Mechanochemical activation of an indole-fused 2H-benzopyran generates an acidochromic merocyanine dye enabling multicolor chromomorphic materials
Abstract
Molecular switches based on the 2H-1-benzopyran (chromene) scaffold have been widely developed for their desirable photochromic and mechanochromic properties. Extended π-conjugation is necessary to stabilize the ring-opened merocyanine dye at room temperature leading to efficient switching under ambient conditions. To this end, naphthopyrans represent a special class of benzo-annulated benzopyrans that have been studied extensively as both photoswitches and more recently as mechanophores, generating intensely colored merocyanine dyes upon exposure to ultraviolet light or mechanical force, respectively. Alternative annulation strategies with judicious heteroatom substitution have also been studied in the photochemistry literature, but the mechanochemistry of 2H-1-benzopyrans has yet to be explored. Here, we report the mechanochemical activation of an indole-fused 2H-1-benzopyran mechanophore that generates a yellow-colored merocyanine dye in polymers that is subsequently transformed to a purple-colored dye upon treatment with acid. Neutralization with base recovers the yellow-colored merocyanine isomer with trans exocyclic alkene geometry through an unusual acid-mediated alkene isomerization. This study expands the repertoire of mechanochromic mechanophores based on (hetero)annulated benzopyrans to enable multicolor chromomorphic behavior in response to both mechanical force and acid for applications in stimuli-responsive polymeric materials with complex switching properties.