(2) K. The struc-
tures were solved by Direct Methods (SHELXS-97)37 and
refined anisotropically by full-matrix least-squares on F2

(SHELXL-2017).38 Absorption corrections were performed
semi-empirically from equivalent reflections based on multi-
scans (Bruker AXS APEX2). Hydrogen atoms were refined using
a riding model or rigid methyl groups. In all cases, hydrogen
atoms were treated with the riding model on idealized geome-
tries with the 1.2-fold isotropic displacement parameters of
the equivalent Uij of the corresponding carbon atom. The
methyl groups are idealized with tetrahedral angles in a com-
bined rotating and rigid group refinement with the 1.5-fold
isotropic displacement parameters of the equivalent Uij of the
corresponding carbon atom. Compound 2 was twinned by
inversion and refined accordingly. The chlorinated ligand of
compound 3 is disordered over a mirror plane. The local sym-
metry was ignored in the refinement (negative PART). The
chlorinated ligand of compound 4 is disordered over two posi-
tions. RIGU restraints were applied to its atoms’ displacement
parameters and atoms in close proximity were refined with
common displacement parameters (EADP). In compound 5,
the highest electron residue might be an alternate position of
the Cl1 atom with very low occupancy. However, the occupancy
is too low to verify this by identifying other atoms of the dis-
order. The dichloromethane molecule in the crystal of 10 is
only occupied by approximately 14.5%. Its bond lengths were
restrained to be equal and RIGU restraints were applied to its
displacement parameters.
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