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Two-dimensional (2D) nanoparticles have received considerable attention due to their versatile appli-

cations ranging from catalysis, optoelectronics to nanomedicine. However, it remains challenging to

access size tunable flat nanostructures with spatially tailored chemistries. The seeded-growth method,

“living” crystallization-driven self-assembly (CDSA) has emerged as a promising approach for preparing

well-defined 1D and 2D core–shell micellar assemblies from crystallizable block copolymers (BCPs).

Nevertheless, the development of biocompatible aliphatic polycarbonates, such as poly(trimethylene car-

bonate) (PTMC), as core-forming blocks for CDSA is considerably less explored and represents a key chal-

lenge due to their low crystallinity. Herein, we report the development of poly(dimethyltrimethylene car-

bonate) (PDTC) as a crystallizable core-forming block through the introduction of side chains to PTMC.

The BCPs containing crystallizable PDTC were shown to undergo living CDSA to prepare uniform and

size-controlled 2D platelets. In addition, uniform segmented platelets with spatially localized coronal

chemistries were successfully constructed. The colloidal stability of the platelets in aqueous solution

allowed for an assessment of their toxicity toward healthy WI-38 and cancerous U-87 MG cells. These

studies reveal that PDTC nanostructures exhibit no discernible cytotoxicity and excellent biocompatibility,

indicating great potential for biomedical applications.

Introduction

Two-dimensional (2D) nanostructures have been extensively
studied in the fields of catalysis,1,2 sensing,3,4

optoelectronics,5–8 and biomedical materials.9,10 Recently, con-
siderable attention has been devoted to the use of 2D nano-
structures in biomedical applications due to their prolonged
circulation times in the bloodstream, reduced accumulation in
the liver, and reduced immune recognition.11–15 However, the
controlled synthesis of biocompatible 2D nanostructures with

predictable morphologies, sizes, and compositions is
challenging.16,17

Crystallization-driven self-assembly (CDSA) enables amphi-
philic block copolymers (BCPs) with a crystalline core-forming
block to drive the solution self-assembly of low curvature mor-
phologies, such as one-dimensional (1D) nanofibers and 2D
platelets.17 Using this approach, 2D platelets are preferentially
formed from crystalline–coil BCPs with block ratios close to
1 : 1 or by tuning the solvent ratio to facilitate
crystallization.4,18–26 The size of the 2D nanoparticles syn-
thesized by CDSA can be controlled using a seeded-growth
approach, termed ‘living’ CDSA.21,26–33 This versatile and
robust method has been used to prepare a wide range of well-
defined and complex 2D platelets with tailored coronal chem-
istries and modular multifunctionality, including tracking
capabilities and cargo encapsulation.11,13,14,33,34 To date, a
range of biocompatible and biodegradable crystalline core-
forming blocks have been shown to form 2D platelets by living
CDSA. These include poly(L-lactide) (PLLA),8,18,35,36 poly(ε-
caprolactone) (PCL)26,34,37–41 and poly(p-dioxanone) (PPDO).20

Aliphatic polycarbonates have been widely explored as a
promising class of materials for biomedical applications due
to their low inherent toxicity, biodegradability, biocompatibil-
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ity and slow biodegradation times compared to PLLA
analogs.42–44 Among the synthetic aliphatic polycarbonates
reported in the literature, poly(trimethylene carbonate)
(PTMC) has been extensively explored as a drug delivery device
and scaffold for tissue engineering.45–48 PTMC is an excellent
candidate due to its in vivo biodegradation behavior, biocom-
patibility, high flexibility and toughness.47,48 However, PTMC
is a predominantly amorphous polymer with a low glass tran-
sition temperature (Tg = ca. −20 °C) and is only semi-crystal-
line in the stretched state.49,50 Its amorphous nature limits its
application as a crystalline core-forming block for CDSA.
Changes to the chemical structure have been demonstrated to
allow for the crystallization of a previously amorphous core-
forming block.51 Previously, we have identified a PTMC deriva-
tive, poly(fluorene trimethylene carbonate) (PFTMC), as an
excellent crystalline core-forming block for use in living CDSA
to form a wide variety of functional nanofibers.50,52–58

Recently, we have reported low dispersity PFTMC-b-PDMAEMA
(poly(2-(dimethylamino)ethyl methacrylate) nanofibers of con-
trolled length (22–1300 nm) and demonstrated their length-
dependent antimicrobial activity as well as their antibiotic and
nucleic acid delivery capabilities.55–58 Additional properties
such as stability, enzymatic degradability and low inherent tox-
icity show the excellent biocompatibility of these
nanofibers.50,55 Despite these promising properties, the hydro-
lytic biodegradation product of PFTMC, 9H-fluorene-9,9-
dimethanol, revealed increased cytotoxicity with IC50 values
(the amount of material required to inhibit cell viability by
50%) of 1.01 mM and 0.45 mM against HeLa and WI-38 cell
lines, respectively.50 Next to well controlled 1D nanofibers,
there is only one example of polydisperse 2D nanoribbons of
PFTMC-b-poly(ethylene glycol) (PEG) upon increasing the core-
to-corona ratio to 1 : 2.50 However, to date, no size controlled
2D nanostructures prepared by living CDSA with a polycarbo-
nate-based core-forming block have been reported. Therefore,
developing a new crystalline polycarbonate-based core-forming
block for living CDSA to yield precisely controlled 2D platelets
with less harmful biodegradation products is the inspiration
for the present work. We envisioned that alternative polycarbo-
nate-based crystalline core-forming blocks could be developed
through the introduction of different side groups to PTMC to
improve its crystallinity (Fig. 1).

Herein, we investigated the steric hindrance effect of
different side groups of PTMC derivatives (e.g. methyl, ethyl,
n-propyl, n-butyl, cyclopropane and cyclobutane groups) on the
homopolymer crystallinity. Poly(2,2-dimethyltrimethylene car-
bonate) (PDTC) showed improved crystallinity over the PTMC
derivatives and was explored as a core-forming block for CDSA.
Living CDSA of amphiphilic BCPs of PDTC-b-PEG was per-
formed and it yielded precisely controlled 2D platelets.
Additionally, well-defined segmented 2D platelets with
spatially localized coronal chemistries were obtained via
sequential living CDSA from PDTC-based BCPs with different
corona functionalities. As the hydrophilic PEG corona provides
colloidal stability of the nanostructures in aqueous media, the
toxicity of the 2D platelets towards WI-38 and U-87 MG cells

was evaluated. These experiments revealed no discernible cyto-
toxicity of the nanomaterials towards either cell line, showing
their great potential for further biomedical applications such
as drug delivery vehicles.

Results and discussion
Crystallization behavior of polycarbonate homopolymers with
different side groups

Homopolymers of PTMC derivatives were prepared via ring
opening polymerization (ROP). The six-membered aliphatic
carbonate monomers were obtained from their corresponding
diols (Fig. S1–S6†). Changes to the chemical structure of the
diols allow us to introduce different side chains or cyclic
groups into the backbone of the six-membered aliphatic car-
bonate monomers and homopolymers, respectively.

The number-average degree of polymerization (DPn) of each
polymer was determined by 1H NMR spectroscopy (Table 1,
Table S1 and Fig. S7A–S12A†) while gel permeation chromato-
graphy (GPC) analysis revealed low dispersity values (Đm)
between 1.14 and 1.30 (Table 1, Table S1 and Fig. S7B–S12B†).
The crystallinity of each homopolymer was investigated by
differential scanning calorimetry (DSC). DSC revealed that
different side chains have a significant influence on the Tg and
melting transition temperature (Tm) of the polycarbonate
analogs (Table 1, Table S1 and Fig. S7C–S12C and S13†). All
PTMC derivatives with different side chain lengths show
increased Tg values in comparison with unsubstituted PTMC
(Tg = −19 °C), while the dimethyl-substituted polycarbonate
(PDTC) showed the highest Tg value of 27 °C. However, with
increasing side chain length, the Tg values decrease from
27 °C to −11 °C. This phenomenon is well known, as longer
alkyl chains decrease the frictional interactions between the
polymer chains resulting in lower Tg values.59 Also, we intro-
duced cyclic side groups such as cyclopropane and cyclobu-
tene; the former exhibited an increased Tg value of 51 °C,

Fig. 1 Schematic illustration of increasing the crystallinity of poly(tri-
methylene carbonate) (PTMC) derivatives with different side groups.
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while the latter showed no Tg value due to annealing of the
homopolymer sample (Table S1†). Additionally, crystallization
points at 87 °C and 175 °C were observed for the cyclopropane
and cyclobutene derivatives, respectively (Table S1†). Notably,
these homopolymers do not follow the same trend as the
PTMC derivatives with increasing side chain length, and due
to their poor solubility, they were not studied further
(Fig. S14†). These findings reveal that the introduction of side
chains and cyclic side groups successfully restricts polymer
backbone flexibility and improves their crystallinity.60 PDTC
was the only PTMC derivative with side chains that exhibited a
Tc of 98 °C. This suggests that PDTC crystallizes more readily
than the other PTMC derivatives with different side chains as
the DSC experiment for each homopolymer was performed
under the same conditions. Due to its improved crystallinity,
PDTC was chosen as the core-forming block for the following
living CDSA studies. In addition, complementary CDSA studies
with PDEC as the core-forming block were performed to
explore the effect of side chain length on the self-assembly
properties.

Synthesis and self-assembly of PDTC-b-PEG and PDEC-b-PEG
block copolymers

To investigate the effect of block ratio on the CDSA of PDTC-b-
PEG and PDEC-b-PEG polymers, a series of well-defined BCPs
with different core-forming block lengths were prepared by
ROP (Table 2 and Table S2†). Due to the living characteristic of
the ROP, increasing amounts of the cyclic carbonate mono-
mers DTC and ETC yielded higher DPn for the core forming
blocks, respectively (Fig. S15–S23†). For each BCP, the DPn of
the PDTC and PDEC blocks was determined using 1H NMR
spectroscopy, while GPC analysis revealed low dispersity values
(Đm) below 1.1. These low dispersity BCPs are ideal for study-
ing their self-assembly process in solution as they should yield
morphologically pure nanoparticles.61,62

Next, the solution state self-assembly behavior of each BCP
was investigated by attempting to form micelles via homo-
geneous nucleation in mixtures of MeOH and THF (Fig. 2).
Under these conditions, MeOH acts as a selective solvent for
the PEG block to promote self-assembly, while a small amount

Table 1 Synthesis of polycarbonate homopolymers via organocatalytic ROP

R Polymerc Mn
d (g mol−1) Đm

d Tm
e (°C) Tc

e (°C) Tg
e (°C)

Ha PTMC65 8630 1.16 — — −19
Mea PDTC88 14 550 1.30 94, 109 f 98 27
Eta PDEC35 7780 1.13 84, 95 f — −6
n-Prb PDPC58 11 400 1.16 104 — −7
n-Bub PDBC26 5210 1.14 47 — −11

a TU (N-(3,5-trifluoromethyl)phenyl-N-cyclohexyl-thiourea) was used as the catalyst, and DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) was used as the
base for the polymerization. bDPP was used as the catalyst for the preparation. cDetermined by 1H NMR spectroscopy. dDetermined by GPC
versus polystyrene standards. eDetermined from the DSC thermogram. f Two temperatures indicate two distinct peaks in the DSC data, suggesting
the coexistence of two crystal forms.

Table 2 Synthesis of PDTC-b-PEG BCPs via organocatalytic ROP

Block polymer PDTC DPn
a Mn

b (g mol−1) Đm
b PDTC : PEG block ratioa

PDTC10-b-PEG124 10 7770 1.05 1 : 12
PDTC16-b-PEG129 16 9600 1.07 1 : 8
PDTC28-b-PEG130 28 11 750 1.07 1 : 5
PDTC49-b-PEG130 49 13 700 1.06 1 : 3
PDTC92-b-PEG132 92 20 310 1.06 1 : 1

aDetermined by 1H NMR spectroscopy. bDetermined by GPC versus polystyrene standards.
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of THF acts as a common solvent for both blocks to promote
PDTC and PDEC crystallization.22 The solutions for homo-
geneous nucleation experiments were prepared at 0.5 mg mL−1

in 85 : 15 MeOH : THF (v : v). The resulting solutions were drop-
cast onto carbon coated copper grids and stained with uranyl
acetate (3 wt% in MeOH) for transmission electron microscopy
(TEM) analysis. Uranyl acetate stain was used to increase the
contrast of low electron density PDTCm-b-PEGn- and PDECm-b-
PEGn-micelles relative to the carbon film, allowing better visu-
alization of the nanostructures. As a result, the micelle core
appears bright against the dark background as uranyl acetate
only penetrates the PEG-corona but not the PDTC and PDEC
micelle cores, repsectively.50 As shown in Fig. 2, the mor-
phologies of the resulting micelles prepared from the PDTCm-
b-PEGn BCPs exhibited a clear transition from spherical
micelles to 1D nanofibers, to 2D platelets as core-to-corona
ratios increased. For example, PDTC10-b-PEG124 with the lowest
core-to-corona ratio of 1 : 12 formed spherical micelles with a
diameter of ca. 28 nm (Fig. 2A). However, short nanofibers (ca.
76 and 127 nm) were observed for PDTC16-b-PEG129 and
PDTC28-b-PEG130 with core-to-corona ratios of 1 : 8 and 1 : 5,
respectively (Fig. 2B and C). A further increase of the core-to-
corona ratio to 1 : 3 and 1 : 1 for PDTC49-b-PEG130 and PDTC92-
b-PEG132 yielded 2D platelets (Fig. 2D–F). Such morphological
transition can be qualitatively explained by the chain packing
theory proposed by Vilgis and Halperin,63 which means a
decrease in crowding of the tethered PEG corona due to the
increased length of the PDTC core block will result in a less
curved core–corona interface. This phenomenon is consistent
with the self-assembly results of other crystalline–coil
BCPs.19,20,64 The resulting micelles prepared from the PDECm-

b-PEGn BCPs exhibited a similar transition from spherical
micelles to 1D nanofibers, to 2D nanoribbons as the core-to-
corona ratio increased (Fig. S24†). Notably, the 2D nano-
ribbons of PDEC95-b-PEG98 exhibit higher aspect ratios than
the 2D platelets of the PDTC analogue. However, due to unfa-
vorable properties such as self-nucleation (Fig. S24C and D†)
and poor colloidal stability (Fig. S25†), these BCPs were not
further studied. Next, the height of 2D platelets formed by
PDTC92-b-PEG132 was analyzed by atomic force microscopy
(AFM) revealing them to be flat and uniform with a height of
ca. 8 nm (Fig. S26A†). By dividing the height of the micelle by
the average chain length of the PDTC core, the amount of
chain folds can be calculated. In its lowest energy helical con-
formation, two repeating units of PDTC exhibit a length of
0.95 nm.65 This reveals an average unit length of 0.475 nm per
monomer. This corresponds to an average chain length for the
PDTC92-core of ca. 43.7 nm, which is approximately five times
the height of the micelle core, suggesting that it undergoes 4
chain folds. Additionally, X-ray diffraction (XRD) measure-
ments revealed the crystalline nature of these 2D platelets
(Fig. S26B†).64

Living CDSA of PDTC92-b-PEG132 block copolymers

After the successful preparation of 2D platelets via CDSA,
living CDSA (seeded-growth) was employed to fabricate 2D
platelets of precisely controlled size (Fig. 3A). Seed platelets
were prepared by sonication of disperse 2D platelets derived
from a PDTC92-b-PEG132 solution (0.5 mg mL−1 in 95 : 5
MeOH : THF) for 3 h at 0 °C. TEM analysis revealed seed
micelles with a number-average area (An) of 0.51 × 104 nm2

and low area dispersity (ĐA = 1.22) (Fig. S27†). As we have pre-

Fig. 2 TEM images of micelles prepared via homogeneous nucleation in MeOH : THF (v : v) 85 : 15 at 0.5 mg mL−1 by heating polymer samples to
70 °C for 2 h before cooling to 23 °C over a period of 2 h and aging over 24 h. (A) PDTC10-b-PEG124. (B) PDTC16-b-PEG129. (C) PDTC28-b-PEG130. (D)
PDTC49-b-PEG130. (E) PDTC92-b-PEG132. (F) PDTC92-b-PEG132 (MeOH : THF (v : v) 95 : 5). Scale bars = 500 nm. TEM images were obtained with
uranyl acetate staining (3 wt% in MeOH).
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viously shown, the temperature significantly impacts the living
CSDA (seeded growth) process as it influences the rate of crys-
tallization and suppresses unimer aggregation.20,66,67

Therefore, the effect of temperature on the seeded growth
process of 2D platelet seeds of PDTC92-b-PEG132 was evaluated.

For this, seed micelles were kept at three different tempera-
tures (23, 30 and 40 °C), while the same amount of unimer
solution in THF with a unimer-to-seed mass ratio (munimer/
mseed) of 20 : 1 was added to each sample. The resulting 2D
platelets are of different size and uniformity (Fig. S28†). The

Fig. 3 Preparation of low dispersity platelets of controlled size by living CDSA. (A) Schematic representation of the preparation process of low dis-
persity 2D platelets from PDTC92-b-PEG132. (B) TEM micrograph of disperse platelets prepared in MeOH : THF (95 : 5) by homogeneous nucleation.
(C) TEM image of seed platelets prepared by sonication of disperse platelets. TEM images of low dispersity platelets prepared through seeded-
growth by addition of the unimer in THF to the platelet seed solution with a munimer/mseed ratio of (D) 20 : 1, (E) 50 : 1, (F) 100 : 1 and (G) 200 : 1,
respectively. Scale bars = 1 µm. TEM images were obtained with uranyl acetate staining (3 wt% in MeOH). (H) Summary of platelet area. ĐA is the area
dispersity of the platelets. σ is the standard deviation of the area distribution. (I) Contour area histograms of low dispersity 2D platelets. (J) The plot
of the experimental and theoretical An versus munimer/mseed.
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2D platelets obtained after preheating the seeds at 40 °C are of
the expected area, suggesting effective suppression of unimer
aggregation at elevated temperatures (Fig. S28C†). Next, area
control of 2D platelets was employed by varying the munimer/
mseed ratio at elevated temperatures. Different amounts of
unimer solution of PDTC92-b-PEG132 in THF (10 mg mL−1)
were added to the preformed seed micelle solutions at 40 °C.
Low-area-dispersity 2D platelets were formed with controllable
areas up to 105.71 × 104 nm2, as shown by TEM (Fig. 3D–G).
An excellent linear relationship between the resulting micelle
area and the munimer/mseed consistent with the expected theore-
tical area was observed (Fig. 3H–J), confirming the living CDSA
behavior of PDTC92-b-PEG132. This represents a rare example
of uniform and exceptionally well-controlled biodegradable 2D
platelets from the seeded-growth of a 2D seed.

Triblock comicelles prepared by sequential living CDSA

To illustrate their potential as building blocks for hierarchical
assembly, triblock comicelles with distinct coronal segments
were prepared by the sequential addition of BCPs with
different coronal chemistries to preformed 2D platelets
(Fig. 4A). To achieve this, a PDTC-based BCP with a poly(2-
vinylpyridine) (P2VP) corona block was prepared by a combi-
nation of ROP and reversible addition–fragmentation transfer
(RAFT) polymerization. The DPn of each block was identified
by 1H NMR spectroscopy and GPC analysis revealed low disper-
sity (Đm) values of 1.10 for PDTC128-b-P2VP61 (Fig. S29†). Due
to the good solubility of both PEG and P2VP corona-segments
in MeOH, it was anticipated that block comicelles could be
prepared by adding the PDTC128-b-P2VP61 unimer to pre-
formed PDTC92-b-PEG132 platelets in MeOH. Briefly, the
PDTC128-b-P2VP61 unimer (10 mg mL−1 in THF) was added to

preformed PDTC92-b-PEG132 low dispersity 2D platelets (An =
10.09 × 104 nm2, ĐA = 1.07), resulting in uniform AB core–shell
block 2D platelets (An = 45.58 × 104 nm2, ĐA = 1.07) (Fig. 4B,
Fig. S30A and B†). TEM analysis of the dropcast and negatively
stained samples showed two clearly defined segments, due to
the higher electron contrast of the outer segment P2VP corona
than that of the inner segment PEG corona.

In addition, the use of fluorescent dye labeled BCPs allows
micelle morphologies to be studied in situ using confocal laser
scanning microscopy (CLSM). Therefore, fluorescent-dye
labeled PDTC92-b-PEG132-Dy was prepared by the condensation
of a carboxylic acid functionalized BODIPY-FL dye with the
hydroxy chain end of the PDTC core segment. The attachment
of the fluorescent dye was confirmed by UV-vis spectroscopy
revealing the appearance of a strong absorbance band at
500 nm after dye functionalization (Fig. S31†). Further
addition of the dye functionalized PDTC92-b-PEG132-Dy unimer
(10 mg mL−1 in THF) to the preformed AB core–shell block 2D
platelets yielded uniform ABC three-layer 2D platelets (An =
66.79 × 104 nm2, ĐA = 1.08) as revealed by TEM (Fig. 4C and
Fig. S30C†). The outermost fluorescent layer was confirmed
with CLSM, which appears to be hollow 2D platelets (Fig. 4D).

Aqueous stability and compatibility of PDTC92-b-PEG135 2D
platelets

To explore the biocompatibility of the prepared 2D platelets,
their aqueous stability and cytotoxicity were evaluated. A
sample of uniform 2D platelets (BCP = PDTC92-b-PEG132, An =
4.02 × 104 nm2, ĐA = 1.13) was prepared at a concentration of
2 mg mL−1 (Fig. 5A and Fig. S32A†). The aqueous colloidal
stability of these 2D platelets was explored by dialysis against
water. This resulted in a clear, colloidally stable solution with

Fig. 4 (A) Schematic representation of the preparation process of uniform triblock comicelles by sequential living CDSA steps of preformed 2D
platelets of PDTC92-b-PEG132. The PDTC core is depicted in blue, the PEG corona in red, the P2VP corona in green and the BODIPY-FL dye as green
stars. (B) TEM image of PEG-b-P2VP block comicelles prepared from PDTC92-b-PEG132 platelets (An = 10.09 × 104 nm2, ĐA = 1.07) and PDTC128-b-
P2VP61 unimers. (C) TEM image of PEG-b-P2VP-b-PEG-Dy triblock comicelles prepared from the resulting block comicelles and PDTC92-b-PEG132-
Dy unimers. Magnified TEM image of a triblock comicelle. (D) CLSM images of the three-layer 2D platelets. Scale bars = 2 µm. TEM images were
obtained with uranyl acetate staining (3 wt% in MeOH), Dy = BODIPY-FL.
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no observable change in the micelle morphology via TEM ana-
lysis (An = 3.85 × 104 nm2, ĐA = 1.14) (Fig. 5B and Fig. S32B†).
Dynamic light scattering (DLS) experiments revealed no
change in the hydrodynamic radius (Rh ca. 200 nm) after
solvent exchange from MeOH to water (Fig. 5C). To assess the
colloidal stability of the 2D platelets in water over time, TEM
and DLS analyses were performed on 2D platelets stored in
water for 1 month, which revealed negligible changes in size
and dispersity (Fig. 5B, C and Fig. S32C†). These results con-
firmed the excellent stability of the uniform 2D platelets in
aqueous media and allowed further examination of the poten-
tial biocompatibility of these platelets. For this, the preformed
2D platelets were diluted in Dulbecco’s modified Eagle’s
medium (DMEM) and no changes in the hydrodynamic radius
were revealed by DLS (Fig. 5D). WI-38 fetal lung fibroblasts
and U-87 MG glioblastoma cells were incubated with the pre-
formed 2D platelets at concentrations ranging from 1 to 100 μg
mL−1. The analysis of the cell populations showed that 2D
platelets of PDTC92-b-PEG132 exhibit no discernible cytotoxicity
towards either cell line (Fig. 5E and Table S3†). These results
reveal excellent biocompatibility, similar to PFTMC-based
nanomaterials; however, the cytotoxicity of the PFTMC-bio-
degradation product is of concern. Therefore, the biocompat-
ibility of the hydrolytic biodegradation product of PDTC, 2,2-
dimethylpropane-1,3-diol, was evaluated in both cell lines
(Fig. S33 and Table S4†).42,43 The biodegradation product exhi-
bits no discernible cytotoxicity towards either cell line up to a

concentration of 250 µg mL−1 proving that PDTC-based BCPs
form less harmful biodegradation products in comparison
with PFTMC-based BCPs.

Conclusions

In summary, we have developed a series of crystalline aliphatic
polycarbonates through the introduction of different side
chains and cyclic side groups to PTMC. The dimethyl substi-
tuted polycarbonate PDTC was selected as a core-forming
block due to its improved crystallinity, compared to other
PTMC derivatives. By harnessing the living CDSA of PDTC92-b-
PEG132, we were able to access uniform 2D platelets and seg-
mented triblock comicelles with controlled size and spatially
defined corona compositions. The core-forming block under-
goes exceptionally well-controlled living CDSA from 2D seeds
in contrast to other biodegradable cores. This represents the
first example of size controlled 2D platelets from a BCP with a
crystalline polycarbonate-based core-forming block. More
importantly, these synthetic 2D platelets exhibit great colloidal
stability in aqueous solutions and excellent biocompatibility.
Next, we were able to show that PDTC forms less harmful
degradation products than PFTMC revealing its enhanced bio-
compatibility. Future work will focus on applying these 2D
platelets with tailored corona chemistries in biomedical
applications.

Fig. 5 (A) TEM image of PDTC92-b-PEG132 platelets before dialysis from MeOH into water. (B) TEM image of PDTC92-b-PEG132 platelets after dialy-
sis. Platelets are in proximity due to a drying effect on the carbon coated TEM grid. (C) TEM of PDTC92-b-PEG132 in water after 1 month of storage.
Scale bars = 1 µm. TEM images were obtained with uranyl acetate staining (3 wt% in MeOH). (D) Rh of 2D platelet micelles before and after dialysis,
stored in water for one month and in DMEM cell culture media. (E) Cell viability was measured after 24 h exposure of WI-38 and U-87 MG cells to
different concentrations of 2D platelet micelles (An = 3.85 × 104 nm2, ĐA = 1.14) in water.
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