

CORRECTION

[View Article Online](#)
[View Journal](#) | [View Issue](#)

Cite this: *Polym. Chem.*, 2025, **16**, 386

DOI: 10.1039/d4py90150a
rsc.li/polymers

Correction: Axial-phenyl-constrained bis(imino)acenaphthene-nickel precatalysts enhance ethylene polymerization

Quanchao Wang,^{a,b} Qiuyue Zhang,^a Yizhou Wang,^{a,b} Song Zou,^a Yanping Ma,^a Tongling Liang^a and Wen-Hua Sun^{a,b}

Correction for 'Axial-phenyl-constrained bis(imino)acenaphthene-nickel precatalysts enhance ethylene polymerization' by Quanchao Wang *et al.*, *Polym. Chem.*, 2024, <https://doi.org/10.1039/d4py01110d>.

The authors regret that an incorrect version of Table 5 was included in the original article. The correct version of Table 5 is presented below. The authors note that the correction does not change the conclusions of the paper.

Table 5 Branching analysis, density, mechanical characterization, and other parameters of selected samples

PE sample ^a	M_w ^b	M_w/M_n ^b	T_m ^c (°C)	Branches ^d (B/1000 C's)	Density (g cm ⁻³)	Stress ^e (MPa)	Strain ^e (%)	SR ^f (%)	Details
PE _{Ni2-60-M1}	158	2.15	85.7	81	0.90	20.86	989	60.9	Run 2, Table 2
PE _{Ni2-80-M1}	198	2.28	111.9	83	0.94	26.48	1407	57.1	Run 4, Table 2
PE _{Ni1-60-M3}	66	2.56	111.5	—	0.91	5.11	441	—	Run 11, Table 2
PE _{Ni3-60-M3}	205	2.09	—	—	0.85	7.16	946	—	Run 12, Table 2
PE _{Ni4-60-M3}	58	2.42	116.7	—	0.94	10.63	1358	—	Run 13, Table 2
PE _{Ni5-60-M3}	171	2.02	97.5	—	0.93	22.83	1008	—	Run 14, Table 2
PE _{Ni2-60-E5}	120	2.20	60.3	122	0.89	12.11	1189	63.2	Run 2, Table 3
PE _{Ni2-80-E5}	89	2.20	51.3	167	0.85	10.37	2020	66.1	Run 4, Table 3

^a The rule of naming: PE_{complex-temperature-activator and ratio}. For example, PE_{Ni2-60-M1} means the PE produced by Ni2 under the temperature of 60 °C and the MMAO/Ni ratio of 1000. ^b M_w (kg mol⁻¹), M_w and M_w/M_n determined by GPC. ^c Determined by DSC. ^d Data determined from the ¹³C NMR spectrum using approaches described by Galland *et al.*⁶³ ^e Data was gained from monotonic tensile stress-strain tests. ^f Strain recovery values (SR) were calculated by using the standard formula SR = 100($\epsilon_a - \epsilon_r$)/ ϵ_a , where ϵ_a is the applied strain and ϵ_r is the strain in the cycle at 0 loads after 10 cycles.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
 E-mail: whsun@iccas.ac.cn

^b CAS Research/Education Center for Excellence in Molecular Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

