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Oxidation of phenols by the excited state of an
osmium(VI) nitrido complex†
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Tai-Chu Lau *a,c

The photoreaction of an osmium(VI) nitrido complex, [OsVI(N)(L)(CN)3]
− (OsN), with various phenols has

been investigated. Upon irradiation of OsN with visible light, the excited state (OsN*) is generated which

reacts readily with a variety of phenols. OsN* reacts with mono- and di-substituted phenols, including

2,6-dimethylphenol, 2,6-dichlorophenol and 4-methylphenol to afford the corresponding osmium(II)

benzoquinone monoimine and osmium(IV) benzoquinone monoiminato complexes. On the other hand,

in the reactions of OsN* with bulky tri-substituted phenol such as 2,4,6-tri-tert-butylphenol, C–C bond

cleavage occurred and [OsIV(L)(CN)3(Nv
tBu2Ph(−2H)O)]− was formed as the major product. The electronic

effects of various para-substituents (X) on the oxidation of phenols were investigated by the method of

initial rates (Rx). A Hammett plot of log(Rx/RH) versus σp is linear with a ρ value of −0.54. A linear corre-

lation of log(Rx) with the oxidation potentials (E) of phenols was also found with a slope of −0.80. On the

other hand, no correlations were found between log(Rx) and O–H bond dissociation energy (BDE), as well

as the pKa of phenols. The oxidation of phenols by OsN* exhibits a negligible kinetic isotope effect (KIE),

k(C6H5OH)/k(C6D5OD) ∼1. These results are consistent with a mechanism that involves an initial 1e− oxi-

dation of the phenol followed by rapid proton transfer (ET-PT) to generate a phenoxy radical, this is fol-

lowed by a N-rebound step to give the osmium products.

Introduction

Transition metal nitrido (MuN) complexes are intermediates
in N2 fixation and potentially useful reagents for the nitrogena-
tion of organic substrates.1,2 Compared to metal oxo (MvO)
species, there are relatively few nitrido complexes that are reac-
tive towards common organic substrates. Examples include
osmium(VI) nitrido complexes containing various N-based
ligands such as 2,2′-bipyridine (bpy), 2,2′:6′,2″-terpyridine
(tpy), and tris(1-pyrazolyl)methane (tpm); they are highly elec-
trophilic and readily undergo N-atom transfer to a variety of
organic substrates.3 Moreover, Ru(VI) nitrido complexes
bearing salen type ligands, such as [RuVI(N)(salchda)
(CH3OH)]+ (RuN, salchda = N,N′-bis(salicylidene)-o-cyclohexyl-
diamine dianion),4 and several iron(V/IV)5 and Mn(V/VI)6 nitrido

complexes are also highly reactive species that are capable of
oxidizing various organic substrates.

The oxidation of phenols to quinones by various oxidants
has been extensively studied, mainly because such reactions
are relevant to many biological processes.7–13 Phenols can be
oxidized by various pathways (Fig. 1), the most common one is
initial 1e− oxidation resulting in the formation phenoxy rad-
icals, which is followed by rapid loss of the phenolic proton
(consecutive electron transfer-proton transfer, ET-PT). Further
rapid loss of 1e− + 1H+ results in the formation of
quinones.14,15 On the other hand, oxidation of phenols by
some metal oxo species may involve an H-atom transfer
mechanism (or concerted ET-PT).16–22 Oxidation via an initial
electrophilic attack on the aromatic ring of phenol has also
been reported for a ruthenium(IV) species.23,24

Prior to this work, there was only one example on oxidation
of phenols by a metal nitrido species. RuN readily reacts with
phenols in the presence of pyridine to afford (salchda)ruthe-
nium(II) p-benzoquinone imine complexes.25 The reactions
were proposed to proceed via an initial electrophilic attack by
RuN at the aromatic ring of phenols.

In an attempt to design a highly active metal
nitrido complex, we turned our attention to the excited state
chemistry of MuN. We reported recently the synthesis of a
highly luminescent Os(VI) nitrido complex, [OsVI(N)(L)(CN)3]

−
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(OsN, HL = 2-(2-hydroxy-5-nitrophenyl)benzoxazole);26–33 OsN
is highly luminescent in both solid state and fluid solution
(solid state: λem = 591 nm, ϕ = 11.7%, τ = 1.90 µs; in degassed
CH2Cl2: λem = 594 nm, ϕ = 3.0%, τ = 0.48 µs). The CV of OsN
shows an irreversible oxidation wave at Epa = 1.88 V and an
irreversible reduction wave at Epa = −0.99 V vs. Saturated
Calomel Electrode (SCE), which are tentatively assigned as the
metal-centered OsVII/VI and OsVI/V process, respectively. The
excited state (OsN*) of this complex is readily generated by
visible light irradiation (λ > 460 nm). OsN* was found to be
highly oxidizing and it reacts readily with various organic sub-
strates, including alkanes, arenes, amines, alcohols, and
dihydroxybenzenes.26–33

Herein, we reported the oxidation of phenols by OsN*.
These reactions have a number of unusual/novel features. In
contrast to the oxidation of phenols by RuN, which occurs via

an electrophilic ring attack mechanism, oxidation by OsN*
occurs by an ET-PT followed by an N-rebound mechanism.
Similar to oxidation by RuN, oxidation of various mono- and
di-substituted phenols by OsN* produced the corresponding
osmium(II) benzoquinone imine complexes. However, because
OsN* is a powerful oxidant, further oxidation of the osmium(II)
products by OsN* occur to afford novel osmium(IV) iminato
complexes as a second product. Moreover, oxidation of tri-sub-
stituted phenol such as 2,4,6-tBu3C6H2OH results in C–C bond
cleavage of the substrate.

Results and discussion

Upon irradiation with blue LED (λ > 460 nm) for 24 h, the
light-yellow CH2Cl2 solution of OsN and 10 equiv. of 2,4,6-
Me3C6H2OH rapidly turned dark red (Fig. 2). A mixture of the
osmium(II) p-benzoquinone monoimine complex [OsII(L)
(CN)3(NHvMe2Ph(−2H)vO)]2− (1a) and osmium(IV) p-benzo-
quinone monoiminato complex [OsIV(L)
(CN)3(NvMe2Ph(−2H)vO)]− (1b), were isolated as PPh4

+ salts
with 20% and 26% yields, respectively. Similarly, the photo-
reaction of OsN with 2,6-Cl2C6H3OH afforded a mixture of
(PPh4)2[Os

II(L)(CN)3(NHvCl2Ph(−2H)vO)] [(PPh4)22a] and
(PPh4)[Os

IV(L)(CN)3(NvCl2Ph(−2H)vO)] [(PPh4)2b] with 32%
and 25% yields, respectively. In addition, (PPh4)[Os

II(L)
(CN)3(NH3)] (OsNH3)

28 was isolated with ∼10% yield in reac-
tions with these phenols. Controlled experiments showed that

Fig. 1 Oxidation pathways of phenols by oxidants.

Fig. 2 Reactions of OsN with various phenols in the excited state and
ground state.
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no reaction between OsN and phenols was observed in the
dark.

On the other hand, in the photoreaction with 4-methyl-
phenol, OsN undergoes electrophilic attack at the ortho posi-
tion to afford an [PPh4]2[Os

II(L)(CN)3(o-NHvMePh(−2H)vO)]
[(PPh4)23a] and [PPh4][Os

IV(L)(CN)3(o-NvMePh(−2H)vO)]
[(PPh4)3b], with yields of 37% and 32%, respectively.

The photoreactions of OsN with 2,4,6-tri-tert-butylphenol
and 2,4,6-tri-methylphenol were also investigated (Fig. 3); for
these substrates with three alkyl substituents, direct electro-
philic attack on the aromatic ring by OsN* may be inhibited.
Reaction of OsN* with 2,4,6-tBu3C6H2OH afforded [OsIV(L)
(CN)3(p-Nv

tBu2Ph(−2H)vO)]− (4a), isolated as PPh4
+ salt with

∼52% yield. The structure of 4a (see characterization below)
reveals formal C–C bond cleavage of 2,4,6-tBu3C6H2OH; GC/MS
and GC show that the 2-methylpropene was formed with ∼50%
yield. 1H NMR spectrum of (PPh4)4a shows that the remaining
two tBu groups are symmetry-related, consistent with the para
attack of 2,4,6-tBu3C6H2OH by OsN*. ESI/MS (−ve mode) of the
photoreaction solution of OsN and 2,4,6-tBu3C6H2OH shows a
predominant peak at m/z 743 (Fig. 4), attributed to [OsIV(L)
(CN)3(p-Nv

tBu2Ph(−2H)vO)]− (4a). There is also a very minor
peak at m/z 801, (estimated to be 5%), which is tentatively
assigned to [OsIV(L)(CN)3(NH-tBu3Ph(−2H)vO)]− (4b), arising
from an electrophilic attack of OsN at the para position of the
phenol.

In the case of 2,4,6-Me3C6H2OH with less bulky methyl sub-
stituents, electrophilic ring attack by OsN* occurred predomi-
nantly at the para position, and the amido complex, [OsIV(L)
(CN)3{NH-(Me3Ph(−2H)vO)}]− (5), was isolated as PPh4

+ salt
with ∼75% yield. The ESI/MS (−ve mode) of the product solu-
tion shows a predominant peak at m/z = 675 due to complex 5.
In addition, there are two minor peaks at m/z 659.1 and 275.6,
which are tentatively assigned to 1b and [OsII(L)(CN)4]

3−,
respectively. These two species should arise from C–C bond
cleavage of 2,4,6-Me3C6H2OH; however, the total yields of
these two products are estimated to be <5%.

All products have been characterized by IR, UV/vis, CV, ESI/
MS, and 1H NMR (Fig. S1–S12†). All the Os(II) and Os(IV) com-
pounds are diamagnetic, as evidenced by the sharp resonances
found in the normal range in their 1H NMR spectra. The dia-
magnetism of these compounds is consistent with the low
spin d6 and d4 electronic configurations for Os(II) and Os(IV),
respectively. The IR spectra of (PPh4)21a and (PPh4)22a show
v(CuN) stretches at 2096, 2070 cm−1 and 2108, 2082 cm−1,
and v(CvO) stretches at 1609 cm−1 and 1610 cm−1, respect-
ively. The IR spectra of (PPh4)1b and (PPh4)2b show v(CuN)
stretches at 2145, 2134 cm−1 and 2153, 2142 cm−1, and
v(CvO) stretches at 1629 cm−1 and 1639 cm−1, respectively
which are at higher wavenumbers as compared with (PPh4)21a
and (PPh4)22a. Similar v(CuN) and v(CvO) stretches are also
found in (PPh4)23a and (PPh4)3b.

As shown in Fig. S6,† the UV/vis spectra of these com-
pounds show ligand-centered π–π* transitions in the UV
regions. In the osmium(II) products (PPh4)21a, (PPh4)22a, and
(PPh4)23a, there are strong absorption bands at 500–650 nm
with molar extinction coefficients (ε) of the order of 104 M−1

cm−1, which are assigned to Os(II) to p-benzoquinone monoi-
mine charge transfer (MLCT) transitions. Notably, there is an
intense absorption band with ε > 6 × 104 M−1 cm−1 in
(PPh4)22a. In the osmium(IV) products (PPh4)1b, (PPh4)2b and
(PPh4)3b, the broad absorption bands at ∼450 nm are probably
due to LMCT transitions.

The cyclic voltammograms (CVs) of the osmium complexes
(PPh4)21a, (PPh4)22a, and (PPh4)23a in CH3CN exhibit a revers-
ible/quasi-reversible OsIII/II couples at −0.67 V, −0.38 V and
−0.78 V vs. Fc+/0, respectively (Fig. 5). There is also an irrevers-
ible wave at Epc = −1.46 V, −1.35 V and −1.72 V, respectively
which are tentatively assigned to the reduction of the benzo-
quinone imine ligands. The oxidation waves at E1/2 = 1.25 V,
Epc = 1.46 V and 1.23 V, respectively, are assigned to OsIV/III.
The CVs of the osmium(IV) products 1b, 2b and 3b exhibit irre-
versible OsIV/III waves at Ep = −0.65 V, −0.39 V and −0.66 V,
respectively (Fig. 6); while the waves at Ep = −1.61 V, −1.35 V
and −1.49 V, respectively are tentatively assigned to the
reduction of benzoquinone imine ligands.

Fig. 3 Photoreaction of OsN with 2,4,6-tBu3C6H2OH and 2,4,6-Me3
C6H2OH.

Fig. 4 ESI/MS of photoreaction of OsN with 10 equiv.
2,4,6-tBu3C6H2OH for 4 h showing a predominant peak at m/z 743 and
a small peak at m/z 801.

Inorganic Chemistry Frontiers Research Article

This journal is © the Partner Organisations 2025 Inorg. Chem. Front., 2025, 12, 3157–3165 | 3159

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
Fe

br
ua

ry
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

1/
26

/2
02

5 
9:

45
:3

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4qi03144j


Fig. 5 CVs for 1a, 2a, and 3a in MeCN solutions containing 0.1 M
[nBu4N](PF6) with a scan rate = 0.1 V s−1.

Fig. 6 CVs for 1b, 2b, and 3b in MeCN solutions containing 0.1 M
[nBu4N](PF6) with a scan rate = 0.1 V s−1.

Table 1 Selected bond parameters (Å, °) for 1b, 2a, 3b and 4a

1b 2a 3b 4a

Os1–C1 2.074 (5) 2.053 (4) 2.082 (5) 2.081(5)
Os1–C2 2.077 (5) 2.070 (4) 2.081 (5) 2.029(4)
Os1–C3 2.025 (5) 2.009 (4) 2.034 (6) 2.066(5)
Os1–N4 1.781 (4) 1.927 (3) 1.768 (4) 1.779(4)
Os1–N5 2.117 (4) 2.129 (3) 2.118 (4) 2.115(3)
Os1–O1 2.010 (3) 2.066 (3) 2.028 (3) —
Os1–O2 — — — 2.022(3)
Os1–N4–C4 167.2 (4) 136.6 (3) 167.9 (5) 163.8(3)

Fig. 7 The structures of (a) 1b, (b) 2a, (c) 3b and (d) 4a.

Fig. 8 (a) UV/vis spectral changes for the photoreaction of OsN (2.5 × 10−5 M) with phenol (1.8 × 10−3 M) in C2H4Cl2. Inset shows the time-trace
absorbance at 450 nm. (b) Hammett plot for the photoreaction of OsN with 4-substituted phenols in C2H4Cl2. Slope = −0.54. Intercept = −0.00217.
(c) Plot of log(Rx) vs. E

ox. (d) Plot of log(Rx) vs. BDE.
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The molecular structures of (PPh4)1b, (PPh4)22a, (PPh4)3b,
and (PPh4)4a have been determined by X-ray crystallography
(Fig. 7). Selected bond parameters are summarized in Table 1.
The mer-configuration of OsN is retained in these complexes.
There are two PPh4

+ in 2a and only one PPh4
+ in 1b and 3b.

The Os–N4 bond length in 2a is 1.927(3) Å, which is signifi-
cantly shorter than related Os–N bond lengths in [OsIII{N(H)C
(NH2)}(L

1)(CN)3]
− and [OsIII{N(H)CN}(L1)(CN)3]

2− (HL1 = 2-(2-
hydroxyphenyl)benzoxazole),32,33 indicating the presence of
strong π back-bonding interaction between OsII and the benzo-
quinone monoimine ligand. On the other hand, the Os–N4
bond lengths are 1.781(4) and 1.768(4) Å, respectively for 1b
and 3b, which are much shorter than that in 2a, indicating
Os–N double bond character in these Os(IV) complexes. This is
also evidenced by the more linear Os1–N4–C4 bond angles of
167.2(4)° and 167.9(5)° than that in 2a (136.6(3)°). The bond
parameters of 3b and 4a are essentially identical to those in
1b, as the metal centers have the same oxidation state.

Substituent effects

The photoreactions of OsN with various 4-substituted phenols
(4-X-C6H4OH; X = MeO, Me, H, F, Cl) were also investigated by
UV/vis spectroscopy (Fig. S10†). The initial rates (Rx) of these
reactions were obtained at 450 nm (Fig. 8a). Rx was found to
increase with increasing electron donating properties of the
substituents: MeO > Me > H > F > Cl. A linear correlation was
obtained in the Hammett plot of log(Rx/RH) versus the substitu-
ent constant (σ), with a ρ value of −0.54 ± 0.01 (Fig. 8b), indi-
cating that the phenol center is more positive in the transition
state. log(Rx) also correlates well with the oxidation potentials
(Eox) of these phenols with a slope of −0.80 (Fig. 8c).34 The
results indicate that the reaction may proceed via an initial
rate-limiting 1e− transfer (ET) from phenols to OsN*. No clear
correlation between log(Rx) and pKa of phenols, suggesting
that proton transfer (PT) is not involved in the rate-limiting
step. There is also no clear relationship between log(Rx) and
the O–H bond dissociation energies (BDEs) of the phenols
(Fig. 8d),35 which does not support a hydrogen atom transfer
(HAT) mechanism for the oxidation of phenols by OsN*.

Kinetic isotope effects (KIE)

The KIE for the reaction of OsN* with phenol was determined
by ESI/MS, using an equimolar mixture of phenol (C6H5OH)
and d6-phenol (C6D5OD) as substrate. As shown in Fig. 9a, the
KIE value was estimated to be ∼(1 ± 0.05) from the ratios of the
most intense peaks for two Os(IV) benzoquinone monoiminato
products, (m/z = 631 and 635 for [OsIV(L)(CN)3(NvC6H4vO)]−

and [OsIV(L)(CN)3(NvC6D4vO)]− respectively), assuming that
the spraying and ionization efficiencies of the two ions are
similar. The isotopic distribution pattern obtained is also in
agreement with the simulated one. The KIE is also determined
by UV/vis spectroscopy. As shown in Fig. S11,† the UV/vis spec-
tral changes were obtained from the photoreaction of OsN
with phenol (C6H5OH) and d6-phenol (C6D5OD) under the
same conditions. The reactions were followed by the change in
absorbance at 367 nm, which gives a KIE of RH/RD = 0.97 ±

0.01 (Fig. 9b). Based on the above results, the photoreaction of
OsN with phenol exhibits negligible KIE, indicating that C–H
bond cleavage is not involved in the rate-limiting step, in line
with the conclusion obtained from investigation of substituent
effects.

Proposed mechanism

Based on the above experiments, the proposed mechanism for
the photoreaction of OsN with phenols is illustrated in Fig. 10
(using 2,6-Me2C6H3OH as an example). The initial step is rate-
limiting 1e− oxidation of 2,6-Me2C6H3OH (ET), followed by
rapid proton transfer (PT) to give the OsVNH and phenoxy
radical, which is supported by a linear correlation between log
(Rx) and E of the phenols with a slope of −0.80. The proposed
mechanism is also supported by the linear Hammett corre-
lation with ρ value of −0.54 and a negligible KIE effect
(k(C6H5OH)/k(C6D5OD) ∼1.03). Moreover, the initial rate (R) for
phenolate is 60 times faster than that of phenol, further vali-

Fig. 9 (a) ESI/MS for the photoreaction of OsN with equimolar of
phenol and d6-phenol showing a predominant peak around m/z 631.
Inserts show the expanded isotopic distribution of peak m/z 631, which
agrees with the simulated isotopic distribution of m/z 631 and 635 with
a mole ratio of 0.505 : 0.495 (KIE ∼1). (b) Time trace for absorbance at
367 nm of OsN (2.5 × 10−5 M) with 100 equiv. of phenol (red line) and
d6-phenol (blue line) in C2H4Cl2. The linear fitting gives initial rates of RH

= (−2.13 ± 0.06) × 10−3, r2 = 0.98 and RD = (−2.40 ± 0.10) × 10−3, r2 =
0.99; RH : RD = 0.97.
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dating the initial ET mechanism (Fig. S12†). This is followed
by tautomerism and N-rebound to give an OsIV amido species.
An internal 2e− redox results in the OsII hydroquinone monoi-
mine product. The other product, Os(IV) hydroquinone monoi-
minato complex, was formed by further 2e− oxidation by OsN*
(2/3OsN* + 1a → 1b + 2/3OsNH3). This last step is supported
by the isolation of OsNH3 in 10% yield.

For the photoreaction of OsN and 2,4,6-tBu3C6H2OH, the first
four steps are similar (Fig. 11), i.e. 1e− oxidation of
2,4,6-tBu3C6H2OH (ET), followed by rapid proton transfer (PT) to
give the OsVNH and phenoxy radical; followed by tautomerism
and N-rebound to give an OsIV amido species. Further 2e− oxi-
dation of this OsIV amido species by OsN* leads to C–C bond clea-
vage with the formation of 4a, 2-methylpropene, and OsNH3.

Conclusion

In conclusion, we have demonstrated novel reactivity of the
excited state of an osmium(VI) nitrido complex towards

phenols. The photoreactions of OsN with the parent phenol,
as well as mono- and di-substituted phenols afforded Os(II)
p-benzoquinone monoimine and osmium(IV) p-benzoquinone
monoiminato complexes. On the other hand, oxidation of
bulky tri-substituted phenol such as 2,4,6-tBu3C6H2OH
resulted in C–C bond cleavage of the substrate. Mechanistic
studies indicate that the photoreactions proceed via an initial
1e− oxidation followed by a rapid proton transfer (ET-PT) to
generate phenoxy radicals, this is followed by a N-rebound step
to give the osmium products. We believe that our work is a sig-
nificant contribution to MuN excited state as well as phenol
oxidation chemistry.

Experimental
(PPh4)2[Os

II(L)(CN)3(NHvMe2PhOH(−2H))] [(PPh4)21a] and
(PPh4)[Os

IV(L)(CN)3(NvMe2PhOH(−2H))] [(PPh4)1b]

10 tubes each containing OsN (5 mg, 5.7 μmol) and 2,6-
Me2C6H3OH (73 mg, 0.6 mmol) in CH2Cl2 under argon were
irradiated with blue LED light for 24 h, whereby the light-
yellow solutions turned dark red. The solutions were combined,
and the solvent was removed under reduced pressure. The residue
was washed with diethyl ether (100 ml) to remove the unreacted
2,6-Me2C6H3OH. The residue was dissolved in a minimum
amount of CH2Cl2 and then loaded onto a silica gel column. The
first yellow band (PPh4)[Os

IV(L)(CN)3(NvMe2Ph(−2H)vO)] [(PPh4)
1b] was eluted by CH2Cl2/acetone (v : v, 4 : 1). Yellow needle crystals
were obtained from slow diffusion of diethyl ether into a MeCN
solution of (PPh4)1b. The second blue band was eluted by CH2Cl2/
acetone/MeOH (v : v : v, 8 : 2 : 1). The solvent was removed under
reduced pressure. The solid obtained was dissolved in H2O (10 ml)
and excess PPh4Cl (30 mg) was added to give the blue precipitate.
The crude product was further purified by slow diffusion of diethyl
ether into a CH2Cl2 solution of (PPh4)21a. Yield for (PPh4)21a:
15 mg, 20% (based on the OsN consumed). Selected IR (KBr disc,
cm−1): v(N–H) 3248; v(CuN) 2096 and 2070; v(CvO) 1645;
v(CvN) 1609; v(NvO) 1303. 1H NMR (400 MHz, CDCl3): δ 8.92 (s,
1H, Ar–H), 7.92–7.78 (m, 8H, Ar–H), 7.77–7.64 (m, 18H, Ar–H),
7.62–7.48 (m, 18H, Ar–H), 7.38 (d, J = 8.0 Hz, 1H, Ar–H), 7.29 (m,
1H, Ar–H), 7.19 (t, J = 8.0 Hz,1H, Ar–H), 6.67 (s, 1H, Ar–H), 1.69 (s,
6H). ESI/MS (−ve mode) in MeOH: atm/z 329.7 ([M]2−); Anal. Calcd
for C72H56N6O5P2Os: C, 64.66; H, 4.22; N, 6.28. Found: C, 64.80; H,
4.25; N, 6.32%. UV/Vis (CH2Cl2): λmax [nm] (ε [mol−1 dm3 cm−1]):
269 (22 472), 276 (21 630), 287 (16 020), 344 (14 050), 377sh
(11 870), 432 (11 270), 541 (17 340), 586 (17 670). Yield for (PPh4)1b:
15 mg, 26% (based on the OsN consumed). Selected IR (KBr disc,
cm−1): v(CuN) 2145 and 2135; v(CvO) 1630; v(CvN) 1611. 1H
NMR (400 MHz, CDCl3): δ 9.04 (s, 1H, Ar–H), 8.19 (s, 2H, Ar–H),
8.07 (d, J = 9.5 Hz, 1H, Ar–H), 7.96–7.88 (m, 4H, Ar–H), 7.84–7.74
(m, 9H, Ar–H), 7.72 (d, J = 7.4 Hz, 1H, Ar–H), 7.69–7.61 (m, 8H, Ar–
H), 7.53 (t, J = 8.3 Hz, 2H, Ar–H), 6.92 (d, J = 9.2 Hz, 1H, Ar–H),
3.15 (s, 6H, –CH3). ESI-MS (−ve mode) in MeOH: m/z 659 (M−);
Anal. Calcd for C48H35N6O5OsP: C, 57.82; H, 3.54; N, 8.43. Found:
C, 57.93; H, 3.60; N, 8.31%. UV/Vis (CH2Cl2): λmax [nm] (ε [mol−1

Fig. 11 The proposed mechanism for the C–C bond cleavage of
2,4,6-tBu3C6H2OH by OsN*.

Fig. 10 The proposed reaction mechanism for the reaction of OsN*
with 2,6-Me2C6H3OH.
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dm3 cm−1]): 269 (23 710), 277 (25 070), 288 (23 480), 330 (22 610),
432 (33 300).

(PPh4)2[Os
II(L)(CN)3(NHvCl2PhOH(−2H))] [(PPh4)22a] and

(PPh4)[Os
IV(L)(CN)3(NvCl2PhOH(−2H))] [(PPh4)2b]

The synthesis and isolation of (PPh4)22a and (PPh4)2b are
similar to that of (PPh4)21a and (PPh4)1b except that 2,6-
Cl2C6H3OH was used instead of 2,6-dimethylphenol. Yield for
(PPh4)22a: (25 mg, 32%, based on the OsN consumed).
Selected IR (KBr disc, cm−1): v(N–H) 3235; v(CuN) 2108 and
2082; v(CvO) 1638; v(CvN) 1609; v(NvO) 1307; 1H NMR
(400 MHz, CDCl3): δ 8.96 (d, J = 2.9 Hz, 1H), 7.90–7.82 (m, 8H),
7.80 (d, J = 2.9 Hz, 1H), 7.77–7.68 (m, 16 H), 7.65–7.56 (m,
16H), 7.55–7.48 (m, 2H), 7.37–7.29 (m, 3H), 7.23 (s, 1H); 6.78
(d, J = 9.4 Hz, 1H). ESI-MS (−ve mode) in MeOH: m/z 350.2
[M]2−. Anal. Calcd for C70H50Cl2N6O5OsP2: C, 61.00; H, 3.66;
N, 6.10. Found: C, 61.10; H, 3.71; N, 6.18%. UV/Vis (CH2Cl2):
λmax [nm] (ε [mol−1 dm3 cm−1]): 262sh (18 090), 269 (19 810),
276 (18 740), 285sh (12 760), 338 (12 110), 363sh (9360), 417sh
(7070), 593 (60 850). Yield for (PPh4)2b: 15 mg, 25% (based on
the OsN consumed). Selected IR (KBr disc, cm−1): v(CuN)
2153 and 2141; v(CvO) 1639; v(CvN) 1614. 1H NMR
(400 MHz, CDCl3): δ 9.08 (s, 1H, Ar–H), 8.50 (s, 2H, Ar–H), 8.21
(d, J = 8.9 Hz, 1H, Ar–H), 7.97–7.89 (m, 4H, Ar–H), 7.84–7.75
(m, 9H, Ar–H), 7.72–7.58 (m, 11H, Ar–H), 7.13 (d, J = 9.2 Hz,
1H, Ar–H). ESI-MS (−ve mode) in MeOH: m/z 699 (M−); Anal.
Calcd for C46H29Cl2N6O5OsP: C, 53.23; H, 2.82; N, 8.10. Found:
C, 53.29; H, 2.76; N, 8.21%. UV/Vis (CH2Cl2): λmax [nm] (ε
[mol−1 dm3 cm−1]): 270 (40 050), 277 (44 140), 288sh (42 330),
331sh (37 880), 447 (60 490).

(PPh4)2[Os
II(L)(CN)3(NHvMePhOH(−2H))] [(PPh4)23a] and

(PPh4)[Os
IV(L)(CN)3(NvMePhOH(−2H))] [(PPh4)3b]

The synthesis and isolation of (PPh4)23a and (PPh4)3b are
similar to that of (PPh4)21a and (PPh4)1b except that
4-MeC6H4OH was used instead of 2,6-Me2C6H3OH. Yield for
(PPh4)23a, 28 mg, 37%. Selected IR (KBr disc, cm−1) for
(PPh4)23a: v(N–H) 3253; v(CuN) 2125 and 2086; v(CvO) 1645;
v(CvN) 1612. 1H NMR (400 MHz, CDCl3): δ 9.03 (d, J = 2.9 Hz,
1H, Ar–H), 8.01 (s, 1H), 7.99 (s, 1H), 7.80–7.86 (m, 8H),
7.77–7.68 (m, 16 H), 7.65–7.56 (m, 16H), 7.18–7.10 (t, J = 8.0
Hz, 1H), 7.08 (d, J = 10.2 Hz, 1H), 6.72 (m, 2H), 6.38 (m, 2H),
5.32 (s, 1H) 1.27 (s, 3H), 3.50 (s, 3H, Me). ESI-MS (−ve mode)
in MeOH: m/z 323.3 [M]2−. Anal. Calcd for C71H54N6O5OsP2: C,
64.44; H, 4.11; N, 6.35. Found: C, 64.10; H, 4.21; N, 6.18%. UV/
Vis (CH2Cl2): λmax [nm] (ε [mol−1 dm3 cm−1]): 262sh (18 090),
269 (19 810), 276 (18 740), 285sh (12 760), 338 (12 110), 363sh
(9360), 417sh (7070), 593 (60 850). Yield for (PPh4)3b, 18 mg,
32%. Selected IR (KBr disc, cm−1): v(CuN) 2139 and 2130;
v(CvO) 1649; v(CvN) 1614. 1H NMR (400 MHz, CDCl3): δ 9.07
(d, J = 2.8 Hz, 1H), 8.65 (dd, J = 6.3, 2.8 Hz, 1H) 8.13 (dd, J =
9.3, 2.9 Hz, 1H), 7.90–7.82 (m, 4H), 7.77–7.84 (m, 8H),
7.65–7.73 (m, 10H), 7.60–7.53 (m, 2H), 7.21 (dd, J = 9.8, 2.2 Hz,
1H), 6.99 (d, J = 9.3 Hz, 1H); 5.77 (d, J = 9.8 Hz, 1H) 3.58 (s,
3H). ESI-MS (−ve mode) in MeOH: m/z 645 [M]−. Anal. Calcd
for C47H33N6O5OsP: C, 57.43; H, 3.38; N, 8.55. Found: C, 57.10;

H, 3.71; N, 8.18%. UV/Vis (CH2Cl2): λmax [nm] (ε [mol−1 dm3

cm−1]): 262sh (18 090), 269 (19 810), 276 (18 740), 285sh
(12 760), 338 (12 110), 363sh (9360), 417sh (7070), 593 (60 850).

(PPh4)2[Os
IV(L)(CN)3(Nv

tBu2Ph(−2H)vO)] [(PPh4)4a] and
(PPh4)[Os

IV(L)(CN)3(NH-tBu3PhOH(−2H))] [(PPh4)4b]

The synthetic route of (PPh4)4a and (PPh4)4b is similar to that
of (PPh4)21a and (PPh4)1b, except that the 2,4,6-tBu3C6H2OH is
used instead of 2,6-Me2C6H3OH. The first yellow band (PPh4)
4a was eluted by CH2Cl2/acetone (v : v, 10 : 1). Yellow needle
crystals were obtained from the slow diffusion of diethyl ether
into an acetone solution of (PPh4)4a. The solvent was removed
under reduced pressure.

Yield for (PPh4)4a: 32 mg, 52%. Selected IR (KBr disc,
cm−1): v(CuN) 2142 and 2128, v(CvO) 1638; v(CvN) 1615;
v(NvO) 1307. 1H NMR (400 MHz, CDCl3): δ 9.03 (d, J = 2.8 Hz,
1H, Ar–H), 8.12 (s, 2H, Ph–H), 8.05 (dd, J = 9.3, 2.9 Hz, 1H, Ar–
H), 7.92 (dd, J = 8.0, 6.0 Hz, 4H, PPh4-H), 7.83–7.76 (m, 9H, Ar–
H and PPh4-H), 7.73 (d, J = 7.2 Hz, 1H, Ar–H), 7.68–7.62 (m,
8H, PPh4-H), 7.54 (dtd, J = 13.9, 7.8, 6.2 Hz, 2H, Ar–H), 6.89 (d,
J = 9.4 Hz, 1H, Ar–H), 1.28 (s, 18H, CH3). ESI-MS (−ve mode) in
MeOH: m/z 743 [M]2−. Anal. Calcd for C54H47N6O5OsP: C,
59.99; H, 4.38; N, 7.77. Found: C, 60.10; H, 4.31; N, 7.78%. UV/
Vis (CH2Cl2): λmax [nm] (ε [mol−1 dm3 cm−1]): 230 (27 380), 277
(15 620), 288 (14 640), 330 (13 030), 428 (20 930).

(PPh4)[Os
IV(L)(CN)3(NH-Me3PhOH(–H))] [(PPh4)5]

The synthetic route of (PPh4)5 is similar to that of (PPh4)21a
and (PPh4)1b, except that the 2,4,6-Me3C6H2OH is used
instead of 2,6-Me2C6H3OH. (PPh4)5 was purified by silica gel
CH2Cl2/acetone (5 : 3) as the eluent. Yield: 43 mg, 75% (based
on the OsN consumed). UV/Vis (CH2Cl2) for (PPh4)5: λmax [nm]
(ε/M−1 cm−1): 233 (42 430), 270 (18 030), 277 (19 430), 293
(20 360), 353 (20 460), 457 (6420). Selected IR (KBr disc, cm−1)
for 5: v(CuN) 2135 and 2127; v(N–H) 3247; v(CvN) 1610.
ESI-MS (−ve mode) in MeOH: m/z 675 [M]−. Anal. Calcd for
C49H39N6O5OsP: C, 58.09; H, 3.88; N, 8.30. Found: C, 58.10; H,
3.81; N, 8.28%. 1H NMR (400 MHz, CDCl3): δ 8.93 (d, J = 2.8
Hz, 1H, Ar–H), 7.96 (d, J = 6.6 Hz, 1H, Ar–H), 7.89 (t, J = 7.2 Hz,
4H), 7.75 (td, J = 7.6, 3.7 Hz, 8H), 7.65–7.57 (m, 10H, Ar–H and
PPh4-H), 7.43 (t, J = 7.1 Hz, 1H, Ar–H), 7.20 (t, J = 8.4 Hz, 1H,
Ar–H), 6.78 (s, 2H, Ph–H), 6.57 (d, J = 9.4 Hz, 1H, Ar–H), 2.23
(s, 3H, CH3), 1.27 (s, 6H, CH3).
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