Polymer Chemistry

CORRECTION

View Article Online
View Journal | View Issue

Cite this: Polym. Chem., 2025, 16, 386

Correction: Axial-phenyl-constrained bis(imino) acenaphthene-nickel precatalysts enhance ethylene polymerization

Quanchao Wang,^{a,b} Qiuyue Zhang,^a Yizhou Wang,^{a,b} Song Zou,^a Yanping Ma,^a Tongling Liang^a and Wen-Hua Sun*^{a,b}

DOI: 10.1039/d4py90150a rsc.li/polymers

Correction for 'Axial-phenyl-constrained bis(imino)acenaphthene-nickel precatalysts enhance ethylene polymerization' by Quanchao Wang et al., Polym. Chem., 2024, https://doi.org/10.1039/d4py01110d.

The authors regret that an incorrect version of Table 5 was included in the original article. The correct version of Table 5 is presented below. The authors note that the correction does not change the conclusions of the paper.

Table 5 Branching analysis, density, mechanical characterization, and other parameters of selected samples

PE sample ^a	$M_{ m w}^{\ \ b}$	$M_{\rm w}/M_{\rm n}^{\ b}$	$T_{\mathrm{m}}^{\ c}\left(^{\circ}\mathrm{C}\right)$	Branches d (B/1000 C's)	Density (g cm ⁻¹)	$Stress^e$ (MPa)	$Strain^e$ (%)	$SR^f(\%)$	Details
PE _{Ni2-60-M1}	158	2.15	85.7	81	0.90	20.86	989	60.9	Run 2, Table 2
$PE_{Ni2-80-M1}$	198	2.28	111.9	83	0.94	26.48	1407	57.1	Run 4, Table 2
$PE_{Ni1-60-M3}$	66	2.56	111.5	_	0.91	5.11	441	_	Run 11, Table 2
$PE_{Ni3-60-M3}$	205	2.09		_	0.85	7.16	946	_	Run 12, Table 2
$PE_{Ni4-60-M3}$	58	2.42	116.7	_	0.94	10.63	1358	_	Run 13, Table 2
$PE_{Ni5-60-M3}$	171	2.02	97.5	_	0.93	22.83	1008		Run 14, Table 2
$PE_{Ni2-60-E5}$	120	2.20	60.3	122	0.89	12.11	1189	63.2	Run 2, Table 3
$PE_{Ni2-80-E5}$	89	2.20	51.3	167	0.85	10.37	2020	66.1	Run 4, Table 3

^a The rule of naming: PE_{complex-temperature-activator} and ratio. For example, PE_{Ni2-60-M1} means the PE produced by Ni2 under the temperature of 60 °C and the MMAO/Ni ratio of 1000. ^b M_w (kg mol⁻¹), M_w and M_w/M_n determined by GPC. ^c Determined by DSC. ^d Data determined from the ¹³C NMR spectrum using approaches described by Galland *et al.* ⁶³ ^e Data was gained from monotonic tensile stress–strain tests. ^f Strain recovery values (SR) were calculated by using the standard formula SR = $100(\varepsilon_a - \varepsilon_r)/\varepsilon_a$, where ε_a is the applied strain and ε_r is the strain in the cycle at 0 loads after 10 cycles.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aKey Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: whsun@iccas.ac.cn

^bCAS Research/Education Center for Excellence in Molecular Sciences, University of Chinese Academy of Sciences, Beijing 100049, China