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CdF(CgH4NO,)(H,0): a UV nonlinear optical
material with unprecedented SHG and
birefringence via n-conjugated rings and a
unique “Warren truss structure”s
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We report the design and synthesis of a novel ultraviolet (UV) nonlinear optical (NLO) material, CdF
(CeH4NO,)(HL0), featuring a unique “Warren truss structure”. This material exhibits a two-dimensional
(2D) layered architecture structure composed of highly polarized [CdNO,F3] octahedra and n-conjugated
organic rings (CgH4NO,)™. Notably, CdF(CgH4NO)(H,O) demonstrates exceptional second-harmonic
generation (SHG) response, with an intensity 3.2 times that of KH,PO, (KDP), and a large birefringence of
0.26@546 nm, which is highly unusual for UV fluorides with a bandgap of >4.2 eV. Theoretical calcu-
lations and structural analysis reveal that the introduction of (CgH4NO,)™ into CdF, induces significant
structural distortion and polarization, leading to the formation of a non-centrosymmetric “Warren truss
structure”. This structure aligns [CANO,F3] octahedra and organic rings in a highly ordered manner, which
is crucial for the enhanced SHG and large birefringence. Our findings provide a new strategy for designing
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Introduction

The rapid advancement of quantum technology (QT) is revolu-
tionizing the capabilities of communication multiplexing and
high-dimensional quantum information processing, with sig-
nificant implications for spin-orbit angular momentum
photonics. In this context, materials with strong second-har-
monic generation (SHG) effects and high birefringence are
urgently needed to enhance quantum optical techniques, par-
ticularly for efficient frequency doubling and precise manipu-
lation of photons carrying orbital angular momentum
(0AM)."® However, the development of such materials is hin-
dered by the contrasting microstructural requirements for SHG
and birefringence, making it challenging to meet both criteria
simultaneously. This is especially true in the ultraviolet (UV)
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high-performance UV NLO materials by leveraging organic—inorganic hybrid structures.

band, where materials with a bandgap of >4.2 eV are required,
but few exhibit both strong SHG and large birefringence.

Fluorine, often referred to as the “star element” in non-
linear optical (NLO) materials, is known for its highest electro-
negativity, which significantly influences crystal structure regu-
lation and optical bandgap enhancement.” Its incorporation
optimizes birefringence and reduces refractive index dis-
persion, thereby enabling shorter phase-matching wave-
lengths.” Over the past decade, more than 200 fluorides and
their derivatives have been reported, playing a crucial role in
optoelectronic applications. However, despite their potential,
these materials often fail to combine a large bandgap (>4.2
eV), strong SHG (>3 times KDP), and high birefringence
(>0.2).°** Pure metal fluorides, while gaining attention as UV
NLO materials, are similarly limited by weak SHG and small
birefringence.”**> These limitations have significantly
restricted the application of fluorides and their derivatives in
quantum optical technologies.

Recently, planar conjugated organic rings have garnered
significant attention due to their remarkable enhancement of
SHG and birefringence. For example, organic groups such
as (H,CeNo)™, (C;H,NO,)Y, (C3NgH-)", and (C3N,H;s)" exhibit
high optical activity and have been used to construct large
birefringent crystals.”*>° Similarly, groups like (C3N3;03)°7,
(C5HeNO)', (HC3N,S;), and (H,CgN;O3)~ have been identified
as excellent NLO active units.**** These findings suggest that
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incorporating metal fluorides into organic rings could be an
effective strategy to enhance SHG and birefringence. However,
this approach remains largely unexplored, particularly for UV-
transmitting materials with strong SHG and birefringence.

Metal fluoride CdF,, despite its potential as a UV NLO
material, lacks SHG due to its centrosymmetric structure, and
its calculated birefringence (0.00002@546.1 nm) is negligible.
Here, we report the synthesis of a novel metal-organic
complex, CdF(C¢H4NO,)(H,O), by introducing the
n-conjugated organic ring (C¢H4NO,)~ into CdF,. This substi-
tution not only breaks the centrosymmetry but also induces
significant polarization anisotropy and second-order hyperpo-
larizability. Compared to the centrosymmetric CdF, (SHG = 0,
negligible birefringence of 0.00002@546 nm), the resulting
compound, CdF(C¢H4NO,)(H,0), exhibits remarkably
enhanced SHG (3.2xKDP) and birefringence (0.26@546 nm),
while maintaining UV transmittance (band gap = 4.41 eV).
This material represents a rare example of UV metal fluoride
combining strong SHG and high birefringence. Our compre-
hensive study, including design, synthesis, structural analysis,
properties, and theoretical calculations, reveals how the
n-conjugated organic ring (CcH4NO,)™ constructs a “Warren
truss structure” in semi-organic metal fluorides. This unique
structure aligns highly polarized [CANO,F;] octahedra, leading
to the observed strong SHG and large birefringence. Our find-
ings not only advance the understanding of SHG and birefrin-
gence enhancement in metal fluorides but also highlight the
potential applications of CdF(CeH4NO,)(H,O) in quantum
optical technologies.

Results and discussion

The design idea of CdF(C¢H,NO,)(H,0) is mainly based on the
use of (CcH,NO,)” with a planar n-conjugated organic ring to
replace F~ in the simple metal fluoride CdF,. CdF(CsH,NO,)
(H,O) is obtained using a hydrothermal method as detailed in
the ESLt As shown in Scheme 1, during the reaction process,
since CdF, is a strong base and weak acid salt, the entire reac-

Hz0
CdF2 + C7H/NO2 W Cd(CeHsNO2)(H20) + CHsOH + HF

H3O* CdF2 ﬁ
OCHa
/NI\
2+
— | /' Cd CdF(CsHsNO2)(H=0)
/
3 0

Scheme 1 Synthesis and mechanism of CdF(CgH4NO,)(H,0).
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tion system is acidic. Initially, the raw material methyl nicoti-
nate (S1) hydrolyzes to form nicotinic acid (S2) and methanol.
Then, S2 reacts with F~ to produce S3 and the weak acid HF,
thereby exposing two coordination active sites of N and
0. Subsequently, S3, F~, and H,O coordinate with Cd** to form
CdF(C¢H,NO,)(H,0).

Fig. 1a and b illustrate the structural transformation from
the precursor CdF, to the product CdF(C¢H,NO,)(H,0). The
introduction of the organic ring (CcH4,NO,)™ disrupts the inter-
connected [(Cd,F,)*"] chains, forming a unique structure
resembling a “Warren truss bridge” within the two-dimen-
sional plane. The rigid organic ring (C¢H,NO,)™ acts as the
“diagonal” of the bridge, connecting to Cd through coordi-
nation atoms at both ends, thereby forming a stable triangular
structure that supports the “top/bottom chord” of the bridge,
namely the [(Cd,F,)**]s chains, aligning them in a completely
parallel and consistent arrangement. The addition of
(CeH4NO,)~ transforms the cubic [CdFg] in CdF, into a dis-
torted octahedron [CANO,F;], resulting in structural symmetry
breaking from a centrosymmetric to a non-centrosymmetric
structure.

CdF(C¢H4NO,)(H,0) crystallizes in the polar space group
P2, with unit cell parameters of a = 9.2128 A, b = 4.2589 A, ¢ =
10.740 A, @ = y = 90°, # = 114.506(4)°, and V = 383.44(10) A®
(detailed information is provided in Table S1t). Its CCDC
number is 2419363.1 The metal Cd is coordinated with one N
and one O from two organic rings (CcH4NO,)”, one water
molecule, and three F ions, forming a distorted [CANO,F;]
octahedron. The bond lengths of Cd-N, Cd-O, and Cd-F are
2.302 A, 2.216-2.303 A, and 2.195-2.311 A, respectively, which
are consistent with previously reported literature (Fig. 2a).>* As
shown in Fig. 2b, the [CdNO,F;] octahedra with two orien-
tations are alternately arranged along the b-axis, forming a
zigzag one-dimensional chain. These chains are intercon-
nected by the organic rings (C¢H,NO,)™ (the distance between
two chains is 9.2128 A, and the angle of the organic ring is
59.2°, as shown in Fig. S1}), creating a unique structure resem-
bling a “Warren truss bridge”. They extend infinitely along the
ab plane to form a two-dimensional layer. Subsequently, these
two-dimensional layers are closely stacked along the c-axis in
the same orientation, ultimately forming the unique spatial
structure of CAF(C¢H,NO,)(H,0) (Fig. 2c and d).

Gy e E:F?W
©  Breaking Symmetry >+ A\

[caFy [ceF, uc,)

Fig. 1 Transition from a centrally symmetrical CdF, structure (a) to a
NCS structure of CdF(CgH4NO,)(H,0) (b). The upper part of the red
arrow indicates the evolution of the cube [CdFg] to the twisted octa-
hedron [CANO,Fs]. Below the red arrow, a comparison of the CdF
(CgH4NO,)(H,0) structure with the Warren truss bridge is shown.
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Fig. 2 (a) The coordination environment of Cd; (b) the two-dimensional
layered structure of CAF(CgH4NO,)(H,O) in space; (c) the structure of
CdF(CgH4NO3)(H,0) in the ac plane; (d) the structure of CAF(CgH4NO,)
(H20) in the bc plane.

XPS spectral analysis of CdF(CsH,NO,)(H,O) (Fig. 3a, b and
S6, S7t) confirms Cd’s oxidation state as Cd>" with peaks at
404.65 eV and 412.62 eV in the 402-414 eV binding energy
range and F’s oxidation state as —1, consistent with the results
of BVS calculations (Table S2t) and single-crystal structure
resolution. The band gap of CAF(CeH,NO,)(H,0) is 4.41 eV,
measured using the Kubelka-Munk method (Fig. 3c),>* exceed-
ing the 4.2 eV threshold for UV NLO materials and surpassing
reported values for Na,CeFs (3.89 eV),*® KBisF;; (4.24 eV),”
and K,SbF,Cl; (4.01 eV),*® indicating its UV application poten-

View Article Online

Research Article

tial. IR absorption peaks align with single-crystal test results
(Fig. S31), and thermogravimetric tests show stability up to
150 °C (Fig. S41).

The Kurtz-Perry method was used to measure® the SHG
response of CdF(C¢H4NO,)(H,0) under 1064 nm laser
irradiation. Its SHG intensity increases with particle size, pla-
teaus at 280-450 pm, and shows phase matching behavior.
Within this size range, its SHG intensity is about 3.2xKDP
(Fig. 3d and e). Generally, metal fluorides have weak NLO
effects due to fluorine’s weak deformability. For instance, the
SHG responses of KNa,ZrF, (0.35xKDP)," CsNaTaF,
(0.20xKDP),*® BaMgF, (0.085xKDP),*' BaZnF, (0.16xKDP),*?
Na,SbF; (0.17xKDP),** and Na,CeF, (2.1xKDP)*® are all less
than 1xKDP. Although Na,CeFs has a rare 2.1xKDP SHG
response, its 3.89 eV optical band gap limits its UV band appli-
cation. Fig. 3f shows the comparison of the optical band gaps
and SHG effects of recent metal fluorides (Table S87), showing
that CdF(CcH4NO,)(H,0)’s SHG effect is the strongest among
those of recent UV NLO metal fluorides with a band gap of
>4.2 eV. Further dipole moment analysis reveals a calculated
dipole moment of 6.14 D for CdF(CsH,NO,)(H,0), aligning
with its SHG intensity.

The second harmonic generation (SHG) effect is generally
diminished in fluorides with short absorption edges. The
origin of the nonlinear optical (NLO) efficiency is predomi-
nantly contingent on the asymmetry and arrangement of the
polyhedra within the crystal structure. In the compound CdF
(C6H4NO,)(H,0), the severely distorted octahedra [CANO,Fs;]
constitute a one-dimensional sawtooth chain. Subsequently,
these chains are interconnected by the organic ring

a Cd3d b - C) 100
( ) 404,68 m\ ( ) ‘ p :\sgzigs ( )
F 68870 =
= cd3d,, | . 7 A~ s
i 412.62 | 5 ] : D
< | 3 f 3 2
& / s [ ". Q
% \ 2 H 4 «3 50
c |t 2 ; | @
£ g GO = 441evV
=| cd3dg,/ Cd3dg, = [ e o
411.39 ¢ kS 25 o
SN 405.88 / \ 3 7 3
- : - ~ o e 265 nm (e}

o
~
=]
@ T
@ 1.
>3
@
&

416 414 412 410 408 406 404 4
Binding Energy (eV)

683 682

Binding Energy (eV)

2

@
t=]
=3
s)

400 600 800
Wavelength (nm)

681 680 679 6

4 = 0.4
O 3 : gdn:(c H,NO,)(H,0] ©) x CS NCS) 0 <200 Thi K
A % 61N O ) (! | o Ve 32¢0P o s nm IS WO
R 3 31 s S 3 i * 3
sk < § s 2
25 £ 2z - °
| [ 020 B>l = = 2
€ | 550105055 000 009008 ooBore 9 < > £ S
9 (t (Second)) K] s o = ©
£ £ Enhancement g E - &
3 & = = &
2l 2] 015 1S .
7] W.—o—' 7} » R
g o 0 lo o % -
0 100 200 300 400 500 150 200 250 _ 300 350 400
Particle size (um) Cd(CeHsNO2)H:0  CdF: Cut-off edge
Fig. 3 (a) XPS spectrum of Cd-3d in CdF(CgH4NO,)(H;0). (b) XPS spectrum of F-1s in CAF(CgH4NO,)(H,0). (c) UV spectrum of CdF(CgH4NO,)(H,0).

(d) The particle size of CdF(CgH4NO,)(H,0) and KDP as a function of the

SHG response. The inset is a SHG intensity signal plot of CdF(CgH4NO,)

(H20) with KDP in the particle size range of 280-450 pm. (e) Comparison of SHG response and birefringence performance of CdF(CgH4NO;)(H,O)
and CdF,. (f) Scatter plots of bandgap, birefringence and SHG intensities of CdF(C¢H4NO,)(H,O) versus various fluorides. (Black on the left indicates
SHG, purple on the right represents birefringence, and black at the bottom denotes the cut-off edge.)
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(CeH4NO,)™, culminating in a distinctive “Warren truss
bridge” structure. This unique configuration facilitates the
optimal alignment of the [CANO,F;] octahedra and
(C¢H4NO,)™ within the crystal lattice, which is the pivotal
factor enabling the large SHG and high birefringence of CdF
(CeH4NO,)(H,0). These structural analyses offer invaluable
insights into the design of NLO materials with enhanced SHG
effects, potentially guiding future research endeavors in this
domain.

The birefringence of CdF(C¢H4NO,)(H,0O) single crystals,
measured using a polarizing microscope (Fig. 4a), was found
to be 0.253@546.1 nm for a crystal thickness of 7 pm (Fig. 4b-
d). This value exceeds those of commercial birefringent crys-
tals such as MgF, (0.012@589.3 nm),** o-BaB,O,
(0.122@532 nm),”® and CaCO; (0.172@589 nm)*® and rep-
resents the upper limit of UV pure metal fluorides and semi-
organometallic  fluorides  (Table  S8%), except for
(H,DpA),SiF(0.282).”” (H,DpA),SiF, has only 1xKDP and a
band gap of 2.84 eV, significantly lower than the required 4.2
eV and 3xKDP. The -calculated linear optical properties
(Fig. 4e) reveal strong anisotropy with refractive indices n, =
1.764, n, = 1.745, and n, = 1.511, yielding birefringence An =
0.264@546 nm, agreeing well with the measured value.
Additionally, the birefringence of CdF, at 546 nm was calcu-
lated to be 0.00002 (Fig. 4f), which is nearly 10 000 times lower
than that of CdF(C¢H,NO,)(H,0).

View Article Online

Inorganic Chemistry Frontiers

First-principles density-functional theory calculations
(Fig. S8-S117) reveal that CdF(C¢H4NO,)(H,0) and CdF, have
indirect band gaps of 3.507 and 3.743 eV, respectively. The
density of states diagram (Fig. S111) shows that the valence
band top is dominated by O-2p orbitals with minor F-2p con-
tributions, while the conduction band bottom is influenced by
C-2p, N-2p, and O-2p orbitals. This indicates that the band gap
of CdF(C¢H4NO,)(H,0) is primarily determined by the
(CeH4NO,)™ unit, with minimal contribution from Cd-F inter-
actions (Fig. 5b).

Quantum chemistry-based frontier orbital calculations on
CdF(CeH4NO,)(H,0) primitives reveal the contributions of
[CANO,F;] and (C¢H4NO,)™ units. In CAF(CsH4NO,)(H,0), the
HOMO is dominated by F-2p and Cd-4d orbitals, while the
LUMO is primarily influenced by the (CcH4NO,)™ unit and Cd
and F orbitals within the [CANO,F;] octahedron (Fig. S12 and
S13t). These d-p hybridization events facilitate electron move-
ment, under the photoelectric field, enhancing the second-har-
monic generation (SHG) effect.

Under Kleinman symmetry constraints,*® CAF(CeH4NO,)
(H,O) exhibits four independent nonzero SHG coefficients: d;,
=-0.241 pm V', dig = 1.114 pm V', d,, = 0.747 pm V', and
dy; = —0.439 pm V™!, with d,s being the largest and consistent
with experimental results. Further investigation through SHG-
weighted density maps (Fig. 5a, b and S14, S157) shows that
the occupied states in the virtual electron (VE) and virtual hole
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Fig. 4 (a) Thickness of selected wafers measured using the birefringence of CdF(CgH4NO;)(H,O). (b and ¢) CdF(CgH4NO,)(H,0) extinguished under
cross-polarized light. (d) Theoretically calculated refractive index of CdF(CgH4NO,)(H,0). (e) Comparison of birefringence@546 nm between CdF,

and CdF(CgH4NO,)(H,0).
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Theoretical calculation of anisotropy and hyperpolarizability contri-
butions of CdF(CgH4NO,)(H,0), [CANO,F3] and (CsH4NO,) ™.

(VH) processes are mainly from C-2p, N-2p, O-2p, and F-2p
orbitals, while the unoccupied states are primarily from C-2p,
N-2p, and Cd-4d orbitals. These findings confirm that the SHG
density arises from the synergistic contributions of the
(C¢H4NO,)™ unit, F, and Cd atoms.

It is well known that anisotropy and hyperpolarizability are
key parameters affecting second harmonic generation (SHG)
and birefringence, respectively. We calculated these properties
for [CdFs], [CANO,F;], CAF(C¢H,NO,)(H,0), and (C4H,NO,)
using the LanL2DZ basis set in Gaussian®® (Fig. 5¢ and d). For
CdF,, [CdFg] shows near-zero hyperpolarizability and an-
isotropy, consistent with its poor birefringence and lack of
SHG. In contrast, [CANO,F;] in CdF(C¢H4NO,)(H,0) exhibits
hyperpolarizability and anisotropy values over 2000 and 5000
times higher than those of [CdFs], highlighting its crucial role
in enhancing optical properties (Fig. 5¢). Fig. 5d shows that
(CeH4NO,)™ significantly contributes to birefringence, while
the highly polarized [CANO,F;] units drive strong SHG. Taken
together, it is confirmed that the unique “Warren truss struc-
ture” formed by the m-conjugated organic ring (CsH4NO,)~
leads to highly polarized and well-aligned [CANO,F;] octahe-
dra and (C¢H4NO,)™, which is the key factor leading to the
strong SHG and birefringence of CdF(CcH,NO,)(H,0).

Conclusion

In summary, we have successfully synthesized CdF(CsH,NO,)
(H,0), a novel UV NLO material with a unique “Warren truss
structure”. Compared to CdF,, which exhibits zero SHG effect
and extremely low birefringence (0.00002@546 nm), CdF
(C¢H4NO,)(H,0) demonstrates remarkable enhancements in
both properties, achieving a large SHG response (3.2xKDP)
and high birefringence (0.26@546 nm). These striking
improvements are attributed to the introduction of the

This journal is © the Partner Organisations 2025
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n-conjugated organic ring (C¢H4NO,)™, which leads to the for-
mation of a highly polarized and well aligned [CdANO,F;] octa-
hedra. Notably, this is the first UV fluoride material to simul-
taneously exhibit a large band gap (>4.2 eV), strong SHG effect
(>3xKDP), and high birefringence (>0.2), making it a promis-
ing candidate for quantum optical technologies. Our study
provides valuable insights into the design of non-centro-
symmetric optoelectronic materials by constructing novel
structures that activate high polarization and enhance optical
properties.
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