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Artificial intelligence in smart drug delivery
systems: a step toward personalized medicine
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One of the most interesting applications of artificial intelligence is in the design of drug delivery systems.

Smart drug delivery systems can transfer drugs to specific tissues and cells, enhancing therapeutic effects

while reducing undesirable side effects. Attention is focused on the main concepts and techniques of AI

such as machine learning, deep learning, and genetic algorithms. In addition to this, genetic algorithms

can be used for the selection of the best numerical models, which are able to predict biological processes

or optimize the activity of new drugs. Besides the powerful impact of AI on drug design, its combination

with new biotechnologies for personalized medicine, sometimes called theragnostics, brings novel diag-

nostic tools together with targeted therapy, which could ensure quality and effectiveness during clinical

research on new drugs. Artificial intelligence (AI) techniques are finding their application in almost all dis-

ciplines, with particular success in healthcare. AI-based algorithms can solve complex problems related to

diagnosis, prediction, control, and prevention of diseases that are beyond the scope of human abilities. At

the same time, the Internet of Things (IoT) revolution has added value to the healthcare sector. The

resulting combination of IoT and AI platforms presents a promising fusion to provide healthcare delivery

innovations like digital drug delivery, online healthcare consultancy platforms, and virtual healthcare

assistants. Personalized medicine is well-suited, regardless of potential disadvantages, to creating drug

delivery systems that can respond to the exact needs and other special requirements of patients. The

development of smart drug delivery systems is a potential response to the unimodal properties of drugs

and the discordance between patient requirements and patient outcomes achieved by currently pre-

scribed medications. The potential and actual positive economic and health-related impacts of advanced

drug delivery technologies have created strong demand for new advanced delivery forms.

1. Introduction

Over the years, traditional drug delivery systems have been
developed based on the specific need to deliver therapeutics in
an effective and safe manner. Such systems are already avail-
able as marketed products and these can be generally placed
in one of the following groups: (a) oral or transdermal delivery
systems, (b) injectable systems, (c) inhalation or topical creams
or ointments, (d) partially or totally bio-adhesive systems, (e)
nanoscale drug delivery systems, and (f) controlled release
systems.1 However, despite the clinical successes of the mar-
keted products, traditional drug delivery methods possess
several limitations that are particularly noteworthy for proteins
and nucleic acids. Proteins have complex 3D structures that
enable them to perform their specific functions, and these

proteins must be administered as active agents to the patients
because these molecules cannot be synthesized by human
cells after administration. A variety of factors can compromise
the activity of therapeutic proteins, such as proteolysis,
aggregation, or denaturation.

1.1. Emergence of personalized medicine and its
significance

The principle underlying personalized medicine is the capa-
bility to create therapies that are more precise and effective by
identifying genetically distinct patients who can achieve
improved efficacy.2 Genome-scale measurements of biological
processes in patients can recognize differences in the structure
of complex diseases and predict whether a disease will benefit
from a particular treatment.3 As a result, genomic information
can be utilized to better comprehend susceptibilities and
strengths. This allows for early identification of those factors
that provide higher probabilities of effective treatment.4

Furthermore, these factors can be employed to help patients
determine the best courses of action. The effect can be greater
efficacy and decreased adverse reactions in patient care.
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However, personalized medicine not only encompasses the
medical field but also multiple other fields, including diag-
nostics, pharmaceuticals, and the delivery of medicine. With
the development of advanced technology, the prevention and
even prediction of adverse drug-related health issues are
possible.5 In contrast to one-size-fits-all therapeutic designs,
personalized medicine can offer new medicines that are
adaptable to the needs of distinct patient groups. The deliv-
ery of new drug products can range from changes in formu-
lation to complementary diagnostic tools that could be part
of the therapy administered by various physicians. With sig-
nificant implications for medical practices and the healthcare
system, this technology provides the potential for early
implementation.6

AI is a transformative tool, and it can help modernize
several aspects of the healthcare sector, from drug discovery to
different aspects of clinical work.7 The role of AI in personal-
ized medicine is vital, since the advent of genomics and other
omics has created a monstrous amount of data, which are way
beyond the scope of processing by traditional statistical
methods.8 The ability of AI to identify patterns in vast
amounts of data makes it the most suitable for personalized
medicine, which requires analyzing patients’ genetic and clini-
cal data to diagnose, treat, and even predict the risk of certain
diseases.9 In general, AI can assist in the development and
efficient operation of personalized medicine by integrating
different data types, which include clinical data, medical
imaging data, omics data, etc., and by providing patient strati-
fication, diagnostics, and highly targeted treatment to bring
about successful patient outcomes.10 Data integration helps to
provide insights for targeted therapies. AI models trained on
large, diverse datasets are useful in providing treatment for all
patients with different disease risks, as AI-driven tools can
take into consideration all possible traits of a disease and the
genetic makeup of an individual.11

Also, AI-driven machine learning models can be trained on
omics data to improve predictions of drug response and prog-
nosis and will be superior in terms of reducing the number of
patients required for clinical trials and for cost reductions.12

Requirements for data privacy are few in medical diagnostics
and they can be shared for the development of public tools to
diagnose rare diseases and conditions. Many believe that AI
plays a decisive role in a multitude of fields. In medicine, AI is
applied for solving complex problems where expert decision-
making is combined with diagnosis in areas such as radiology
and pathology, where findings are based on images, sounds,
or texts.13 Analysis of radiological images of several different
body parts highly benefits from deep learning models, which
learn features and diagnose diseases automatically. The design
and development of decision support systems to assist in radi-
ology is a major force behind AI research.14 The advantages of
using AI in the healthcare sector are widely accepted, and
opportunities and challenges for researchers are identified. AI
methods have shown enormous capacity to improve healthcare
areas, ranging from planning treatments for chronic diseases
to psychiatric disorders, modeling and predicting diseases,

and fighting against rare diseases.15 Its potential to revolutio-
nize medicine and greatly improve human health should be
widely recognized, and researchers should carefully examine
which AI techniques merit further exploitation and serious
consideration for widespread clinical use.

2. Overview of AI technologies
2.1. Tools for AI technologies

2.1.1. Machine learning (ML). Machine learning (ML) is a
subset of artificial intelligence (AI) associated with models that
can be trained to make predictions or decisions without being
specifically programmed for each case. One of the most widely
used ML paradigms is supervised learning, which involves
training a model to associate a certain input with a certain
output. Unsupervised learning, meanwhile, aims to infer a
function that can describe hidden structures of data character-
ized only by input features. Several ML models have been
widely experimented with in the life sciences field; among
these are random forests, support vector machines, and artifi-
cial neural networks (NNs).16 Nowadays, whereas the name of
some ML models, such as deep learning, has been widely used
by the media, different nomenclature, such as deep feedfor-
ward neural networks or deep convolutional neural networks,
is employed in the specialized literature.17

Deep learning (DL) can also be categorized as a subtype of
ML and can be applied to a wide variety of domains.18 DL is,
in fact, an algorithm that enables ML to make decisions,
executing a series of functions using parameters learned from
large amounts of labeled data and employing simple modules
like the ones inspired by the function and structure of the
human brain.19 Different deep learning models may be more
useful when treated with specific kinds of data or tasks.20

Deep feedforward neural networks have a simple three-layer
architecture (input, hidden, and output), characterized by the
absence of cycles and a virtually unlimited number of units,
which may be used to model intricate relationships.21 A recur-
rent neural network (RNN) is another popular DL model that
can capture patterns and trends in sequential data, which
makes it a useful resource, especially for time series predic-
tions.22 The transformer, which behaves similarly to an RNN
model but has no limiting structures that confine information
propagation in time or space, has been applied in document
sound and language modeling, as well as in serving models
for question-and-answer platforms.23

2.1.2. Deep learning (DL). Deep learning, as a subfield of
AI, provides an efficient and robust mechanism for modeling
and approximating complex data by processing a large-scale,
high-dimensional feature set through varying degrees of flex-
ible, deep, multilayer structures with many easily tunable para-
meters.24 In contrast to analogical models based on advanced
linear algebra, the structure in deep learning allows for the
construction of end-to-end systems for learning from massive
and unfiltered data.25 As a result, deep learning offers great
potential for revolutionizing medical imaging and bioinfor-
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matics data analysis for both fundamental research and clini-
cal diagnosis. The goal is to build automatic, reliable, and
interpretable assistant tools to reduce human labor and dissa-
tisfaction in weak AI realization over time.26

Despite the success of deep learning in other fields, its
application in biomedicine often encounters methodological
and theoretical challenges due to the high cost of labeled data,
low cost of high-throughput data, and corresponding highly
variable quality of molecular bio-profiling results, intrinsic
sample variability in human subjects, and ethical constraints
of animal studies.27 For example, the signal of complex anno-
tations from different pathophysiological processes sampled at
different spatial locations and temporal stages in medical
imaging data incurs high false positive and false negative risks
due to semantic mismatch. Multiple variables from different
animal cohorts or subjects impose a burden on experimental
design.28 Biological event-derived conditions often suffer from
intrinsic distribution shift problems due to the confounding
effects of both the among-subject and within-subject cycles of
multiple observations. These challenges lead deep learning
method developers to focus not only on new, well-generated
interpretable models from various perspectives but also on
robust, adaptively and transparently robust models with con-
trollable parameters for custom adaptation and model cali-
bration through novel theoretical perspectives.29

2.1.3. Natural language processing (NLP). Natural language
processing (NLP) is a branch of artificial intelligence aimed at
training machines to understand, interpret, and process
human languages. In the context of personalized medicine,
the intersection of NLP and AI can be particularly valuable.30

Combining insights into clinical data can help form clusters of
patients based on characteristics such as economic status, age,
geographical area, and other socioeconomic parameters.31

Another example of the NLP application suggests taking into
consideration not only descriptions of disease genomics but
also text-based EHR data, such as the description of pathology
results, reports of imaging tests, nurses’ notes with medical
care information, or descriptions of lifestyle from doctors or
psychologists.32

Knowledge discovery in clinical notes is associated with
the creation and use of tools and methodologies for examin-
ing clinical notes to find new information about patients, dis-
eases, or treatments.33 When it comes to customizing care
plans that are right for individual patients, obtaining scienti-
fic knowledge is key. It is vitally important for businesses to
build powerful, efficient NLP approaches to realize the
promise of big data in delivering knowledge from unstruc-
tured EHR data.34 With the advancement of EHRs, we have
the chance to finally obtain actionable knowledge from large-
scale clinical notes. The increasing number and consistency
of patient-encounter records combined with EHR popularity
have allowed many studies to be conducted, establishing
principles and techniques, and many helpful applications
using clinical notes as research topics. Sharing data avail-
ability and such resources could help transform future
patient care.35,36

2.1.4. Neural networks (NNs). The NN is the most impor-
tant modeling tool in modern artificial intelligence. It consists
of massive numbers of neuron-like units. Each unit receives
input and has the capacity to generate output through a func-
tion. Input to each unit is a weighted sum of all signals
received by all units in the previous layer.37 Every input is then
multiplied by a weight proposed by an algorithm, and then the
weighted sum is input into a nonlinear transformation or acti-
vation function proposed by an algorithm. As a result of the
nonlinearity introduced by the neuron model, it is possible to
build a system with a generic decision-making system that can
model very complicated patterns with an arbitrary degree of
complexity.38 It is considered the most useful tool in solving
machine learning problems. The methodology can automati-
cally detect complex patterns from raw data and is useful for
making predictions, classifications, time-series modeling, image
and data compression, etc.39 In the healthcare sector, the extrac-
tion of such useful patterns is important in disease detection,
prediction, diagnosis, treatment, device and drug development,
clinic planning, etc. NNs are also extensively used in bioinfor-
matics, clinical data analysis, and health informatics.

In the pharmaceutical industry, package and prescribing
errors can be prevented through machine learning that
deploys NNs for clinical decision-making. For successful diag-
nosis and efficient prognosis of different diseases, brain–com-
puter interfaces, analysis of blood, endoscopies, heart and
lung tones, skin, etc.,40 NNs are capable of learning about indi-
vidual patient medication. In order to ensure the delivery of
suitable and necessary treatment for patients in need of both
acute and long-term care to maintain their survival, e-prescrib-
ing was carefully introduced and improved. In addition, neural
learning will effectively categorize health data that address
frequent disease types and provide efficient and essential
healthcare solutions during outbreaks like health crises,
which potentially occur at a record rate.41

2.2. The role of ML, NLP, and deep learning in data
denoising

The realm of data denoising has witnessed a transformative
evolution through the advent of various technologies, each
contributing unique methodologies and insights. The term
“denoising” itself evokes a process reminiscent of clarifying a
muddled message, akin to distilling the essence of noise. In
the landscape of machine learning, a myriad of algorithms
have emerged that are designed to sift through data clutter
with remarkable precision. Machine learning (ML), a corner-
stone of contemporary data science, has redefined the para-
meters of data analysis. By leveraging intricate patterns within
datasets, ML techniques enable the identification and removal
of anomalies that obscure clarity. Natural language processing
(NLP), another critical component, extends this paradigm to
textual data, employing linguistic models to refine and
enhance the quality of communication.42 Here, the focus lies
on eliminating syntactical noise and semantic ambiguities,
paving the way for more coherent interpretations. Moreover,
neural networks are at the forefront of this endeavor, function-
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ing as intricate webs of interconnected nodes that emulate
human cognitive processes. These networks are adept at learn-
ing from vast quantities of data, making them invaluable for
denoising tasks that require a deep contextual understand-
ing.43 Deep learning, a subset of this technology, further
amplifies these capabilities, allowing for the extraction of fea-
tures at multiple levels of abstraction. This layered approach
facilitates the discernment of subtle signals amidst the
cacophony of irrelevant information. In summary, the conver-
gence of machine learning, natural language processing,
neural networks, and deep learning has forged a robust frame-
work for the denoising of data. Each technology contributes
distinctive strengths, collectively enhancing our capacity to
achieve clarity and precision in an increasingly complex data
landscape (Table 1).44

3. Applications of AI in drug
development
3.1. Drug discovery and design

There are several highly technical review articles that discuss
the use of artificial intelligence (AI) in drug design, though
nearly all of them are specifically targeted at algorithms or
areas.52 Here we present a brief overview of the main areas of
applying AI to drug discovery and design. Central to AI in drug
discovery is the concept of ‘in silico drug discovery’, where the
vast amounts of genomic, chemical, and pharmacological data
available are used to computationally describe biological
systems and chemical processes with the goal of designing
and discovering new compounds of therapeutic value.53 As a
result, this technology has the potential to fundamentally
change the way in which drugs for the treatment of many dis-
eases are discovered and developed (Fig. 1).53

The first applications of AI in drug discovery are mostly in
computer-aided drug design, such as the often-discussed

docking of molecules using machine learning or molecular
description and prediction using deep learning.54 This
includes the creation of libraries of chemical properties and
structural information about drugs, the analysis of structural
properties of drug target proteins such as proteomics research,
the study of interactions between drug molecules and their
corresponding endogenous protein targets such as in the
determination of QSAR, enzyme–substrate interactions, and
the prediction of binding constants.55 These applications have
a significant impact on understanding the complexity of the
human genome and in proposing new biological mechanisms
that could not previously be envisaged for drug intervention.56

In silico drug discovery has also had an expanded impact on
finding new indications for drugs already on the market, to
propose, for example, the repurposing of some drugs for the
treatment of cancer or in the elucidation of the off-target
effects of some drugs.57,58

3.2. Predictive modeling for efficacy and toxicity

Predictive modeling approaches, machine learning algor-
ithms, and QSAR are widely employed for generating pre-
dictive models to integrate large amounts of data from
diverse sources and types.59 However, predicting and opti-
mizing the efficacy of personalized drug combinations is
still very challenging. Investigations directed at optimizing
drug combinations predominantly focus on chemical pleio-
tropy and signaling pathway crosstalk.59 However, the
development of facile predictive algorithms, sophisticated
systems biology models, and big data analytical approaches
enables insights into a more complete set of molecular
consequences of drug exposure, which could improve drug
combination selection for efficacy, influence the direction
of drug development, and identify potentially overlooked
toxicities.60 QSAR, pharmacokinetic models, and PBPK
models have been developed to predict the joint effects of
therapeutic interventions.61

Table 1 An overview of software platforms that speed up different phases of the drug research and discovery process by utilizing AI techniques
including deep learning, predictive modeling, and virtual screening

Software Interpretation Characteristics Ref.

DeepMind AlphaFold (Google, Mountain View, CA, USA)
https://deepmind.google/technologies/alphafold/, accessed on
10 October 2024

Protein structure prediction
by deep learning model

Forecasts protein structures with
high accuracy

45

Atomwise (Atomwise Inc., San Francisco, CA, USA) https://www.
atomwise.com/, accessed on 10 October 2024

AI-driven drug discovery
platform

Virtual screening, lead optimization 45

Recursion Pharmaceuticals (Recursion, Salt Lake City, UT, USA)
https://www.recursion.com/, accessed on 10 October 2024

High-throughput screening
platform

Cellular phenotypic analysis, rare
diseases

46

BenevolentAI (Benevolent AI, London, UK) https://www.benevolent.
com/, accessed on 10 October 2024

Drug discovery and
development platform

Predictive modelling, target
identification

47

Schrödinger Maestro (Schrödinger, New York, NY, USA)
https://www.schrodinger.com/, accessed on 10 October 2024

Molecular modelling and
simulations

Molecular docking, QSAR
modelling

48

Insilico Medicine (Insilico Medicine, Hong Kong) https://insilico.
com/, accessed on 10 October 2024

Drug discovery and
biomarker development

Generative modelling, drug
repurposing, and aging research

49

XtalPi (QuantumPharm Inc., Boston, MA, USA) https://www.xtalpi.
com, accessed on 10 October 2024

AI-driven drug crystal
prediction

Predicts drug crystal forms, stability 50

Cyclica (Cyclica, Toronto, ON, Canada) https://cyclicarx.com/
science/, accessed on 10 October 2024

AI-driven drug discovery
platform

Polypharmacology prediction, target
deconvolution

51
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There is enormous potential for advancing precision
medicine by leveraging the growing power of technology for
drug combination selection through precision medicine
research. This may, however, require an improved view of
the nodes that mediate drug–drug interactions and
expanded human data banks.62 Logic circuits, signaling and
regulatory networks, and derived decision trees can uncover
the complexities of drug-induced changes and lead to the
elucidation of combinations of reagent interventions. The
design of novel combinations can be driven by a joint desire
to minimize the probability of success while limiting
adverse effects and enhancing therapeutic outcomes.63

Machine learning can guide the development of the multi-
drug microbiome system or suggest potential novel regimens

by the discordance of optimizing cancer drug combinations
in cells versus xenograft mice, or by identifying drug–target–
pathway connections in certain cell types. Existing experi-
mental and bioinformatics approaches can provide the gold
standard training sets for the scrutiny of unexplored cells
and tissues. The ideal learning paradigm may not exist, and
multifaceted, multiconstraint workflows may be necessary
for different situations.

3.3. Optimizing clinical trials

The use of artificial intelligence algorithms to select the appro-
priate patient population and optimal dosing is expected to
raise the rate of clinical trial success. 90% of novel anticancer
compounds entering phase I clinical trials never reach the

Fig. 1 Application of AI in drug development.
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Table 2 Clinical trials utilizing artificial intelligence69

Trial ID
(NCT/DOI) Condition/disease AI application Purpose of AI

NCT06059378 Optical polyp detection Using AI-assisted optical polyp diagnosis
for diminutive colorectal polyps (AI-OD)

To show the accuracy of intracolonoscopy

NCT05178095 Colonic polyp detection Artificial intelligence in colonic polyp
detection

Detection of colonic polyps during
outpatient colonoscopy

NCT04358198 Gastric intestinal metaplasia
diagnosis

Usefulness of artificial intelligence (AI) for
GIM

Diagnosing gastric intestinal metaplasia

NCT05489471 Lung cancer Impact of an artificial intelligence (AI)
system on chest X-ray reporting

Nodule detection and malignancy
prediction

NCT06093217 Acute pulmonary embolism
(AID-PE) (AID-PE)

Artificial intelligence to improve detection
and risk stratification of AID-PE/AID-PE

Detection of acute pulmonary embolism
(PE) in patients who undergo computed
tomography pulmonary angiogram

NCT04918992 Pelvic cancers Post radiotherapy MRI based AI system to
predict radiation proctitis for pelvic cancers

Predict radiation proctitis for patients with
pelvic cancers who underwent radiotherapy

NCT06456203 Respiratory tract infections,
infections, lung diseases,
respiratory tract diseases,
pneumonia

Trial of artificial intelligence for chest
radiography (ACER)

An economic analysis of the impact of AI
decision support on radiology service
delivery

NCT06934239 Breast cancer Impact of artificial intelligence on breast
cancer screening (PRISM)

To compare patient-centered outcomes
when 3D screening mammograms are
interpreted with or without a leading FDA-
cleared AI decision-support tool in real-
world U.S. settings

NCT05018663 Pancreatic solid lesions Artificial intelligence (AI) cytopathology
trial

To compare the accuracy of preliminary
diagnosis results between ROSE and AI at
the bedside versus final pathology report

NCT05241483 Laboratory critical values,
predictive value of tests, reference
values, relative value scales, vital
signs

Remote patient monitoring and detection
of possible diseases with artificial
intelligence telemedicine system (AI –
diseases)

Possible disease detection with artificial
intelligence from the patient’s vital values;
possible disease detection from the patient’s
examination records

NCT05423964 Adenoma, adenoma colon,
colorectal cancer

Impact of AI on trainee ADR To determine the impact of AI based
endoscopy on the rate of recording of
quality improvement metrics versus
historical performance in our program

NCT06527378 Edentulous alveolar ridge,
edentulous mouth, tooth loss

Artificial intelligence in dental implant
planning (AIDENT)

Offering new opportunities to improve the
precision and efficiency of implantology

NCT06877988 Visual impairment Artificial intelligence (AI) – assisted visual
impairment screening model: community-
based implementation and evaluation of
performance, feasibility and costs

To evaluate the performance, operational
efficiency, acceptability, feasibility, and cost-
effectiveness of an AI-assisted screening
model for visual impairment in a
community setting

NCT06301945 Thymic carcinoma, thymic
epithelial tumor, thymoma,
thymoma and thymic carcinoma

Artificial intelligence prediction tool in
thymic epithelial tumors (INTHYM)

To improve the accuracy of histopathological
classification of thymic epithelial tumors,
and to better predict the risk of recurrence

NCT05438576 Cardiomyopathy, pregnancy
related

Screening for pregnancy related heart
failure in Nigeria

To evaluate the effectiveness of an artificial
intelligence-enabled ECG (AI-ECG) for
cardiomyopathy detection in an obstetric
population in Nigeria

NCT04580095 Heart diseases Artificial intelligence for improved
echocardiography

To assess the effect of artificial intelligence
algorithms on image quality in
echocardiography

NCT06763952 Diabetes, vision Leveraging artificial intelligence to prevent
vision loss from diabetes among
socioeconomically disadvantaged
communities

To investigate whether a novel artificial
intelligence-based screening strategy
improves screening and follow-up care rates
across race/ethnicity groups and reduces
racial/ethnic disparities in screening

NCT05339750 Allergic contact dermatitis Allergy skin patch artificial intelligence (AI) To assess human and artificial intelligence
performance in grading contact dermatitis
reactions in healthy volunteers

NCT06790134 Pancreatic diseases Validation of an AI-assisted pancreatic EUS
system for training improvement: a
prospective, multi-center, randomized trial

To verify the auxiliary role of the artificial
intelligence (AI) system in pancreatic
endoscopic ultrasound (EUS) scans

RSC Pharmaceutics Review

© 2025 The Author(s). Published by the Royal Society of Chemistry RSC Pharm., 2025, 2, 882–914 | 887

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/1
0/

20
26

 6
:3

2:
02

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5pm00089k


market.64 Among these drugs, many are efficacious but just for
a small fraction of patients, while most of the non-lethal side
effects are not acceptable. Companies are working together to
optimize trial recruitment, and several startups are involved in
the AI-based selection of patients for their inclusion in clinical
trials on patient-centric protocol design65 (Table 2).
Optimization of the patient cohort may also lead to improved
outcomes of the clinical trial. A challenge demonstrated how
the AI algorithm led to more accurate re-assessment of breast
cancer risk. Optimized clinical trials with enriched cohorts
may result in shorter trials, saving time and money, and may
reduce the dropout rate due to adverse events, thus speeding
up clinical development and marketing.66 Moreover, with
proven efficacy, the new therapeutic formulation or packaging
option can be approved as a bioequivalent of its listed counter-
part. Since the optimized patient population and very positive
results can boost the price and thus profitability, investments
will be easier to find while marketing expenses may be
lower.67,68

4. Smart drug delivery systems
4.1. Controlled release systems

Since pharmacokinetic parameters for drug release should be
highly controlled and allowed to be determined for a certain
target, release of a particular drug in the part of the body
where it is needed eliminates the inconvenience of numerous
drug administrations, enhances simply structured therapy,
and guarantees patient compliance.70 This led to the creation
of controlled release systems. Artificial intelligence methods
and control theory are gaining increasing recognition, and
their implications in this direction have grown vastly. These
insightful insights suggest that the interdisciplinary approach

has a more profound effect on resolving the highly practical
issues that are inherent in this field. Some challenging points
of drug pharmacokinetics, dynamics, and modeling that are
enhanced or limited by incorporating specific processes or
applications are presented.71 Controlled release systems or
multiple dosing regimens are self-associative, crystalline, poly-
crystalline, amorphous, and microporous drug carriers, drug–
polymer conjugates, or osmotic and electronic pumps deliver-
ing drugs that possess a particular pharmacokinetic and phar-
macodynamic profile. These profiles could be different from
those produced by established prolonged-action drugs and
have a similar range of therapeutic effects.72 The pharmacoki-
netic and pharmacodynamic times for such drug exposure
should be determined in a certain target. Then, to be of inter-
est, controlled release dosage forms might reasonably affect
certain changes in the pharmacokinetic and pharmacody-
namic processes.73 A specific controlled release involves stop-
ping drug release, drug reprocessing, and adaptation of the
most important actions. Such research, development, and pro-
duction of controlled release systems have led to great interest
in this subject.

4.2. Targeted delivery mechanisms

The precise identification of suitable targets using an appro-
priate molecular recognition system, and the release of active
therapeutic agents in the right dose at the right place, is a
crucial feature of any practical smart drug delivery system.74

Nanoparticles designed for use in vivo can also incorporate
targeting moieties that recognize and interact specifically
with certain cell types or structures. The function of the
tissue/cell-specific ligand on the nanoconstruct is to confer
cell-specific properties to the nanoconstruct, allowing it to
selectively target and accumulate in its target location.
Ligands also reduce the take up of nanoconstructs by tissues

Table 2 (Contd.)

Trial ID
(NCT/DOI) Condition/disease AI application Purpose of AI

NCT06584305 Body dysmorphic disorder AI screening for BDD in aesthetic surgery:
enhancing safety and outcomes (AI)

To evaluate the effectiveness of an AI-
powered screening tool for body dysmorphic
disorder (BDD) among patients seeking
aesthetic surgery

NCT05557162 Cardiac amyloidosis Artificial intelligence enhanced ECG to
detect cardiac amyloidosis

To assess a novel artificial intelligence (AI)-
enabled electrocardiogram (ECG)-based
screening tool for improving the diagnosis
of cardiac amyloidosis (CA)

NCT06397820 Coronary artery disease, coronary
artery stenosis

Relationship between AI-QCA and cardiac
PET (AI-CARPET)

To evaluate the clinical implications of
artificial intelligence (AI)-assisted
quantitative coronary angiography (QCA)
and positron emission tomography (PET)-
derived myocardial blood flow in clinically
indicated patients

NCT06412900 Kidney stone, ureteral obstruction,
renal colic, ureteral stone

Radiomics and image segmentation of
urinary stones by artificial intelligence
(RISUS_AI)

To personalize and improve treatment and
follow-up of patients with kidney stones
using radiomics and the development of an
artificial intelligence tool for CT
examination assessment
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not constitutively expressing the target antigen. Such ligands
reduce the level of nanoconstruct accumulation in less-tar-
geted tissues while increasing the circulation of these par-
ticles in the body.75 This interaction can improve the delivery
of the drug and allow its controlled release with minimum
side effects. Overall, the use of ligand-targeted nanocon-
structs in vivo results in improved drug delivery and drug
efficacy at the target site.76,77

A guideline block of text in a column of the scientific litera-
ture shows that in vitro and in vivo studies report that targeted
delivery systems improve delivery and take up. However,
researchers have variously referred to different materials, struc-
tures, and configurations, as well as ligand attachment meth-
odologies. A comprehensive and systematic survey is required,
using advanced information collection techniques and scienti-
fic knowledge discovery methods.78 Such a study will provide
researchers with a broad perspective on which particles or
systems are often mentioned, why, and to what extent nano-
material ligand attachment influences the property and func-
tion in these works. This study will enable researchers to grasp
the current research status and to identify further research
needs.79 Such a study in relation to smart drug delivery
systems is a key reason for conducting the proposed work.
Users can find out which systems are often machine-readable,
which molecules are attached and get an overview of the tech-
niques currently in use.80

4.3. Bio-responsive systems

The design of stimuli-responsive or bio-responsive systems
could be seen as an intelligent approach for dealing with the
drug delivery challenge. A general strategy aims to locally apply
energy to control release kinetics, elimination, or spatial
resolution.81 The use of, for example, light, sound waves, mag-
netic fields, or variations in temperature have been reported.
Phototherapy methods currently play a significant role in the
treatment of cancer.82 Hence, a local energy impulse could
trigger the response to the dose of an applied therapeutic or
supporting agent. Besides photodynamic therapy, the use of
types of particles could be strongly promising towards photo-
thermal and/or sonodynamic therapies.83 Moreover, upon
such a locally applied set of external conditions, some smart
liposomes and polymeric carriers could undergo subsequent
transformations, enhance their encapsulating potential, or
release the loaded agent.84

While designing these smart nanocarriers,85 the approach
of “planning for a long time of operation, considering many
possible target molecules for action as much as possible”, as
seen from the point of view of the number of functions per
system established, seems to be just a “pure science” overstate-
ment for an engineer, less relevant for the realistic range of
opportunities awaiting medical use.86 In this sense, the use of
these smart nanocarriers as hosts for therapeutic agent func-
tions requiring some substitution of defective proteins and
cell functions using different types of oligomers and polymers
could represent a promising groundbreaking use concerning
personalized medicine applications.87

5. AI-driven innovations in drug
delivery
5.1. Predictive analytics for formulation design

Machine learning has seen a surge in popularity of research
on study formulation design in recent years as it can enable
rapid and high-throughput material discovery due to the
improved prediction accuracy of AI models.88 Furthermore,
this approach allows for the customization of drug delivery
systems (e.g., tailoring release rates, increased stability, which
can prolong drug shelf life). In one example, formulation
design software has been implemented to innovate drug-
loaded nanostructured lipid carriers with the desired spray
drying characteristics, drug encapsulation, and drug release
profiles for application in dry powder inhalation.89 Using this
software to optimize NLCs for dry powder inhalation enabled
greatly enhanced aerosol deposition and an increased dis-
solution rate. This transformative approach will enable a per-
sonalized, adjustable drug release system tailored to each
patient’s unique macromolecular composition for the treat-
ment of various drug indications as we unravel new drug dis-
tribution mechanisms and develop reliable predictive
capabilities.90,91

In another example, a unified adaptive design optimization
of an mRNA-based vaccine formulation was described that
would cover the whole vectorial/combinatorial composition
space of an mRNA formulation in as few lab experiments as
possible.92 The model search technique was then applied to
find the most efficacious personalized mRNA vaccine formu-
lation. Follow-up wet lab characterization experiments vali-
dated the model predictions. In this work, the personalized
process would rule out all specific antigens, enabling the
evaluation of a large pool of candidates for all respondents by
delivering a personalized mRNA vaccine to all participants.93

Although these studies have demonstrated the potential of pre-
dictive analytics for drug formulation design and material dis-
covery, it is important to stress that there are still major chal-
lenges to overcome: (1) obtaining high-quality data and
models, (2) how to transfer models across settings and into
the clinic, and (3) the cost of goods sold that are necessary to
implement AI-guided strategies in a living cell or establish rec-
ommendations and quality standards for regenerative
medicine.94

5.2. Optimization of dosage and release profiles

To ensure that the administered dose of a drug is the most
efficacious, it is often necessary to tightly control the release
kinetics of the drug cargo. Parenteral routes of administration
for most drugs deliver a constant, low-dose background level,
with a bolus of additional drug after administration.95 This
may not be a biologically relevant mimic of the peak-and-
trough release profile for orally administered drugs, leading to
inefficient drug utilization and a risk of adverse effects.
Therefore, for many drugs, it would be beneficial to develop
formulations with release kinetics that better mimic those of
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Table 3 Popular AI model tools used for drug discovery89,104,105,106,107

AI model tools Summary Application area Example/use case

DeepChem Deep learning models for molecular property
prediction, virtual screening, and generative
chemistry are among the many tools and models for
drug development offered by this open-source library

Predictive modeling,
QSAR, multitask learning

Predicting bioavailability and
solubility in nanoparticle drug
formulations

RDKit A popular open-source cheminformatics library with a
number of features including handling molecules,
searching substructures, and calculating descriptors.
Drug discovery software can incorporate it with
machine learning methods

Molecule manipulation,
descriptor calculation

Generating molecular fingerprints
for drug-likeness evaluation

ChemBERTa A conceptual model developed especially for tasks
involving drug development. It can produce
molecular structures, predict characteristics, and aid
with lead optimization because it is pre-trained on a
sizable corpus of chemical and biomedical literature
and is based on the transformer architecture

NLP-based molecular
property prediction

Predicting ADMET properties
from SMILES without handcrafted
features

GraphConv (graph
convolutional models)

A molecular graph-based deep learning model
architecture. By using the structural information
contained in the graph representation of molecules, it
proved to be successful at forecasting molecular
characteristics like toxicity and bioactivity

Structure-based
prediction of drug activity

Predicting IC50 of drugs on
cancer cell lines using molecular
graphs

AutoDock Vina A well-known docking program that predicts the
binding affinity between small compounds and
protein targets using machine learning approaches. It
can help with lead optimization and virtual screening
for drug discovery

Molecular docking and
virtual screening

Identifying drug candidates for
COVID-19 main protease

SMILES transformer A deep learning model that creates molecular
structures from simplified molecular input line entry
system (SMILES) strings. Lead optimization and de
novo drug design are two applications for it

Molecular representation
learning (NLP)

Pretraining on SMILES for
generative drug design and
property prediction

Schrödinger suite A complete drug discovery software suite that
includes a number of AI-powered capabilities.
Predictive modeling, ligand-based and structure-
based drug design, virtual screening, and molecular
modeling are among its modules

Molecular dynamics,
docking, binding affinity

Simulation of protein–ligand
complexes for kinase inhibitors

IBM RXN for chemistry An artificial intelligence model for chemical reaction
prediction. It helps with drug synthesis and the
development of new synthetic pathways by generating
possible reaction outcomes using deep learning
algorithms and sizable reaction databases

Reaction prediction,
synthesis planning

Designing retrosynthesis pathways
for custom prodrugs

Scape-DB A database called scape-DB (extraction of chemical
and physical properties from the literature –
DrugBank) uses machine learning and natural
language processing to extract biological and
chemical information from scholarly publications. It
offers useful data for studies on medication discovery

Scaffolding and
bioisosteric replacement

Identifying alternative scaffolds
for known therapeutic
compounds

GENTRL (generative
tensorial reinforcement
learning)

A deep learning model that creates new molecules
with desired characteristics by fusing generative
chemistry and reinforcement learning. De novo drug
design and optimization have made use of it

Generative molecule
design with
reinforcement

Designing novel opioid analgesics
with desired potency and low
abuse potential

Genetic algorithms Genetic algorithms are optimization methods that draw
inspiration from the concepts of genetics and natural
selection. To obtain the required dosage form properties,
they can be used to optimize formulation compositions,
drug release patterns, and process parameters

Feature selection,
formulation optimization

Optimizing nanoparticle
composition for sustained release

Artificial neural
networks (ANNs)

Drug release kinetics from various dose forms have been
modeled and optimized using artificial neural networks
(ANNs). They can help identify the best formulations
and forecast how active pharmaceutical ingredients
(APIs) will be released under different circumstances

QSAR, release profile
prediction

Predicting release rate of drugs
from hydrogels based on polymer
properties

Support vector
machines (SVMs)

To forecast and model interactions between
formulation variables, including excipient
composition, processing parameters, and drug
release profiles, SVMs have been employed in dosage
form optimization. They facilitate formulation design
space optimization

Classification of active/
inactive compounds

Predicting drug-likeness and
toxicity of new compounds
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non-parenteral routes of administration.96 Optimization of
complex drug-release profiles has already been demonstrated
using proof-of-concept setups and algorithms, showing the
potential for reduced time-to-market, money, time, and waste
in the development of proposed formulations with desired
release profiles.97

Tailoring the release profile of a given therapeutic com-
pound over time to deliver the drug most effectively and
efficiently is of high relevance and interest, offering a fascinat-
ing combination of goal-driven research, challenges.98

Exploration of AI-based systems can be expected to lead to
innovative and, most probably, unconventional solutions. In
this review a brief overview of how AI is currently used to
actively optimize the dosage and release profiles of existing
drug delivery systems, as well as to develop new drug delivery
systems that can be used to optimize the release profiles of
known therapeutic compounds for any given effect specifica-
tion, is provided.99 It must be considered that the optimization
of active pharmaceutical ingredients within current main-
stream dosage forms, followed by an exploration of how AI can
be theoretically extended to the design and optimization of
non-parenteral, nonoral drug delivery systems that offer the

possibility of unique release profiles, rivaling or augmenting
those which result from initial drug discovery, thereby offer
the possibility of eliciting novel drug effects.100

5.3. Integration with nanotechnology and biosensors

The development of various artificial intelligence (AI) tech-
niques has its roots entangled with specialized disciplines
within nanotechnology such as nanomaterials, nanoelectro-
nics, nanobiotechnology, and nanocomputing.101 On the other
hand, AI integrated with nanotechnology is the formulation of
AI-driven nanotechniques consisting of AI-based modeling,
synthesis, characterization, testing, and quality control. AI can
create thinking machines that could simulate biological
neurons. Nano-biocomputing systems include memory, pro-
cessors, and others that are dedicated to the consistent per-
formance of computing within bioinformatics.

AI, integrated with medical research and the administration
of drugs, also plays a pivotal role in the field of pharmacy. For
several years, research and studies have been evolving with the
perfect match of AI and nanotechnology, which has ushered in
the design and fabrication of nanoparticles, exploiting the
intrinsic properties of the nanostructured material.102 Most of

Table 3 (Contd.)

AI model tools Summary Application area Example/use case

Particle swarm
optimization (PSO)

For the purpose of optimizing dose forms, PSO is a
population-based optimization algorithm. It has been
used to optimize dissolution profiles, particle size
distribution, and other formulation factors

Parameter optimization,
hybrid modeling

Optimizing ANN weights for drug
release modeling

Artificial intelligence-
based expert systems

Expert systems mimic human experts’ decision-
making processes by using AI approaches such as
fuzzy logic and rule-based systems. Taking into
account various formulation and process variables,
they can be used for dosage form optimization

Decision support for
formulation & synthesis

Recommending excipient
selection for personalized oral
dosage forms

Monte Carlo simulation By taking into account the uncertainties and
variability in formulation and process factors, Monte
Carlo simulation techniques have been utilized to
optimize the performance of drug products. They
support process design and strong formulation

Probabilistic modeling,
pharmacokinetics

Modeling absorption variability in
transdermal drug delivery

Computational fluid
dynamics (CFD)

The optimization of fluid flow and mixing in dosage
form production processes, including granulation,
coating, and drying, is made possible by CFD models.
They aid in the creation of consistent and effective
procedures

Simulating drug transport
in biological systems

Modeling blood flow-mediated
drug delivery in microvessels

Response surface
methodology (RSM)

Through the modeling and analysis of the interaction
between various variables and their impact on
formulation responses, RSM is a statistical technique
that aids in the optimization of dosage form
formulations. It facilitates comprehension and
formulation parameter optimization

Experimental design,
formulation optimization

Optimizing liposomal formulation
for maximal entrapment efficiency

Artificial neural
network–genetic
algorithm (ANN-GA)
hybrid models

To optimize dose forms, hybrid models that combine
ANN and GA approaches have been utilized. To find
the best solutions and forecast formulation
properties, they can effectively search the formulation
space

Release kinetics
modeling, optimization

Modeling and optimizing in situ
gel formulations for ocular drug
delivery

Multivariate analysis
techniques

Dosage form optimization has made use of
multivariate analysis techniques including partial
least squares (PLS) and principal component analysis
(PCA). They help with dimensionality reduction,
formulation performance optimization, and the
identification of crucial formulation factors

Chemometrics, PCA, PLS
for data reduction

Analyzing HPLC profiles of drugs
for quality control
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the work has been concentrated on the drug delivery of spare
material. At the same time, some of the work is focused on the
targeted distribution of biofunctionalized nanoparticles for
cancer treatment and diagnostic imaging (Table 3).103

6. AI applications in implantable drug
delivery devices
6.1. Role of feedback mechanisms

A significant aspect associated with the systems encompassing
artificial intelligence is feedback. In systems driven by data,
the importance of feedback is significantly amplified. The
inclusion of feedback in smart delivery systems would enable
the dose and frequency of agent administration to be adjusted
according to individual characteristics and dosing targets,
thus improving therapeutic effects, reducing toxicities, and
minimizing ADR risks.108 The use of feedback in systems
necessitates a shift away from the self-healing systems
described previously in favor of prescribed healing mecha-
nisms. This reliance on prescribed healing mechanisms
necessitates the use of responsive materials and devices.109

Materials responsive to various stimuli, ranging from environ-
mental factors to those associated with the therapeutic target,
hold promise for incorporating feedback into the drug release
mechanism. Such a development would demand the conver-
gence of materials chemistry, responsive polymers, responsive
amphiphiles, and responsive composite materials, such as pH-
responsive nanoparticles. Additionally, appropriate devices
and assembly techniques capable of altering drug dose deliv-
ery rates or switching drug release on and off would need to be
engineered with a high degree of precision.110 Research on
responsive polymers and pharmaceutical excipients is classi-
fied as responsive materials relevant to drug release modu-
lation. Drug delivery systems featuring good flexibility in the
modulation of agent release patterns, such as drug-eluting
stents, can incorporate both iontophoretic and transport
machine feedback schemes.111 These advanced smart drug
delivery systems can revolutionize current clinical practice by
virtue of their capability to offer therapeutic doses of the drug
in response to the real needs of the patient, without demand-
ing that the patient is physically treated in a hospital.

6.2. Adaptation to patient-specific requirements

Pharmacological treatment in drug delivery design is typically
delivered in fixed doses to patients of variable physio-patho-
logical characteristics. For instance, patients may exhibit dis-
tinct disease progressions, such as slowed vascular blood flow
in the vicinity of cholesterol plaque deposits in the context of
inflammatory macrophage recruitment for atherosclerosis,
which can affect the preferred particle type, size, coating chem-
istry, and site of release.112 Another aspect is the complex
interaction of particle properties with the human body, from
the protein corona that forms upon injection to the targeting
and transportation capabilities that are dictated by the
complex biological forces that control particle–particle and

particle–tissue interactions. Together, this implies that a per-
sonalized approach toward particle design will become ever
more relevant as we strive to treat patients in the most non-
toxic, cost-effective, and successful manner.113 AI can signifi-
cantly aid this development by capturing and utilizing vast
amounts of knowledge of existing drug delivery systems, either
used in their target context or in various other applications.114

7. The concept of personalization in
medicine
7.1. Genetic and phenotypic considerations

Genetics essentially determines not only the physiological and
behavioral traits of an individual but also their propensity to
develop diseases. The knowledge of specific genetic infor-
mation may be pivotal for therapeutic decisions at an individ-
ual level.12 Pharmacogenetics and genotyping have already
shown promise in individualized drug treatment by identifying
genetic links to variations in therapeutic response to drugs.
The defining elements associated with drug metabolism and
individual-to-individual differences in targets such as drug
receptors offer the ability to tailor treatment regimens with the
greatest likelihood of positive benefits and reduced likelihood
of toxicity due to drugs. Inherited genetic information
describes only a portion of the drug response, and additional
factors like diet, the microbiome, acquired genetic infor-
mation, disease status, concomitant medication, and pharma-
coeconomic issues can have substantial effects on drug
response.115

Personalization, based on a variety of phenotypic and geno-
typic assessments, is an advance of present drug selection
strategies. Single nucleotide polymorphisms (SNPs) alter the
response of some drugs and thus should influence several
drug treatments in clinical practice.116 The role of SNPs in
terms of linking specific drugs to specific diseases has not yet
been fully appreciated. Pharmacogenetics is defined as the
research of all inherited factors that affect drug actions in
families and populations. The association of genotypic differ-
ences with inter-individual fluctuation in drug efficacy and tox-
icity outcomes is also known.117 Through analyzing genetic
variation, we plan for a personalized medicine approach and
convey the right dose and the correct drug to the right patient.
In terms of inherited factors as well as prior genetic illnesses
and other positive characteristics important for medical
decisions such as disease diagnosis, clinical evaluation, and
gene function evaluation, pharmacogenetics has evolved sig-
nificantly.118 The analysis of the genetic variants influencing
the reaction to a medication may be realized through both
genome-wide association studies and clinical pharmacoge-
netics implementation (Fig. 2).119

7.2. Importance in chronic and rare diseases

There is a consensus among healthcare professionals that any
medical treatment approach is patient-specific, but it is hetero-
geneous in disease and health state. Thus, the pharmacoki-
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netics and pharmacodynamics are altered from person to
person or may differ due to simultaneous administration of
medication for other diseases.120 With respect to the varying
pharmaceutical characteristics and the design of specific treat-
ments for such rare diseases, considering sporadic patient
data creates a challenge for management and therapy compli-
ance.121 Additionally, most chronic diseases are accompanied
by comorbidity features, such as side effects that result from
the interaction of multiple factors using combined therapeutic
agents. Maximum medication response with minimal deterio-
ration of the health state needs to be addressed to improve the
patient’s quality of life.122 From pilot studies using cancer
treatment to gene-targeted clinical trials, researchers have
started to focus on personalized therapeutic regimens accord-
ing to their recent findings and relevant databases. The
present status of genetic and non-genetic factors of the disease
needs to be discussed from initial disease prediction towards
the treatment scenario and its prognosis.123 Precision medi-
cine research is presently restricted to patients who are in
good health, extensive medical technology, excellent public
healthcare, and efficient data management systems, i.e., smart
health devices, big data technology, and data-based models
mostly used in treatment personalization.124 Accelerated
advancements in the search for pharmacological treatments
for peptic ulcers, the natural eradication of H. pylori, and the
use of antibiotics to treat chronic hepatitis and certain types of
cancer are other major factors in this growth. More extensive
pathologies, including cancer, chronic pancreatitis, inflamma-
tory bowel disease, and hepatic cryoglobulinemia targeting the

pancreas, stomach, intestines, liver, and other organs with the
same success have recently emerged in gastric and liver drug
delivery systems with fewer chemotherapeutic drugs.125 As a
result, treatment personalization also necessitates the ability
to develop drug delivery systems targeting these areas. With
novel vaccine and drug delivery, nanoparticles, nanoemul-
sions, and their combination kits can address both rare and
chronic pathologies, and the design of smart devices is
urgently required.

8. AI tools for personalization
8.1. Genomics data analysis

Recent technological advancements have launched the new
field of “genomic medicine” and its focus is on the influence
of genetic differences on the development and progression of
human diseases.126 There is growing evidence to substantiate
that genetic differences exist among patients in their response
to drugs and their susceptibility to drug-induced toxicity.
Pharmacogenomics, a branch of personalized medicine, ident-
ifies patient profiles that subject them to drug responses,
thereby optimizing drug therapy, with competencies for clini-
cal decision-making and improvements in drug safety and out-
comes. In addition, treatment suggestions based on patients’
genetic characterization are necessary to solve the issues of
adverse drug reactions and the lack of pharmaceutical
efficacy.127 Valuable information from whole genomes can be
stored by diverse high-throughput functional genomics plat-

Fig. 2 Traditional treatment vs. personalized treatment.
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forms employed for the comprehension of the function of
genes. These potentially curative strategies are only showing
substantial clinical success with the development of genome-
sequencing methods, resulting in a wealth of protein variants,
new therapy targets, and some therapies for rare Mendelian
diseases that do not have other effective treatment options.128

This requires the adoption of personalized care and the
efficient delivery of safe, genome-edited cells to patients.

8.2. Patient stratification using AI algorithms

Highly heterogeneous disease biology is a problem that may
not be resolved by targeting individual biomarkers. A growing
trend in the clinical management of cancer patients is reclassi-
fying patients into groups of similar prognosis and treatment
efficacy, and more optimal therapeutic use of medicine.129

Through clinically actionable population homogeneity, tumor
stratification creates subsets of cancer patients based on the
heterogeneity of cellular and molecular features. Although bio-
markers such as estrogen or HER2 expression in breast cancer,
the activity of tyrosine kinase inhibitors in non-small cell lung
cancer, and mutation testing before anti-EGFR treatment in
colorectal cancer have demonstrated both clinical relevance
and cost-effectiveness, additional biomarkers could predict if a
particular drug were likely to have superior efficacy or disease-
modulating activity in patients with a predefined genetic, pro-
teomic, or metabolomic signature.130,131

When a patient initially arrives at the clinic, advanced pre-
dictive algorithms may be used to correct them and direct
them right away to the cluster with the best predicted
outcome.132 This can be achieved by attempting to learn from
populations of pre-labeled patients by machines. Modeling
patient behavior and the course of the disease can result in
predictive models that can group patients in specific clusters,
calling them strata, for which specific treatment decisions can
be recommended. Although enabling this may still be a dream
for healthcare regulators, AI has just finished entering the
clinic.133 AI has also been used to identify patient groupings
for colorectal cancer, endocrine therapy in breast cancer, and
drug effectiveness in systemic sclerosis.

To refine the potential benefits of using AI models for treat-
ment guidance, clinical care must gradually become more per-
sonalized. The new treatment approach that has gained much
attention in recent years is personalized medicine, also known
as precision medicine.134 In contrast to the one-size-fits-all
treatment of decades past or patients classified by the stage of
a disease, clinicians and researchers now integrate clinical,
molecular, and patient readiness data to predict individual
risk factors and to optimize treatment options.135 The patient’s
clinical pathway, diagnostic testing, qualification for partici-
pation in a clinical trial, treatment intervention, and support
after treatment are tailored and more focused on the individ-
ual. In particular, the immune system of patients is the center-
piece of personalized medicine, and no two patients have the
same immune profile at the same moment.136 Such personal-
ized treatment plans can be designed uniquely by integrating a

patient’s own molecular makeup, aggregates of molecular
data, and AI technology.137

8.3. Development of tailored therapeutics

The development of personalized therapeutic agents capable
of targeting features or mutations in an individual is an
appealing form of individualized medication that may help
optimize healthcare.138 Inherent to this approach is the capa-
bility to produce tailored drugs on a patient-to-patient basis
with the same level of production efficiency as that currently
experienced in the mass production of drugs.139 Advanced
manufacturing techniques, now including techniques for gene
editing and printing at the nanoscale, are increasingly being
used in the pharmaceutical sector, accelerating the develop-
ment of tailored therapeutics.140 Even the development of
drugs tailored to a particular target population that can take
advantage of economies of scale associated with large patient
groups is advantageous.

The development of tailored therapeutics can also be
enhanced using artificial intelligence. Of specific interest is
the concept of using intelligent software algorithms to help
find optimal molecular therapeutics and geometric arrange-
ments that best achieve a desired biological effect. The use of
intelligent algorithms for the development of potential drug
candidates can help to optimize attributes required of a poten-
tial drug, aiming to minimize typical poor in vivo drug per-
formance, and help select drug leads that are more likely to
lead to genuine improvement in the targeted therapeutic
outcome. Allocating more efforts to identifying lead drug can-
didates that are smaller and more diverse in structure and
mechanism, addressing the current popularity for repurposing
existing drugs, offers several advantages. Small molecules and
groups of molecules with properties other than those associ-
ated with traditional drugs, and which have lower known
safety concerns may attract heightened interest while advan-
cing our understanding of the behavior of molecules to
support future drug lead optimization.141

9. AI-enhanced precision therapies
9.1. Case study: AI in oncology

Artificial intelligence (AI) has contributed substantially to
cancer resolution in recent years. Cancer is the leading cause
of death in developed countries. However, advances in early
detection and improvements in therapeutics contribute to the
decrease in cancer mortality and increase in the number of
cancer survivors. Evidence-based medicine, based on a
patient-centric approach, is rapidly replacing experience-based
medicine. AI could revolutionize medicine, as the key driver of
the transformation of healthcare to precision and personalized
medicine. In oncology, there are major barriers to AI
implementation, such as biased data, the lack of standardized
collection, insufficient clinical validation, or outdated regulat-
ory frameworks. Big data is extremely useful in the digitization
of healthcare. Traditional software approaches are not suitable
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for the challenges imposed by digital healthcare. Automated
algorithms can help to process complex data and extract mean-
ingful patterns, changing treatment evaluations and patient
classifications. AI and ‘machine learning’ (ML) have achieved
several important medical advances. In oncology, the question
is ‘How will AI improve the outcomes for patients with
cancer?’ Major advances in technology have produced large-
scale, multidimensional data for cancer research. Cancers are
now understood as multifactorial diseases requiring unique
treatment and management. New cancer diagnoses are
focused on complex methods such as the measurement of
molecular features to match individuals to targeted treatment
plans. Analysis and sharing of clinical data have become para-
mount as our knowledge of cancer heterogeneity grows.142 The
application of AI algorithms has the potential to transform
health and healthcare delivery. Common applications of AI in
healthcare include identifying conditions, risk factors, and
patterns, which can support clinical decision making and
improve treatment outcomes. The complexity of oncological
diseases presents an opportunity for AI to impact oncology-
related problems. However, few AI tools have had a significant
impact on oncology. The goal of this study is to present an AI-
based solution tool for oncology problems validated at a
medical institution in Spain.143

9.1.1. Impact on treatment personalization. Emerging AI
techniques have shown promise in various aspects such as pre-
dicting genes related to drug side effects in an interaction
network and categorizing drugs based on structure or com-
pound similarities that would help identify some compounds
that can intervene with the effect of drugs and thus serve as
candidates for next-generation drugs. From a treatment strat-
egy perspective, AI can identify targetable genes at the patient
level from the entire genome, enhancing the reliability of
mutation predictions and helping to determine the appropri-
ate patient cohort for a specific treatment. With respect to
treatment types, AI tools could assist in establishing predicted
treatments based on previous treatment outcomes from
exploratory to mechanism guided treatment. Predicting the
onset of diabetes based on multi-phenomena records and
examining co-event logs to identify possible drug usage ten-
dencies are two further possible uses of AI that are somewhat
less molecular in nature. AI offers highly cost-effective and
efficient platforms for local data outreach. It might filter the
most exemplary patients depending on the treatment option
and provide supplementary recommendations for future visits
based on the prescription probability distribution. Such
systems suggest therapeutic procedures for patients and thus
help to dispense tailored treatments.

AI is expected to alter the treatment type greatly from
exploratory treatment to mechanism guided treatment with
the enhancement of health record data completeness.
Treatment suggestion engines look for similar patients’ prior
treatment outcomes in databases in relation to the exploratory
therapy type, which helps identify a larger pool of potential
therapies. Most recently proposed recommendation systems
are not capable of or are unsuitable for consulting again and

to highlight insights from memory. A desired recommendation
system should be patient level aware based on the validation
method developed and a sample system should demonstrably
consider the treatment candidate set in the context of incor-
porated local patient histories and treatment recommen-
dations. AI empowered prediction tools could open the door to
different treatment types and recommend an appealing
patient cohort who would tolerate better targeted medicines
via data mining on genotypic, epigenetic, lifestyle, social net-
works and interactions, and environmental heterogeneities on
drug metabolism, reactivity and biological activity.144

9.1.2. Outcomes and effectiveness. Due to the clinical
team facing complexity for treatment drug and dosage selec-
tion, AI intervention should be assessed with respect to out-
comes and effectiveness by focusing on precision medicine in
precision pharmacology, with a predictive view for experi-
mental trials and early diagnosis of chronic conditions.
Pharmacogenomic data, clinically approved drugs and associ-
ated dosage levels and generic information have been struc-
tured and analyzed, where the role of AI in terms of both struc-
ture and prediction aspects, as far as its application in
pharmacology is concerned, is discussed. Possible predictions
are highlighted, where accuracy is increased by the inclusion
of more features from both pharmacogenomic data and
chemical structure descriptors. For a predictive view of drug
trials, potential failures of drug trials with respect to toxicity
are assessed by structured analysis of toxicity data, where AI
assistance in assessing target proteins, protein–ligand
docking, adoption of lead compound selection, early toxicity
assessment in addition to drug efficacy, and prioritization of
compounds for wet-lab studies are determined based on
in silico datasets corresponding to a series of databases used
globally for applying AI modeling in drug toxicity. New strat-
egies powered by AI for tackling the desire for early chronic
disease monitoring and treatment based on big-data proces-
sing and machine learning model generation and assessment
from current early chronic condition datasets are explored.

AI assistance is paramount in better targeted therapy
through pharmacogenomic analysis and predictive pharma-
cology. The number of publicly available pharmacogenomic
data resources has been updated and merged with the phar-
macogenomic knowledge base of drug treatment and targets
in a user-friendly way in the PGP “Pharmacogenomics
Database and Platform”. An analysis of AI’s potential in pre-
cision pharmacology-focusing on task execution, outcome pre-
diction, and feature identification-highlights its transformative
role in advanced medical treatments. However, current limit-
ations in the accessibility and implementation of these appli-
cations are also discussed. Through a combination of ML and
NLP approaches, notable drugs in the COVID-19 context and
associated potential target proteins have been identified based
on a merged database of globally available attributes for drug
repurposing.144,145 While AI excels at drug repurposing based
on initial data, it faces challenges in maintaining important
parameter weights and providing interpretability in counter-
factual scenarios.
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9.2. Case study: AI in cardiovascular medicine

Precision medicine is an evolving healthcare trend that
aims to deliver personalized treatment protocols to every
patient, particularly in cardiovascular medicine. The tra-
ditional one-size-fits-all healthcare approach has focused on
generalization: every individual with hypertension is pre-
scribed isosorbide dinitrate and/or metoprolol, while all
coronary artery disease patients with hypertension are
treated the same. Cardiovascular medicine has numerous
branches; for example, a patient with hypertension not
accompanied by atherosclerotic cardiovascular disease, con-
gestive heart failure, or post-myocardial infarction will be
treated differently primarily just based on the symptoms
related to that particular branch. On the other hand, a
young patient with two-vessel coronary artery disease who
develops an acute myocardial infarction without prior
history will have an entirely different management approach
than a middle-aged man with three-vessel coronary artery
disease with prior history. Therefore, this approach requires
appropriate understanding and processing of large amounts
of real-world patient data sampled over time. Precision
cardiovascular medicine aims to identify and analyze the
right intervention for the right set of patients at the right
time with quantifiable outcome assessment, which is time-
stamped and persists in a raw data format.146 Analysis of
the data performed by human physicians is limited in the
volume of data, the number of features involved in the ana-
lysis, and processing speed; this is time-consuming and
error-prone. There is scope for AI-based methods to assist
human physicians in understanding and optimizing the
assessment of large amounts of patient data. Issues related
to the input variable, extracting features, processing
models, and understanding predicted outcomes require the
implementation of several different AI paradigms. An alarm-
ing implication for the healthcare provider is that machine-
learning and deep-learning based algorithms employing
hundreds of thousands or even millions of input para-
meters provide prediction scores that do not offer a real
understanding of the processed data. The black-box nature
of these models and complexity of the data yield biophysi-
cal and medical implausibility of the predicted outcomes,
which raises the need for research on interpretable AI and
the underlying biophysical process for the prediction
scores.

Recently, AI-based methods have been evolving in pre-
cision cardiovascular medicine, attempting to improve
patient care by analyzing patient data over time with quantifi-
able outcome assessments. As a result, the strategy involving
medical analysis of patient data with the involvement of AI
means providing a patient-centric data-assisted approach for
human physicians. A systematic literature survey has been
performed, by searching the most popular databases for the
terms “precision medicine”, “cardiovascular”, and “AI” from
January 1, 2010, up to July 10, 2023. Findings relevant to
cardiovascular medicine, precision medicine, and patient

care were considered. The focus was on AI implementations,
biophysical models of predictions, and benefits of improved
patient care. The data sources reviewed suggest that there has
been an increasing trend for research on AI implementation
for precision medicine in the cardiovascular medicine
domain in the last five years. The United States has reported
the most research trends in precision medicine for cardio-
vascular medicine with a total of 16 papers, suggesting that
these trends will continue to grow over time. These papers
have been classified into three broad categories, namely,
cardiovascular branches, the precision medicine branch, and
AI algorithms.

9.2.1. Risk assessment models. Many ethical consider-
ations surround the development and usage of artificial
intelligence (AI) algorithms. The advancement of AI is
creating a race for the development and deployment of AI
algorithms primarily from the scientific and marketing
viewpoints. However, it requires the consideration of more
than just technology, including ethics, governance, and
regulation. Risk assessment algorithms are valuable and
sought-after teaching tools in education at all levels, from
pre-kindergarten to universities worldwide. They are being
increasingly developed by many organizations but without
thoughts on what makes a robust and meaningful assess-
ment model.

In this study, the availability of better-trained and super-
vised AI systems due to growing data volume and quality is
highlighted. State-of-the-art research efforts based on journal
papers and patent analyses are also addressed in this regard.
Therefore, potential data sources that enable something
similar to be done for the development of a better risk assess-
ment model, including healthcare organizations, online
patient health data aggregation, and analysis, literature
mining, text and image data, etc., are highlighted. Efforts
made with academic collaboration to address some of these
challenges such as the development of AI guidelines and
evaluation metrics are identified.

The potential threat to health and safety faced by a
poorly implemented AI algorithm is stressed. The need for
the establishment of an organization, similar to the FDA,
for AI systems, to ensure the validity, reliability, and ethical
usage of the algorithm prior to any marketing and commer-
cial use, is also emphasized. The ever-increasing reliance on
AI in health and society demands wider recognition of the
uniqueness of AI algorithms, addressing this challenge with
prospective forethought rather than retrospective rectifica-
tion. Machine learning (ML) and artificial intelligence (AI)
techniques are being increasingly incorporated into compu-
ter-aided diagnosis systems. These AI-based systems signifi-
cantly improve the accuracy and reliability of breast cancer
diagnosis and risk assessment. Many investigators have
used their personal health data to identify breast cancer risk
factors. Logistic regression, linear discriminant analysis,
naive Bayes, and feed-forward neural network algorithms are
utilized to predict the risk of breast cancer in 5 years’
time.147
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9.2.2. Patient management strategies. Precision medicine
has transformed the traditional practice of medicine from a
symptom-driven approach to a design and procedure that
studies a patient’s genome to identify and treat ailments
before symptoms appear. By enhancing and integrating diag-
nostic, prognostic, and predictive precision, quality is
defined based on the analysis of metabolomics, genomics,
and clinical data to drive its development and procedure.
However, medical data analysis requires significant efforts
from specialists in the respective administrative and statisti-
cal analyses geared toward the design of healthcare and
research studies. Precision medicine relies on additional
details from the healthcare environment to enrich medical
conditions with genomic and metabolomic data.
Subsequently, integration leads to better prediction than the
combined models. This is the functionality of intelligent and
integrative approaches, models, tools, and technologies from
which biomedical data quality, analysis, and mining engin-
eering disciplines facilitate informatization and intelligent
in-depth decision-making over heterogeneous biomedical
data. A major barrier to the implementation of precision
medicine is the amount of analytical efforts required, where
most of the efforts today are either manually-based or semi-
automated. The need for interpretability, accounting for data
heterogeneity, and managing the trade-off between the scope
of discovery methods and their analysis all add to the
challenges that must be addressed.144

The proper realization of precision medicine requires a
progressive environment that facilitates the informatization
of observational and experimental studies, so that the
immense difficulties in analyzing big data are taken care of
by powerful tools and technologies. Towards this end, a self-
contained biomedical health data cube consisting of health-
care plans, in-patient and out-patient records, clinical data,
genomics, and metabolomics has been constructed and tools
for data analysis have been developed. The self-contained
cube allows for unbiased heterogeneity detection and discov-
ery as predefined user criteria can be taken into account for
data queries. Data predictive analytical tasks are completed
using local modeling-based and knowledge-driven method
families that are characterized by a mode of explainable intel-
ligence and ease of usage. Combining predictions from a
data-quality-based human ensemble leads to more reliable
and accurate results, reducing the effort needed for effective
decision-making.148

9.3. Case study: AI in rare diseases

AI technologies have made major strides in recent years, and
expectations for future applications are huge. AI is expected to
more efficiently detect early signs of rare diseases by analyzing
different types of medical data and identifying patients whose
symptoms resemble those of diagnosed rare diseases. AI is
also expected to help test new candidates for drug develop-
ment. This indicates that there is a massive need for systems
capable of screening a huge number of compounds against

many targets and predicting a huge space of pharmacological
interactions.

There are excellent case studies on AI applications for
drug treatment of rare diseases, one of them being protein
misfolding diseases. There are also studies on the general
detection of diseases by looking at images and texts. Some
AI models generate molecular graphs and images of drugs
with predicted affinity for targets based on previous knowl-
edge. Some AI models are trained on sequences and 3D
targets to perform drug repurposing without any assump-
tions regarding the functioning mechanism. There are AI
models for mapping known drugs to new targets. Some
algorithms merge existing data sources with novel data
sources to build composite resources, yielding machine
learning models with improved accuracy. It is now under-
stood that well-defined learning tasks play an important role
in machine learning model performance. Still, widely used
self-supervised methods have no learning tasks to guide
model learning.

There are only limited data available for the meaningful
training of a model tasked with the identification of rare
diseases. Some progress has been made in developing stat-
istical methods validating the adequacy of a training
dataset for a specific machine learning task. Detailed
insights into state-of-the-art drug development approaches
are given. Different AI methodologies are put in the
context of selected rare diseases from the reviewed cat-
egories; state-of-the-art AI methodologies adapted to rare
disease targets. Significant new developments have taken
place for a wide spectrum of rare disease treatment appli-
cations. The computational feasibility of AI treatments for
ultra-rare diseases should also benefit a few more common
rare diseases.

9.3.1. Tailored treatment approaches. The potential for
precision medicine in clinical practice is vast. The following
case studies demonstrate new technologies that leverage AI
algorithms with the goal of tailoring treatment approaches.
These technologies span pairs of drugs whose effectiveness
differs from patient to patient, specific drug combinations that
yield prolonged cancer remission in individuals with relapsed
cancers, and a rare genetic disorder stemming from a single
nucleotide variant. In each case, complementary technologies
were required to detect patient-specific disease biology relevant
for therapy selection. Together, these advances showcase the
implementation of the principles of precision medicine with
the goal of tailored treatment. There is great optimism regard-
ing the positive impacts of AI algorithms on precision
medicine.

Although precision oncology shows vast promise for many
tumor types in an era of targeted agents, it has yet to deliver
broadly in clinical practice. Camarillo’s case involved a
43-year-old woman with stage IIIC ovarian cancer who was
treated at multiple leading academic medical centers for
whom all treatment options failed. Deep phenotyping in a
patient-derived but genetically defined syngeneic organoid
model identified the sensitivity of rapidly progressive cancer
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to combination therapy with poly-ADP ribose polymerase and
immune checkpoint blockade. In vivo, this combination
yielded profound tumor regression, prolonged remission,
and simultaneous immune-mediated rejection of dissemi-
nated metastases.149 A wider appreciation of treatment para-
digms across combinations of targeted therapies in breast,
endometrial, pancreatic, and other cancers invigorate the
development of de novo combinatorial therapies for these
tumors.

Disease-specific platform technologies providing individua-
lized precision medicine are also being combined with
machine learning to discover previously unrecognized oppor-
tunities for drug repurposing. Camarillo’s individual case
study coupled targeted next-generation sequencing and
droplet digital PCR of exometabolomics to inform lead com-
pound selection for a novel, newly discovered WT1-p53

protein–protein targeting strategy for malignant pleural
mesothelioma that was exploited for de novo combination
therapy with paclitaxel. A new ex vivo drug combination plat-
form to guide treatment in patients with relapsed/refractory
DLBCL is also under development.150

9.3.2. Longitudinal patient data utilization. With the
advances of the Sensible City initiative and affordable
mobile devices, some blue-collar workers are now equipped
with smartphone-level internet-capable devices. Wide
exposure to the internet for their work makes it possible to
track the collective “social activity status” of the entire popu-
lation in the city via their digital footprints. Commissioning
a large-scale data survey using the back-end of their social
media enables the collection of the moving population’s
extensive survey responses and internet usage patterns.
Capturing and analyzing epidemiological progress, individ-

Table 4 Examples demonstrating the various ways artificial intelligence is being used in industrial manufacturing

AI application Overview Case example Ref

Synthesis route
prediction

AI predicts optimal synthesis routes to APIs,
examining chemical databases and the literature
to suggest efficient pathways

IBM’s “Rxn for Chemistry” tool predicts chemical
reaction pathways, used to streamline synthesis

151

Robotic synthesis Chemical synthesis is automated using AI-driven
robotics, facilitating high-throughput testing and
expediting the drug discovery process

The University of Glasgow’s “Chemputer”
automates the production of medicinal molecules

152 and 153

Drug design AI identifies druggable targets by forecasting the
molecular characteristics and structures of
possible drug candidates

In just 18 months, Insilico Medicine used AI to
create a new medication for idiopathic pulmonary
fibrosis

154 and 155

Drug discovery CRSIP technology and AI algorithms make it
possible to determine which genes, when
removed, result in cancer medication resistance
or sensitization

To find new targets for developing better drugs,
AstraZeneca applied AI to CRISPR gene-editing
technology

156

Compound selection To find potential drug candidates based on
characteristics like solubility, permeability, and
toxicity, AI evaluates chemical databases

Exscientia discovered a novel compound for the
treatment of immunomodulatory and
inflammatory disorders using artificial intelligence

157

Process optimization By examining production line data to find
inefficiencies and suggest fixes, artificial
intelligence (AI) optimizes industrial operations

To increase yield and decrease production time for
their COVID-19 vaccine, Pfizer utilized artificial
intelligence

158 and 159

Continuous
manufacturing and PAT
technology

From acquiring raw materials to packaging the
finished product, AI-driven optimization
improves several aspects of pharmaceutical
production

AI was used by pharmaceutical companies to
increase efficiency in continuous manufacturing

160

Medical imaging By streamlining workflows, improving detection,
and automating time-consuming operations, AI
systems have been developed to assist
radiologists

AI algorithms are being used by Bayer to minimize
burden and provide patients with quicker decision-
making

161

Digital twin technology To mimic, track, and optimize processes in
real-time without interfering with actual
production, artificial intelligence (AI) builds a
digital twin, or virtual version, of the
manufacturing process

Johnson & Johnson increased productivity by
simulating and optimizing their production
processes using digital twins

162

Predictive maintenance Artificial intelligence (AI) models evaluate
sensor data from equipment to forecast when
maintenance is required, preventing unplanned
malfunctions and efficiently scheduling
maintenance tasks

Pfizer decreased maintenance expenses and
downtime in its manufacturing facilities by
implementing AI for predictive maintenance

46

Supply chain
optimization

By forecasting demand, controlling inventory,
and streamlining logistics using performance
data and market trends, artificial intelligence (AI)
improves the pharmaceutical supply chain

Novartis used artificial intelligence (AI) to handle
supply chain logistics, which improved inventory
control and cut expenses

163
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uals’ response behaviour, and the operational conditions of
large social gatherings will provide a far-reaching under-
standing of COVID-19 disparities inside and outside
China.144 The rather ‘unitary’ open policy across different
counties has allowed semi-experience-based intervention
measures and responses to COVID-19 in the first place to be
captured but made those more ambiguous in terms of
digital usage gaps and social layering comparisons because
of the diverging international media information landscape.
With an adequate amount of invariant data and new AI-

based analytical approaches, social disparities towards the
spread and mitigation measures of COVID-19 could be quan-
tized and mitigated (Table 4). Designing an effective
machine learning–based public health monitoring platform
using heterogeneous data can be outlined in five key steps:
creating a metadata layer, developing a visualization plat-
form, implementing a flexible alert system, applying data-
driven prediction methods, and designing decentralized,
user-friendly social media–based intervention strategies.
(Fig. 3).164,165

Fig. 3 List of companies using AI and ML technologies in pharmaceutical research.
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10. Synergistic role of AI in smart
drug delivery and personalized
medicine
10.1. Combining drug delivery systems with real-time data
from AI models

One of the major limitations of current drug delivery systems
is the inability to receive feedback on their effectiveness over
time. This could be due to varied responses in drug activity,
disease changes, and individual responses.166 However, with
advances in diagnostics and imaging techniques, it is possible
to monitor the drug delivery process and receive feedback on
the drug’s effectiveness in real time. Incorporating response
data with AI models could have several positive implications,
including but not limited to adjusting the drug dose, altering
drug therapy, and modifying the delivery strategy for personal-
ized drug delivery.167 All these possibilities call for a more
patient-centric and precision medicine-based approach. At the
same time, AI models usually require very large amounts of
data to achieve successful results, whereas data acquisition in
this field, especially through the examination of clinical and
preclinical entities for personalized medicine, is a challenging
activity.168 Combining drug formulations with AI algorithms is
a promising strategy toward combating these issues. Indeed,
tailored drug delivery systems that can both respond to exter-
nal signals and collect relevant data with built-in sensors are
considered a proactive way to enable personalized therapy
strategies. By analyzing information collected with machine
learning algorithms, the response of the drug delivery system
can be predicted for various scenarios. Such designed systems
will significantly expedite and optimize healthcare and enable
personalized drug therapy for chronic diseases, especially in
cases with different patient response rates or different disease
phases.169

10.2. Patient monitoring and adaptive treatment plans

Patient health can be constantly monitored through wireless
connected devices. Patient monitoring is already a key appli-
cation of smart wearable sensors and microfluidic devices inte-
grated into garments.170 Advanced wearables development and
artificial intelligence enable the introduction of context aware-
ness based on the patient’s environment and lifestyle, and per-
sonalized models for each patient for predictive association.171

Industry is quickly applying this technology to injectable
medical devices. Even if some of these advanced sensors and
body systems have not yet been integrated into commercial
products, several companies are testing wearable microfluidic
products. These liquids are properly combined with the drug
in the microfluidic process.172 Other companies are developing
artificial pancreas systems that can monitor plasma glucose
concentrations. In this way, they aim to help the patient opti-
mize their own pancreatic production of insulin. Such artificial
intelligence systems are just the beginning of what individual
patient health monitoring and diagnostic tests have to offer.

The consequence is that, soon, if a patient’s wearable
device detects the symptoms of a health problem, a pre-
trained algorithm will personalize the patient’s precise medi-
cation at a specific dose. The health of the patient can be
safely and automatically monitored outside of professional
clinical environments and the patient’s drug delivery manage-
ment.173 The patient’s compliant medication may significantly
decrease, and the algorithms will adapt the therapeutic plan to
the current condition of the patient. This medication may
minimize diabetes and cancer effects in some cases through
natural extracts or reduce chronic drug administration side
effects.174 Individual-specific real-time predictive monitoring
is the next phase of smart connected drug delivery enabled by
the integration of microfluidics into drug delivery devices. In
this context, artificial intelligence in connection with individ-
ual monitoring is processing the information gathered.175 The
aim is to make such decisions and advise on medication for
the patient so that their health condition can be maintained at
the best possible level.

10.3. Addressing pharmacokinetic and pharmacodynamic
variability

High pharmacokinetic and pharmacodynamic variability
between individuals is an important reason why patients need
different doses and treatment regimens to achieve optimal
therapeutic outcomes. However, the fixed dose commonly
used in the clinic does not consider the variability between
individuals.176 The variability in drug concentrations in the
body is determined by changes in pharmacokinetic para-
meters, such as reduced drug metabolism and reduced renal
clearance. The current approach for addressing pharmacoki-
netic variability is not patient specific. Clinicians consider the
patient’s weight and BMI, as well as disease status and comor-
bidities, to adjust the dosage per protocol or based on effective
medication.177 Although the patient’s genetic background can
indeed be used to roughly predict the pharmacokinetic para-
meters of certain drugs, pharmacokinetic modeling and simu-
lation technology can better predict the pharmacokinetics of
drugs in patients, but it requires future blood concentration
data.178,179

In summary, pharmacokinetic variability is the leading
cause of improper treatment. However, various factors and cov-
ariates are not currently considered in dosing regimens. As a
result, limited consideration is given to the different doses and
dosing schedules needed for individuals to achieve the desired
therapeutic effect.180 Since the genetic background of the
patient can reveal many pharmacokinetic–pharmacodynamic
relationships, it would be possible to develop a model to
predict the pharmacokinetics of a target drug in vivo through
the patient’s DNA, and then deliver the drug in a personalized
manner.181 Such an approach might also help to identify
patients prone to adverse effects before they undergo therapy,
allowing the dosage of the drug to be more customized for
their use based on real-time pharmacokinetic information.182

In addition, personalized monitoring information is also
important to determine the biomarkers that best reflect the
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work of the drug and the patient’s eligibility for
medications.183

11. Challenges and limitations

By using AI to analyze patient databases, we are training algor-
ithms on the data produced in these smart systems. These data
hold every detail of the patient, including diagnosis, co-morbid-
ities, drug treatment and its effects, as well as other personal
details.184 While the development of AI is crucial for the
improvement of medicines, we must also ensure that we main-
tain patient privacy.185 Anonymization is not enough, as train-
ing datasets using state-of-the-art models can lead to accuracy
improvements in rendering data ‘de-identified’. Personalization
achieved by advanced data analytics techniques also requires
the sharing of patient data and sometimes patient tissue at the
sample level to implement the algorithm in clinical practice.
Maintaining patient privacy during the lifetime of the field will
require a fine balance to be struck between maintaining the
power required for the AI to work effectively and anonymity.186

This field is a current area of active concern.
The data needed to develop and use innovative drug deliv-

ery systems are rich and a perfect resource for data mining.
The information will be used by a patient and by a future
patient through machine-learning algorithms.187 Overcoming
patient health as an object in use on a smart drug delivery
system raises data privacy and security issues and ethical con-
cerns related to informed consent, data ownership, fiduciary
responsibility, patient transparency, data security and integrity,
intellectual property, and societal and individual rights among
others.188 Ethical considerations and innovations in materials
and integration are important to bear in mind when develop-
ing personalized medical systems over smart drug delivery
system platforms.189

11.1. Regulatory and ethical challenges

The development of AI components in biomedical algorithms
not only encounters these technical issues but also other chal-
lenges from both regulatory and ethical perspectives. One of
the biggest regulatory challenges to AI algorithm development
concerns clinical validation.190 To obtain marketing approval
or clearance from regulatory bodies, medical technology devel-
opers need to undertake empirical validation studies across a
range of different environments and real-world users to
demonstrate the safety and effectiveness of the technology.191

The incorporation of AI into regulated medical technologies
introduces an additional layer of complexity to the validation
process, from both technical and logistical standpoints.192 A
resulting regulatory challenge is how to properly account for
the unique issues that arise from an AI system that learns over
time from a range of different real-world sources of data.193,194

Developing ethical AI-based medical systems also presents
many other contemporary bioethical issues, including account-
ability for AI’s behavior and decisions; transparency to disclose
the machine learning process and algorithm; preventing

unfairness in the sense of harmful unintended bias; explain-
ability and interpretability of an AI-based system’s decisions;
and reliability and stability in terms of unassertiveness or
error.195 The precision of algorithms in complex environments
is of particular concern. Complications arising from misunder-
standings of how machine learning tools work may affect the
required knowledge of the tools, resulting in concerns relating
to privacy, autonomy, and whether these tools unjustifiably
challenge autonomy.196 The intricate ways in which AI-related
bioethics and self-governance, even autonomy in relation to
people with changing goals and values, adds to the depth of
complexity regarding the design of and reliance on AI tools
such as drug delivery systems.

11.2. Risk of using AI in drug delivery and personalized
medicine

Artificial intelligence (AI) is revolutionizing precision medicine
and drug delivery systems. It offers immense potential to per-
sonalize immune responses, predict drug delivery kinetics,
enhance pharmacological systems, and develop therapies for
cancer and neurological disorders. By supporting drug design,
chemical synthesis, biological evaluations, and decision-making
in drug discovery, AI is an invaluable resource.197 The advan-
tages of AI include predicting drug-likeness, exploring vast
chemical libraries, and identifying synergistic drug combi-
nations. It also aids in understanding treatments for rare dis-
eases and facilitates drug repurposing. AI excels at extracting
relevant biomarkers, improving data accuracy in epigenomics
and genomics, and predicting protein–DNA interactions, which
enhance future clinical trial designs.198 AI systems filter out data
noise to prioritize compounds likely to succeed therapeutically,
while safety models update toxicological databases, ensuring
reliable information throughout drug development. Therefore,
integrating AI into healthcare marks a transformative period,
promising advancements in treatment precision and efficacy.

The domain of artificial intelligence in healthcare faces
numerous challenges requiring careful consideration. A major
issue is the lack of extensive, well-annotated cancer datasets,
significantly undermining machine learning effectiveness.199

The rise in false-positive melanoma detection rates, which can
increase ten-fold compared to clinical diagnoses, highlights
the urgent need for thorough validation.200 As AI applications
in health technology assessments grow, they outpace available
data, raising important questions about potential conse-
quences. Data privacy and security are critical concerns that
demand careful attention.201 The inherent trade-offs in sensi-
tivity analysis complicate this balance between innovation and
risk. Smart systems’ reliance on algorithmic decision-making
makes them vulnerable to security breaches, which could have
serious repercussions. The risk of producing erroneous out-
comes also calls for strong oversight mechanisms. Ignoring
new relational dynamics can lead to a loss of knowledge, while
overlooked side effects from flawed algorithms can intensify
existing vulnerabilities. The lack of human touch in AI-driven
healthcare solutions raises significant issues, especially con-
sidering cultural differences in understanding mental health.
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Furthermore, algorithmic bias poses a threat by potentially
perpetuating and exacerbating current inequalities in health-
care.202 Therefore, addressing these multifaceted challenges
requires a focused and proactive approach.

11.2.1. Data privacy and security risks. The integration of
artificial intelligence within the realm of healthcare revolves
around the utilization of highly sensitive, primary personal
data. The myriad of data privacy and security risks associated
with the deployment of AI in personalized medicine and
pharmaceutical delivery is substantial. Notably, the risks per-
taining to data privacy encompass the potential for the re-
identification of personal information that was intended to
remain anonymized, alongside the peril of unjust discrimi-
nation stemming from the analysis and processing of such
personal data.203 Furthermore, the acquisition of personal
data may precipitate its over-mining by data aggregators,
thereby jeopardizing both patient rights and the competitive
edge of enterprises engaged in AI-driven solutions.

Entities (data operators) tasked with the processing of per-
sonal data—defined as any information that can be linked to an
identifiable individual—bear the responsibility for such proces-
sing. The General Data Protection Regulation (GDPR) endorses
a principle of privacy by design and by default, mandating that
data operators safeguard against unlawful processing, as well as
accidental loss, destruction, or damage, while ensuring the
availability and accessibility of data. Most principles established
for the management of conventional personal data extend their
applicability to data categorized under AI.204

To accurately assess the risk associated with the processing
of personal data in the context of AI, existing risk assessment
tools tailored to personal data must be enhanced through the
incorporation of novel methodologies that address the unique
characteristics inherent to AI systems. Given the lucrative pro-
spects associated with AI, the extensive collection of personal
data is further amplified by intense competition among data
operators striving to acquire more personal information.205

Consequently, the processing of personal data not only intro-
duces the risk of re-identification when an individual is
acknowledged but also the danger of unfair discrimination, as
it facilitates the discernment of particular individual attributes,
both protected and unprotected, in terms of discrimination.

11.2.2. Patient data protection. The concept of “digital
sovereignty” has become crucial in discussions about govern-
ance, society, and technology, particularly due to extensive
data collection. Managing digital resources involves significant
ethical and philosophical implications that affect contempor-
ary life. The debate focuses on data ownership, highlighting
issues of privacy, autonomy, and individual rights.206 The
interactions between states, corporations, and digital plat-
forms have created a scenario where personal data is commo-
dified, often neglecting the tenets of consent and agency.
Understanding the principles governing data collection,
storage, and use is essential, especially given advances in AI
and machine learning. Recent developments stress the need
for strong frameworks to protect rights and promote transpar-
ency and accountability in digital environments.207 Ethical

concerns about data usage are heightened by pervasive surveil-
lance, raising issues about personal freedoms and the poten-
tial for the misuse of sensitive information. Data-driven
decision-making impacts society broadly, affecting collective
behaviours and exposing algorithmic biases and systemic
inequalities that threaten fair resource distribution.
Stakeholders must engage in discussions to define ethical data
practices, prioritizing fairness, inclusivity, and human dignity.
The conversation around digital sovereignty transcends techni-
cal challenges, embodying a societal necessity for re-evaluating
data ethics. As we step into a more interconnected future, the
focus on protecting individual rights and cultivating a respon-
sible digital culture is vital for our collective progress.

11.2.3. Cybersecurity threats. The evolution of artificial
intelligence (AI) and machine learning (ML) in the past two
decades has driven significant changes, especially in personal-
ized healthcare and the pharmaceutical industry. This techno-
logical progress brings ethical challenges. AI models can produce
unpredictable outcomes that reveal vulnerabilities, leading to
complex, undesirable consequences. Creating AI/ML systems that
avoid ethical issues is a substantial challenge, still largely unre-
solved. The rapid development of these models risks unintended
repercussions that could spiral out of control, raising existential
concerns about AI functioning against human welfare.208

In pharmaceuticals, automated ML systems can process
vast datasets to develop new medications rapidly. This
efficiency, while promising potential cures for diseases like
cancer, poses risks, such as the emergence of superbugs and
the possibility of malicious entities deliberately releasing
pathogens. Although no current pharmaceutical consortium is
nearing this fast-paced research speed, such risks necessitate
proactive measures to prevent dystopian outcomes.
Additionally, as AI integration into daily life deepens, ques-
tions arise about ethical considerations in AI recommen-
dations. Even though AI can suggest choices based on various
values, it fails to provide data-driven solutions to ethical dilem-
mas, highlighting an ongoing complexity.

The increasing presence of AI systems may distort human per-
ceptions of value, encouraging unhealthy attitudes and poten-
tially promoting violent or unethical behavior. Moreover, AI
capable of generating harmful code poses threats to users by
exploiting their devices or networks. Advanced models can create
realistic synthetic data, enabling malicious actors to produce con-
vincing imagery or text with minimal coding skills. Such capabili-
ties can expose security vulnerabilities and aid hackers, compli-
cating the AI landscape. Deep learning models trained on code
repositories may devise sophisticated exploits, further enhancing
the challenges faced in AI governance and security.209

12. Future directions
12.1. Advancements in AI algorithms for better predictions

Artificial intelligence (AI) has increasingly enabled the develop-
ment of intelligent systems and has been incorporated into
public health studies with a high degree of reliability across
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interdisciplinary fields.210 In commonly adopted research
models, various AI algorithms have been demonstrated to be
effective.211 AI models can be trained, optimized, validated, and
used on different scales and have been shown to be superior at
capturing non-linear trends, analyzing vast amounts of complex
data, and performing disease or drug compound predictions in
big data. Different AI algorithms inherently contain specific
principles or are suitable for diverse applications. The motiv-
ation for this work is that many AI algorithms could be better
used but are possibly underemployed. Generally, AI algorithms,
from traditional statistical and mathematical modeling
methods to recently trending deep learning methods, have been
widely and effectively implemented in various drug discovery or
development predictive analyses or trials.212 Different AI algor-
ithms contain distinct requirements and internal algorithms,
and they are configured differently. The most used AI algor-
ithms suitable for predictive analyses include random forest,
support vector machine, convolutional neural network, and
deep learning. When these methods are suitably configured,
they can quickly achieve a high performance. Understanding
the operational principles, strengths, and limitations of
different AI algorithms is helpful for interdisciplinary pro-
fessionals to execute a topic-sensitive design of reserved
models.72 The AI algorithms can be better employed in terms of
improved prediction results and reduced time-consuming or
numerically aimed experimental designs.

12.2. Potential of wearable technologies in real-time data
integration

Several wearable tools and sensors have been designed to
monitor numerous body-specific parameters in real-time.
Personalized medicine can be greatly enhanced by wearable
technologies integrated into smart drug delivery systems.213

Wearable devices collect and convey real-time biomarker and
physiological indicator data to a doctor continually.214 These
gadgets can provide real-time alerts, possess tiny form factors,
are easy to operate and fix, and provide contact-free monitor-
ing of the patient. The attendant sensors are capable of trans-
ducing data of the biochemical, electrical, or mechanical type.
Being light in weight, these add a high level of comfort and do
not skew the data obtained. A broad range of body-specific
parameters can be directly monitored through wearable
technology, i.e., heart rate, pH, body temperature, blood
pressure, movement, etc. Many diseases can be identified early
on with the help of these types of devices.215 These can be as
diverse as self-health management in fitness enthusiasts,
chronic disease management, COVID-19 detection, or heart
health and syncope monitoring. Since wearable gadget techno-
logy is low-cost or widely accessible, it opens up limitless
opportunities for innovation and creative applications.216

Certain clothing can have integrated skin sensors.

12.3. Collaborative frameworks between AI researchers and
clinicians

There is no simple answer for to how to initiate the implemen-
tation of AI frameworks in the clinic. A key challenge faced by

many researchers is the realization that moving a proof-of-
concept machine learning model into the clinical setting
involves not just building a model, but the careful assessment
of all individual components that together form the system
that will be validated in a clinical trial.217 Therefore, it is
suggested to make machine learning algorithms more accessi-
ble to the clinical domain. By encouraging results to adhere to
AI-driven protocols, domain-specific language requirements
would regulate newly developed algorithms and delegate com-
pliance to the AI agents.218 The best approach for achieving
this is the development of a standardized semantic knowledge
framework to guide the development of future AI approaches
and prioritize clinical needs. Similarly, for average clinicians to
understand and critique AI-driven research, we need forward-
thinking AI researchers to translate their work into language
that is understandable without a degree in computer science.
This reciprocal environment is extremely difficult to achieve,
which is why we see interprofessional collaboration as the
most important success factor for successful AI implemen-
tation in personalized medicine. Interprofessional collabor-
ation requires frequent communication among AI researchers,
domain-educated users, and decision-makers, as well as future
AI developers and users of the system. Whether AI-driven man-
agement and triage, AI-driven therapeutics, or AI-driven aug-
mented diagnostics are at stake, the role that AI will play
within healthcare is growing.219 Only through interprofes-
sional collaboration can this growth be managed effectively.

12.4. Role of quantum computing in drug delivery and
personalized medicine

Inspired by the large number of drugs approved daily by regu-
latory authorities around the world, scientists are engaged in
customizing the necessary treatment that an individual patient
may require and designing it precisely to reach the target site
in a timely manner and quickly release functional doses.220

With the advancement of medical technology in recent years,
continuous progress in the field of drug delivery has led to the
conclusion that the introduction of quantum optimization of
proteins (quantum optimization of proteins highlights the
convergence of quantum mechanics and biochemistry; using
quantum methods to optimize protein structures is gaining
traction, potentially reshaping our comprehension of mole-
cular interactions as researchers explore quantum states’ roles
in protein folding and stability) and pharmacovigilance can
pave the way to meet this challenge. With the introduction of
quantum computing, novel ideas should be released immedi-
ately that can support the development of strategies to opti-
mize prototype synthesis or facilitate combinatorial library
selection.221 Subsequently, we present a quantum computing
model that optimizes the protein selection problem for open-
loop drug delivery (the term “open-loop drug delivery” refers to
administering therapeutic agents without real-time feedback
or adjustments based on the patient’s response).222 The
concept of a quantum computer is a new one, and we seek to
evaluate its effects in computer technology and the software
industry. The relationship between the process of drug discov-
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ery and quantum computing is still in its infancy. Researchers,
however, realize that the two areas are compatible and work to
merge quantum computing and chemical problems.223 The
accelerated, disruptive technologies of quantum computing
and quantum optimization begin to merge with strong interest
in the future drug discovery market. The benefits that
quantum computing can provide result from its nature as a
real-time artificial intelligence algorithm.224 It provides real-
time information by analyzing one molecule at a time, so one
can quickly intervene when the forecasts show undesired
results, which is positive in the field of drugs.225

13. Conclusion

AI has revolutionized smart drug delivery and personalized
medicine by enabling better characterization of drugs, real-
time monitoring, and accurate therapeutic interventions. The
use of AI-based strategies helps in patient stratification, phar-
macovigilance, and multimodal diagnostics with the objective
of the timely identification of potential problems and optimiz-
ation of nanoparticle-based therapeutics. Real-time personal-
ized point-of-care diagnostics and predictive models to person-
alize dosing accuracy, minimize adverse effects, and ensure
treatment adherence will lead to better, safer delivery of drugs.
The integration of AI with genomics, proteomics, and bio-
markers has definitely set the foundation for personalized
treatment protocols. However, the realization of the potential
of digital health will call for international collaboration, policy
support, and strategic investments. Inspired by past techno-
logical revolutions, digital health must be prioritized to ensure
equitable access to precision medicine and proactive disease
management. Future innovations in AI-driven healthcare
include combining sensory-based health monitoring with AI,
IoT, robotics, and advanced medical devices. This integration
will make early disease detection, personalized digital thera-
peutics, and remote monitoring possible, ultimately saving
hospital costs and the burden that chronic diseases inflict on
society. Despite challenges that arise from the AI-driven nature
of medical devices and digital therapeutics, attention must be
paid to real-world applications rather than theoretical models.
AI-driven medical technology must focus on real-time diagnos-
tics, self-management systems, and adaptive interventions to
enhance patient outcomes and revolutionize healthcare deliv-
ery. With AI, the future of healthcare is changing toward a
proactive, personalized, and technologically integrated
approach, marking the beginning of a digital health revolution
aimed at improving global health and well-being.
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