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A molecular simulation-based deep neural
network model for deciphering the adsorption
of 5-Fluorouracil in COFs†

Khushboo Yadava *a and Ashutosh Yadav *b

A database of 1242 experimentally synthesized COFs has been studied to understand their potential as

drug carriers by employing molecular simulations and machine learning models to analyze the adsorption

abilities and predict the capacity of loading the anticancer drug, 5-fluorouracil. Our findings indicate that

different organic linkers, structural features, binding sites, topologies, etc. of COFs play an important role

in determining the maximum loading capacity and release parameters of 5-FU. The implementation of

molecular simulations-based machine learning methods for drug adsorption studies in COFs is rare in the

literature. Once the model was validated, we studied the maximum loading capacity of 5-FU in a series of

COFs, 102–108 and 112, from the COF database, as these exhibited a gradual trend in textural properties,

aiming to understand this trend and the correlation between their structure and loading capacity. Then,

we proceeded to study the adsorption process in detail in 4 of the COFs: three 2D COFs—COF-206, i.e.,

DCuPc–ANDI-COF; COF-362, i.e., PI-COF-3; and COF-398, i.e., Py-DBA-COF-1—and one 3D COF—

COF-363, i.e., PI-COF-4. Radial distribution function and adsorption energy analyses revealed some

important interactions and thermodynamic parameters leading to strong binding and slow release of

5-FU. The adsorption energy values in the top-performing COFs fall within the range of −8.43 to −42.25
× 103 kJ mol−1. The correlation of ML input parameters in terms of various chemical and structural

descriptors with the maximum loading capacity is discussed. From the molecular simulations, COF-362 is

the best-performing COF in terms of loading capacity and adsorption energy values. The ML models, i.e.,

random forest, decision tree and three deep neural networks, were trained on 80% of the total data, while

the remaining 20% of the data was used to test the models. DNN model-3 was chosen as the final model

for further analysis based on R2 = 0.87, RMSE = 189.81, and MAE = 100.87. SHapley Additive exPlanations

(SHAP) analysis and the feature importance chart indicated that among the structural descriptors, Sacc,

LCD, and Vf, and among the chemical descriptors, C, H, and N, had the most positive impact on the

output predictions of the model. Finally, a graphical user interface based on the best-performing ML

model was created to predict the 5-FU loading capacity of COFs. This will save users time without the

need to run the code or perform various tedious drug-loading experiments.

Introduction

One of the critical challenges in pharmaceutical science is
identifying suitable drug delivery systems (DDSs) tailored for
specific drugs and treatments.1 DDSs are specialized carriers

or devices that deliver therapeutic molecules at controlled
rates, in precise amounts, and to specific target sites under
defined physiological conditions.2 While standard DDSs, such
as micelles, liposomes, and nanoparticles, are frequently uti-
lized, they often suffer from limitations related to stability,
uncontrolled release, and toxicity.3 To overcome these chal-
lenges, advanced DDSs based on porous materials, including
metal–organic frameworks (MOFs) and covalent organic frame-
works (COFs), have gained significant attention for their
potential in drug encapsulation and delivery. Numerous
experimental and computational studies have explored the
potential of MOFs for drug delivery in treating various dis-
eases, including cancer,1 hypertension,2 cardiovascular dis-
orders,3 and diabetes.4 COFs, however, offer an alternative
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approach due to their metal-free architecture, which mitigates
the risk of metal ion leaching, a known issue with MOFs, and
consequently reduces potential toxicity while enhancing stabi-
lity under physiological conditions. Unlike MOFs, composed
of metal nodes coordinated by organic linkers, COFs consist
entirely of organic building blocks linked by strong covalent
bonds, resulting in materials with enhanced chemical and
thermal stability. COFs are constructed using covalent bonds
between organic moieties, with linkages such as C–B, C–C,
CvN, C–O, and C–Si, forming diverse two-dimensional (2D)
and three-dimensional (3D) frameworks. In 2D COFs, the
layers stack via π–π interactions, creating planar structures,
whereas 3D COFs are characterized by tetrahedral or orthog-
onal geometries, producing extended network architectures.
2D and 3D COFs possess desirable attributes such as large
surface area, porosity, low cytotoxicity, and excellent chemical
stability, making them particularly well-suited for drug loading
and controlled release applications. Functionalizing COFs with
groups such as fluorine, amino, alkyl, or sulfur significantly
increases binding sites, resulting in stronger drug–COF inter-
actions, improved drug-loading capacities, and more stable
drug–COF complexes.

Modern nanocarriers, particularly COFs, offer several advan-
tages over conventional drug formulations, which often suffer
from poor solubility, limited cellular penetration, and broad sys-
temic distribution that can result in adverse side effects. COFs
can protect drug molecules from degradation in harsh physio-
logical environments and allow for controlled, site-specific drug
release, reducing the need for frequent dosing and decreasing
the burden on detoxification organs such as the liver and
kidneys. This controlled release capability makes COFs highly
promising for improving therapeutic efficacy while minimizing
side effects. Several drugs, including doxorubicin,5 5-fluoroura-
cil (5-FU),6 ibuprofen,7 insulin,7 quercetin,8 and captopril,9 have
already been successfully encapsulated within COFs, demon-
strating their versatility in various therapeutic contexts.

Molecular simulation studies on drug uptake by MOFs have
been explored in the past by some research groups. Bernini
et al. reported the screening of biocompatible MOFs, such as
MIL-53, MIL-100, MIL-101, Mg MOF-74, CD MOF-1(K), and
bioMOF-100, for the adsorption of ibuprofen via grand canoni-
cal Monte Carlo (GCMC) simulations.10 In 2017, Yeganegi and
Gomar investigated the adsorption of 5-FU, hydroxyurea, and
mercaptopurine in the zeolitic frameworks ZIF-7, ZIF-8, and
ZIF-9.11 Liu and coworkers studied the adsorption of benda-
mustine and 5-FU in a series of Zr-based MOFs: UiO-66,
UiO-66-NH2, UiO-66-COOH, UiO-67, and UiO-66-NDC.12 Sose
et al. in 2021 reported the modeling and experiments on a
series of biocompatible MOFs, specifically, UiO-AZB, HKUST-1
(or CuBTC) and NH2-MIL-53(Al), to study the adsorption of
5-FU, ibuprofen, and hydroxyurea.13 Liu Jiaqi et al.2 studied
the adsorption of an antihypertensive drug amlodipine in a
couple of MOFs in 2021. Proenza et al.14 studied the adsorp-
tion of 5-FU and caffeine into ZIF-8. Tayebee et al.15 2020,
reported the adsorption of 5-FU in pristine and Fe-, Al-, Ga-,
and Mg-doped ZnO nanoclusters using density functional

theory. They were able to conclude that the doped nano-
clusters have higher adsorption energy compared to pristine
ZnO. Li et al.16 in 2020 used DFT calculations to understand
the mechanism of adsorption of another anti-cancer drug acy-
clovir in magnetic nanoparticles. They were able to investigate
important theoretical parameters such as the nature of inter-
molecular interactions, electron densities, and Laplacians.
Huang et al.,17 in 2024, reported on an experimental study of
Au-doped Fe3O4 as an effective 5-FU anti-liver cancer drug
suggesting a loading capacity of 78% and a release capacity of
41%. In another experimental report by Chen et al.,18 in 2023,
5-FU was loaded onto the surface of a gold–silver nano-
composite, resulting in 70% adsorption. A couple of experi-
mental reports of 5-FU loading in COFs are available that
include a study by Ma et al.19 on the fluorinated COF
DF-TAPB-COF. The drug loading rate was found to be 69%.
Zhao et al.6 developed PI-3-COF and PI-2-COF with 16 and
30 wt% loading rates for 5-FU. Banerjee et al.20 reported two-
dimensional covalent organic nanosheets that demonstrated
12% 5-FU loading with the help of UV-vis absorption
spectroscopy.

Despite this significant progress, there still needs to be a
deeper understanding of drug–COF interactions, particularly
regarding how these systems can be optimized for specific
drugs and diseases. While 5-FU, a widely used chemotherapeu-
tic agent, has been extensively studied with MOFs as the adsor-
bent, comprehensive investigations into its behavior within
COFs remain scarce. This study seeks to address this gap by
focusing on the adsorption and uptake of 5-FU within COFs,
employing advanced computational methods, including grand
canonical Monte Carlo (GCMC) simulations and machine
learning techniques, to investigate drug–COF interactions and
optimize COF structures for enhanced drug encapsulation and
loading capacity.

Multiscale modeling has allowed substantial strides to be
made in various applications, including adsorption, chemical
reactions, and diffusion processes. The appropriate level of
theory in multiscale modeling depends on the system under
investigation and the timescale of the phenomena involved.
GCMC simulations are particularly well-suited for modeling
drug adsorption in the pores of COFs, while molecular
dynamics (MD) simulations are used to study drug release
mechanisms in these systems. Integrating machine learning
models into this study further enables the analysis of how
structural and chemical parameters influence drug adsorption,
providing insights into the rational design of COFs for specific
drug delivery applications. This work presents a comprehen-
sive computational analysis of the adsorption and diffusion
behavior of 5-FU within COF structures, focusing on the influ-
ence of functionalization and other structural parameters on
drug encapsulation and release. By employing advanced simu-
lation techniques and machine learning models, the study
aims to offer new insights into developing next-generation
COFs with optimized properties for drug delivery. The findings
are expected to contribute to both computational and experi-
mental efforts in designing COFs with enhanced capabilities
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for drug storage and controlled release, thus advancing the
development of innovative DDSs for a wide range of thera-
peutic applications.

With more than trillions of possible MOFs that can be
created, the sheer number of materials has far surpassed what
can be practically explored through trial-and-error experiments
or brute-force molecular simulations within a reasonable
period.4

In this work, we have utilized GCMC simulations and
machine learning to screen and decipher the COF database21

for the adsorption of the model anticancer drug 5-fluorouracil
and its loading capacity. First, we validated our simulation
method by comparing the results of 5-FU adsorption by
various MOFs.11,14,22,23 Once the validation was achieved, we
studied the maximum loading capacity of 5-FU in a series of
COFs, 102–108 and 112, from the COF database, as they exhibi-
ted a gradual trend in textural properties, helping us under-
stand the trend and correlation of the structure with the
loading capacity. Then, we proceeded to study the adsorption
process in detail in 4 COFs: three 2D COFs—COF-206, i.e.,
DCuPc–ANDI-COF; COF-362, i.e., PI-COF-3; and COF-398, i.e., Py-
DBA-COF-1—and one 3D COF—COF-363, i.e., PI-COF-4. These
2D and 3D COFs were chosen as they have different linkers,
binding sites, topologies, and textural properties, which will
provide deeper insights into the adsorption process and
loading capacities of these COFs. In addition, a thorough ana-
lysis of the radial distribution function (RDF) and adsorption
energy was also conducted to understand the mechanism and
form an idea of the drug release properties of the same. After
that, we performed machine learning studies on the COF data-

base to create a model for predicting the 5-FU loading capacity
of different COFs. The model was trained using the GCMC
data, and the input of the ML model was the structural and
chemical descriptors of the COF. Furthermore, SHapley
Additive exPlanations (SHAP) analysis was performed to ident-
ify the importance of the descriptors on the loading of 5-FU in
these COFs.

Computational method

5-FU is a pyrimidine derivative containing CvO and F as the
substituents on the ring. The molecular dimensions of 5-FU
are 5.8 × 4.4 × 3.0 Å (see Fig. 1). 5-FU is used as an anticancer
drug to treat various types of cancers including breast, colon,
rectal, stomach, pancreatic, ovarian, and bone cancers. 5-FU
interferes with the nucleoside metabolism, by incorporating
itself into damaged DNA and RNA, inducing cytotoxicity and
cell death. It is of great interest to see how the substituents
present on the pyrimidine ring of 5-FU interact with the
binding sites of COFs and affect the drug’s adsorption and
loading capacities in these structures.

COF database

High-throughput screening was utilized for the CORE-COF15

database, which included 1242 experimentally synthesized
COFs. This database has a complete profile of all the COFs in
terms of their structural parameters. In this study, we used
Zeo++ 0.3 software24 to calculate various structural features of
the COFs, including parameters such as the largest cavity dia-
meter (LCD), pore limiting diameter (PLD), volume surface
area (VSA), pore volume (Vp), density (ρ), and void fraction (φ).
Considering both accuracy and computational cost, this work
screens COFs with PLD values greater than 10 Å (larger than
the molecular diameter of 5-FU), void fraction ≥0.70, and
surface area ≥2000 m2 g−1 to establish a reference standard.
The screening resulted in the identification of 81 COFs from a
total of 1242 COFs. The schematic representation of the
screening methodology adopted in this work is shown in
Fig. 2. The structural diversity of the COFs obtained from this
initial screening was visually displayed through a violin plot
and a structure table (Fig. 3 and 4). A probe radius of 1.86 Å
(the kinetic radius of the N2 molecule) was employed to calcu-
late the surface area, and the COFs with zero accessible

Fig. 1 Chemical structure of 5-fluorouracil. Color codes: red: O; blue:
N; cyan: F; gray = C; and white: H.

Fig. 2 Schematic representation of the methodology for generating the dataset for the machine learning model.
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surface area were eliminated, allowing 5-FU to be adsorbed
into the remaining COFs.

Grand canonical Monte Carlo simulations

To begin our investigation, we initiated grand canonical Monte
Carlo (GCMC) simulations using RASPA software6 to calculate
the uptake of 5-FU by the COFs at 1 bar and 298 K. The inter-
actions between the host–gas and gas–gas molecules were
described using the Lennard-Jones (LJ) potential (eqn (1)).7

The interaction parameters for the COF atoms were obtained
from the generic force field known as DREIDING. The inter-
action parameters for some of the metal atoms within the
COFs were derived from the universal force field (UFF). The LJ
interactions were truncated at a cutoff distance of 12 Å, and
long-range corrections were not applied. The box side lengths
in the simulations were all greater than 24 Å, i.e., two times
the cutoff distance. The Lorentz–Berthelot mixing rule was
employed to determine the force field parameters for inter-
actions between different types of atoms. During the GCMC
simulation, 10 000 cycles were executed for initialization pur-
poses, and an additional 10 000 cycles were conducted to

determine the overall mean value of 5-FU adsorption. Each
loop utilized five different types of moves: translation, rotation,
reinsertion, exchange, and molecular identity exchange. The
Peng–Robinson equation of state determined the gas fugacity
coefficient.25

Uij ¼ 4εij
σij
rij

� �12

� σij
rij

� �6� �
þ qiqj
4πε0rij

ð1Þ

In eqn (1), qi and qj represent the partial charges associated
with atom i, and atom j, respectively, and ε0 denotes the
vacuum dielectric constant, equal to 8.8542 × 10−12 C2 N−1

m−2. Moreover, εij and rij, signify the depth of the potential
well and the collision volume associated with atoms i and j,
respectively. The force field parameters used for 5-FU are given
in Table 1.16

Machine learning (ML) modeling

The data generated by the GCMC simulations for the adsorp-
tion of 5-FU by different COFs were used as the training data
for the ML modeling. Different types of ML models were used

Fig. 3 Violin plot of (a) PLD and LCD and (b) φ of the 1242 COFs.

Fig. 4 Violin plot of (a) PLD and LCD and (b) φ of the screened COFs.
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in this work, such as random forest (RF), artificial neural
network (ANN), and decision tree (DT), which were compared,
and the best model was selected for further analysis. The input
to the ML model was the chemical and structural descriptors
of the COFs. The details of the structural and chemical
descriptors are given in Table 2.

Artificial neural network (ANN)

ANN models have an input layer, hidden layer(s), and an
output layer and are widely used in various fields, including
the screening of materials.26 Each layer consists of intercon-
nected nodes known as neurons. The neurons of one layer are
connected to subsequent layers, and each connection is associ-
ated with a weight that determines the strength of the connec-
tion.27 The non-linear activation function is applied to the
output to introduce non-linearity into the model. This helps
the model learn the complex functional relationship between
the input and output. Some common activation functions are
ReLU, sigmoid, softmax, and tanh.26 ANN models are trained
using the backpropagation algorithm, such as in the deep
neural network (DNN), which involves iterative weight adjust-
ments between neurons to minimize the loss function. The
loss function measures the difference between the predicted
and actual output values. The weight adjustment process uti-

lizes optimization algorithms such as gradient descent and
stochastic gradient descent. A schematic representation of the
DNN model is given in Fig. 5.

Decision tree

A decision tree is a supervised learning approach and consists
of nodes that indicate decisions based on the features and the
branches that represent the outcome of the decision.27 The DT
model is trained using a recursive partitioning process where
the algorithm selects the best feature to split the data at each
node.28 The algorithm evaluates different splitting criteria for
estimating the best feature and its value. The DT model has
limitations and is prone to overfitting if the tree grows too
deep, and a slight change in the training data causes a signifi-
cant change in the tree and, consequently, in the output.27

Random forest

The RF is an ensemble modeling algorithm developed based on
the collection of decision trees.27 It combines the outputs of
multiple DTs to reach a single result, and each tree in the
ensemble comprises a data sample taken from the training data
set with a replacement, known as a bootstrap sample.28

Overfitting in RF is avoided by incorporating ensemble strategies
and random sampling, which also assist in making accurate pre-
dictions. The hyperparameters in the RF model are node size,
the number of trees, and the number of features sampled.

ML model performance evaluation and interpretability

The performance of the ML models was tested using the fol-
lowing performance metrics:

Root mean square error (RMSE). RMSE indicates the degree
of dispersion of the sample; the lower the RMSE, the better the
model’s predictions and the better the fit with respect to the orig-
inal data sample. RMSE is very susceptible to large and small
errors and is a good measurement of the model’s accuracy.28

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðyi � xiÞ2
vuut ð2Þ

Table 1 Lennard-Jones parameters for all atoms of 5-FU used in the
GCMC simulations3

Atom σ (Å) ε/kb (K)

5-FU C 3.340 43.292
N 3.250 85.578
O 3.340 105.724
F 3.118 30.707
H 1.069 7.903

Table 2 Summary of chemical and structural descriptors of COFs used
for the ML models

Category Descriptor

Chemical H (hydrogen)
C (carbon)
N (nitrogen)
O (oxygen)
F (fluorine)
Ni (nickel)
Si (silicon)
Br (bromine)
Cu (copper)
Zn (zinc)
Rh (rhodium)
Co (cobalt)
S (sulfur)
B (boron)

Structural Density (crystal density)
Accessible surface area (Sacc) (m

2 g−1)
Accessible surface area (Sacc) (m

2 cm−3)
Free volume (Vfree)
PLD (pore limiting diameter)
LCD (largest cavity diameter)
Void fraction (φ) Fig. 5 Schematic representation of the DNN model.
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Coefficient of correlation (R2). This is a statistical measure
of how well the independent variable in a statistical model
explains the variation in the dependent variable. It ranges
from 0 to 1, where 1 indicates the perfect fit of the model to
the data:

R2 ¼ 1�
X

ðyi � xiÞ2X
ðyi � yÞ2 ð3Þ

Mean absolute error (MAE). This is the average error
between the predicted and actual values of the sample and the
smaller the value of the MAE, the better the ML model’s pre-
dictions. The MAE is expressed as

MAE ¼ 1
N

XN
i¼1

jyi � xij ð4Þ

where N is the total number of the samples, yi is the true
value, xi is the predicted value, and y is the average value of
the true values.

The interpretability of the ML model is necessary to under-
stand the importance of the features with respect to the overall
model predictions. Furthermore, model interpretability was
performed using SHAP analysis. SHAP originated from game
theory29 and was used to identify the importance of features.
Here, it has been leveraged as a modern explanation frame-
work for understanding the influence on 5-FU loading into
COFs of the chemical and structural descriptors. The interpret-
ability of a model is the process of understanding how an ML
model makes predictions by establishing a relationship
between input and output. This facilitates engineers and scien-
tists in understanding the rationale behind the model predic-
tions and builds trust in the ML model. ML models with high
interpretability are easily understood by humans and their
applicability and implementation in real-world scenarios are
easily explained.

Results and discussion
Validation of the simulation method

To validate the simulation method and force field, the 5-FU
simulation was conducted to compare with the reported litera-
ture results for MOFs. Table 3 shows the comparison of the
simulation results of the reported literature and our work on

the adsorption capacity of 5-FU in various state-of-the-art
MOFs for validation of the model for further analysis of the
COF database.

Correlation between COF structural property parameters and
adsorption and loading capacity of 5-FU

In Table 4, a series of COFs, COF-112 and COF-102 to 108
(obtained from the COF database file), are studied to under-
stand how the textural properties of COFs affect the amount of
5-FU adsorbed. It can be observed that as one moves down the
table, the PLD, surface area, and void fraction values gradually
increase. Here, it can be seen that in the case of COF-112, the
PLD is smaller than the size of 5-FU, hence correspondingly,
simulation results established that no adsorption takes place.
Furthermore, in the case of COFs 102 to 108, the GCMC simu-
lation results indicate that the adsorption of 5-FU gradually
increases as the parameters increase, indicating a direct corre-
lation between the COF structural property parameters and the
amount of 5-FU adsorption.

In Fig. 6, it can be seen that the pore volume of the COFs
against adsorption values exhibits an almost linear trend,
which indicates that COFs with larger pores adsorb more sig-
nificant amounts of the adsorbate. The pore volume becomes
a relevant factor in the process. This behavior was also
observed by Erucar and Keskin32 and Rodrigues and Martins22

when evaluating 5-FU adsorption on MOFs with different pore
volumes.

Table 3 Physical properties, pore size distributions (PSDs), and simu-
lated maximum uptake of 5-FU by the MOFs under study

MOF
PLD
(Å)

Maximum
experimental uptake of
5-FU (mg g−1)

Maximum simulated
uptake of 5-FU
(mg g−1)

IRMOF-1 22 7.93 1428 1456
IRMOF-10 22 12.08 2839 2991
IRMOF-8 22 9.17 2131 2102
ZIF-8 30 3.40 477 535
ZIF-6 23 1.64 796 840
UiO-66 31 3.99 279 288

Table 4 Textural properties of the selected COFs studied by simu-
lations in this work

COF
name

PLD
(Å)

Surface area
(m2 g−1)

Void
fraction

5-FU loading
(mg g−1)

COF-112 2.03 0 0.41128 1
COF-102 7.98 5128.69 0.781 1930
COF-103 8.50 5315.45 0.797 2229
COF-105 16.12 6644.76 0.911 6092
COF-108 19.05082 6386.63 0.916 6415

Fig. 6 Graphical representation of the amount of 5-FU adsorbed in
COF-112 and COF-102 to COF-108 as calculated by simulations in this
work.
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Mechanism of 5-FU adsorption in COFs

In this section, we describe the mechanism of 5-FU adsorption
in detail in four COFs, namely, COF-206, COF-362, COF-363,
and COF-398, selected from the database on the basis of their
unique structural features such as topology, pore diameter,
surface area, void fraction, and unique binding sites, which
play an important role in the drug loading ability of a COF. In
Fig. 7, we have presented complete perspective views of the
four loaded COFs obtained via GCMC simulations to provide
the reader with an understanding of the loaded COFs.

Mechanistic insights into 5-FU adsorption in a 2D COF-206,
input name: DCuPc–ANDI-COF

COF-206, with the name DCuPc–ANDI-COF, has a pore size of
3.6 nm. It belongs to the category of donor–acceptor COFs,
where the porphyrin ring, denoted by DCuPc, acts as the donor
group and the naphthalene diimide linkage, ANDI, behaves as
the acceptor unit. DCuPc–ANDI-COF has a 2D SQL topology. Its
void fraction is 0.75, PLD = 27.15 Å, and it has a surface area of
1595 m2 g−1. Fig. 8 shows snapshots of the 5-FU-loaded
COF-206 obtained using iRASPA software. Based on our simu-
lation results, the loading capacity of DCuPc–ANDI-COF was
found to be 1420 mg g−1.

Analysis using the radial distribution function (RDF) helps
in discussing the distribution of 5-FU molecules inside the
pores.3 RDF analysis helps in understanding the major binding
sites within the COF and their binding to the 5-FU molecules.
The RDF analysis of COF-206 is shown in Fig. 9. Here, 5-FU is
bound to the COF atoms via hydrogen bonding between the F,
O, N, C, and H of 5-FU and the O, N, and electron-rich aromatic
rings of COF-206. In the case of COF-206, i.e., DCuPc–ANDI-COF,
it can be seen that the major interactions occur between the
framework borate O and the 5-FU atoms and between the
naphthalimide O and 5-FU. After that, we observe that the
phenyl ring and the boron atoms of the framework and the
5-FU molecules interact with each other. Upon further analysis,
it was found that weaker interactions occur between the Cu of
the porphyrin ring and 5-FU, maybe because these Cu sites are
not exposed. The host–adsorbate distances were found to be in
the range of 1.81–2.26 Å and the adsorbate–adsorbate RDF fell
within the range of 1.76–2.79 Å (refer to Table S1†).

Mechanistic insights into 5-FU adsorption in a 2D COF-362,
input name: PI-COF-3

COF-362, with the input name of PI-COF-3, is a 2D COF classi-
fied under the category of PI-n-COFs, where n represents the

Fig. 7 A complete perspective view of the loaded COFs obtained from GCMC simulation results. (a) 2D COF-206; (b) 2D COF-362; (c) 3D COF-363;
(d) 2D COF-398.
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number of amino groups. It is obtained by the condensation
reaction of 1,3,5-triformylbenzene with 2,4,6-tris(4-aminophe-
nyl)-s-triazine. Its void fraction is 0.80; the PLD is 31.9 Å; and the
surface area is 3197 m2 g−1. Through our simulation results, the
5-FU loading capacity was found to be 2399.10 mg g−1. For this
COF, the experimentally reported loading capacity was found to
be 16 wt%.6 The deviation from the experimental results can be
explained by the fact that the simulation results represent the
loading capacity in a completely ordered crystalline material,
whereas the experimental results suffer due to the phase purity
of the COF, interactions with the solvent, interpenetration of the
framework, etc., out of many other possibilities. Snapshots of
the empty and loaded COF are presented in Fig. 10. Upon ana-
lysis of the RDF results, it was observed that the major loading
occurs at the periphery of the frameworks and at the center of
the cavities. The RDF analysis of COF-362 is shown in Fig. S5.†
The host–adsorbate distances were found to be in the range of
1.71–2.31 Å, and the adsorbate–adsorbate RDF appeared within
the range of 1.76–2.77 Å (refer to Table S1†).

Mechanistic insights into 5-FU adsorption in a 2D COF-398,
input name: Py-DBA-COF-1

COF-398, i.e., Py-DBA-COF-1, is a 2D COF with an hcb topology.
It is formed by a condensation reaction between pyrene-2,7-

diboronic acid (PDBA) and π-conjugated dehydrobenzoannu-
lenes (DBA) (Fig. 11). The framework has a void fraction of
0.78, a PLD of 33.38 Å, and a surface area of 1903.75 m2 g−1. It
has unique luminescence properties making it useful for
sensory and imaging purposes. The RDF analysis of COF-398
is shown in Fig. S6.† The presence of boronate groups in the
rings provides suitable adsorption sites for 5-FU, as revealed
by our RDF analysis. The boronate oxygen atoms act as the
binding sites. In the case of overall framework interactions
with the drug, the fluoride of 5-FU interacts more strongly
than the other atoms present in the molecule. The host–adsor-
bate distances were found to be in the range of 1.81–2.26 Å,
and the adsorbate–adsorbate RDF are within the range of
1.78–2.82 Å (refer to Table S1†). Based on our GCMC simu-
lation results, the loading capacity of Py-DBA-COF-1 was found
to be 1727.89 mg g−1.

Mechanistic insights into 5-FU adsorption in a 3D COF-363,
input name: PI-COF-4

Pyrometallic dianhydride (PMDA) and 1,3,5,7-tetra-aminoada-
mantane (TAA) combine to form the extended 3D framework
of COF 363 with input name PI-COF-4 through imidization,
resulting in a diamondoid topology (Fig. 12). PI-COF-4 exhibits
high thermal stability and large surface area. It has been

Fig. 8 Snapshots of 5-FU loaded in COF-206 with input name DCuPc–ANDI-COF at saturation with 1 × 1 × 8 unit cells. 5-FU molecules are shown in
gray stick representation style. (a) and (b) Empty COF-206 and (c) and (d) 5-FU-loaded COF-206.
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found to be a suitable host for ibuprofen. It has a void fraction
of 0.88, a PLD of 13.4 Å, and a surface area of 5107.4 m2 g−1.
In the present study, the loading capacity of 5-FU in this COF
was found to be 3659 mg g−1 (Table 5). The RDF analysis of
COF-363 is shown in Fig. S7.† The host–adsorbate distances
were found to be in the range of 1.81–2.34 Å and the adsor-
bate–adsorbate RDF fell within the range of 1.76–2.84 Å (refer
to Table S1†). These interactions are indicative of the presence
of weak van der Waals forces and hydrogen bonding-type
electrostatic interactions.

Adsorption energy analysis

The adsorption energy of an adsorbed atom is the energy to be
given to the adsorbed atom to desorb it from the surface. In

the case of drug adsorption, it indicates the strength of the
binding of the drug to the host material. A negative adsorption
energy value indicates a thermodynamically favorable adsorp-
tion process. Qualitatively speaking, the total internal energy
of adsorption, Ugh, reflects the drug binding and release ability
of a particular COF. Among the three 2D COFs and one 3D
COF under study, it can be seen from Table 5 that Ugh in the
case of the 2D COF, COF-362, is −42.25 × 103 kJ mol−1. In con-
trast, in the case of the 3D COF, COF-363, Ugh is −15.94 × 103

kJ mol−1, followed by Ugh values for the other 2D COFs,
COF-398 and COF-206, of −9.40 and −8.43 × 103 kJ mol−1,
respectively. It can also be observed that the contribution of
the adsorbate–adsorbate interaction energy, UAA, is more than
that of the host–adsorbate interaction energy in all cases, indi-

Fig. 9 Radial distribution function (RDF) analysis of the selected atoms in COF-206, i.e., DCuPc–ANDI-COF. In the first figure, binding atoms of
COF-206 have been labelled and studied via RDF analysis with the atoms of 5-FU. The specific atom-to-atom interactions are labelled in the inset
plots of the figure.
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cating that the 5-FU to 5-FU interaction increases more than
the 5-FU to COF atom interaction as the loading increases
inside the pores, which is in accordance with results reported

earlier in the case of drug adsorption by MOFs.10,13,14 Amongst
these 4 COFs, studied based on their Ugh values, it can be
inferred that COF-362 will show the slowest release of 5-FU. In
the adsorption process, the enthalpy of adsorption, by defi-
nition, is the amount of heat released or adsorbed. It is gov-
erned by factors such as the binding strength between the
host–adsorbate and structural features such as surface area
and pore volume. For COF-362, the total enthalpy of adsorp-
tion was calculated to be −122.99 kJ mol−1, the highest among
the four COFs. This again confirms that the binding strength
of COF-362 to 5-FU is the greatest among these four COFs.
Hence, the release of 5-FU will be slower and sustained for a
longer duration with COF-362.

Machine learning models

The ML models (RF, DT, and DNN) were trained with 80% of
the total data, and the remaining 20% of the data was used to
test the model. The model’s performance was tested in terms
of R2, RMSE, and MAE. Three different DNN models were
created to test the role of the layers in the overall model predic-
tion. All the DNN models have an input layer of 21 features

Fig. 10 Snapshots of 5-FU loaded in COF-362 with input name PI-COF-3 at saturation with 1 × 1 × 5 unit cells. 5-FU molecules are shown in gray
stick representation style. (a) and (b) Empty COF-362 and (c) and (d) 5-FU-loaded COF-362.

Fig. 11 Snapshot of 5-FU loaded in COF-398 with input name Py-
DBA-COF-1 at saturation with 1 × 1 × 8 unit cells. 5-FU molecules are
shown in gray stick representation style.
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(chemical (14) and structural descriptors (7)), and the output
layer has one node. The number of hidden layers in DNN
model-1 was one with 27 nodes, while DNN model-2 has
4 hidden layers with 30, 15, 10, and 5 nodes, respectively.

DNN model-3 has 8 hidden layers with 45, 35, 30, 25, 20,
15, 10, and 5 nodes, respectively. Fig. 13 shows parity plots of
the test and training data for RF, DT and DNN model-3. From
Fig. 13(a–c), it can be observed that the predictions of DNN-
model-3 are the best among all the other models. A compari-
son of the three models for test data in terms of R2, MAE and
RMSE is detailed in Table 6.

From Table 6, it can be deduced that DNN model-3 is the
best among all the other models and has the lowest values of

RMSE and MAE and the maximum value of R2. Hence, DNN
model-3 was taken as the final ML model for further analysis.
The SHAP feature importance chart and summary plot, shown

Fig. 12 Snapshots of 5-FU loaded in COF-363 with input name PI-COF-4 at saturation with 2 × 2 × 1 unit cells. 5-FU molecules are shown in gray
stick representation style. (a) Empty COF-363 framework and (b) 5-FU-loaded COF-363.

Table 5 Total internal energy (Ugh), host–adsorbate interaction energy (UHA), adsorbate–adsorbate interaction energy (UAA), and heat of adsorption
(Hads) calculations for the four COFs under study

COF PLD Surface area 5-FU loading (mg g−1) Ugh/10
3 kJ mol−1 UHA/10

3 kJ mol−1 UAA/10
3 kJ mol−1 Hads, kJ mol−1

COF-206 27.15 1595 1420 −8.43 −2.60 −5.82 −107.21
COF-362 31.9 3197 2399.10 −42.25 −17.45 −24.80 −122.99
COF-363 13.4 5107.4 3659 −15.94 −5.05 −10.88 −118.59
COF-398 33.38 1903.75 1727.89 −9.40 −2.59 −6.81 −103.64

Fig. 13 Parity plots from RF, DT and DNN model-3 analysis of the test data.

Table 6 Comparison of different ML models for the test data

ML model R2 RMSE MAE

Random forest model 0.62 323.20 137.21
Decision tree model 0.78 240.30 136.4
DNN model-1 0.60 451 330
DNN model-2 0.78 241.83 157.74
DNN model-3 0.87 189.81 110.87
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in Fig. 14(a) and (b), respectively, provide comprehensive views
of the impact each feature has on the model’s predictions.
These indicate the distribution of the impacts each feature has
on the model’s output, i.e., 5-FU loading. In SHAP analysis, a
positive SHAP value indicates an increased likelihood of a
more accurate prediction outcome and vice versa for the nega-
tive value. The accessible surface area “Sacc” has a wide range
of effects, with a cluster of highly positive impact values. This
suggests that higher Sacc values have a positive impact and are
strongly associated with more accurate predictions. This is fol-
lowed by the number of C and H atoms in the COF, which has
a mixture of positive and negative impacts on the model’s
output. However, C consistently has a positive impact on the
model predictions. The feature importance chart, derived from

the mean absolute SHAP values, ranks the features by their
overall impact on the model’s predictions. Among the struc-
tural descriptors of the COF, Sacc, LCD and Vf determine the
major impact on the model’s output predictions and among
the chemical descriptors, C, H and N exert the most positive
impact on the model’s output predictions. These findings can
direct the synthesis of novel linkers that enhance COF per-
formance for 5-FU loading.

Graphical user interface

Finally, a GUI was created to help scientists predict the loading
of 5-FU into COFs without running the actual code and per-
forming experiments on drug loading. The user has to just
input the chemical and structural descriptors of the COF (as

Fig. 14 SHAP (SHapley Additive exPlanations) analysis of the feature importance chart (a) and summary plot (b).

Fig. 15 The main page of the GUI.
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given in Table 2), which predicts the 5-FU loading capacity.
The main page of the GUI is shown in Fig. 15. The user has to
first click the structural descriptors tab, followed by chemical
descriptors and enter the values. Now the GUI requires the
chemical and structural descriptors, as shown in Fig. 16.
Afterwards, the user has to press the “ENTER” button which
will allow the model to take the input values. Finally, the “5-FU
loading (mg g−1)” tab needs to be clicked, which will lead to
the model’s predictions. The GUI offers a very user-friendly
way of calculating the 5-FU loading for any given COF. The link
to the GUI has been shared within this article: https://github.
com/ashutoshy701/5FU-Loading.

Conclusion

This work provides a detailed GCMC simulation study on a
database of COFs for the understanding of the mechanism
and thermodynamics of the adsorption of the anticancer drug
5-FU. The methodology was first validated through the adsorp-
tion of 5-FU on various MOFs, since simulation data on COFs
was not reported in the literature. RDF analysis and thermo-
dynamic energy parameters revealed the importance of inter-
molecular interactions in appropriate drug binding and con-
trolled release properties. The screening resulted in the short-
listing of 81 COFs from a total of 1242 COFs. There was a
direct correlation between 5-FU loading and the textural pro-
perties of COFs such as PLD, surface area and void fraction in
the cases of COF-102 to COF-108, and COF-112. Among the
four top-performing COFs, three 2D COFs and one 3D COF
were studied in detail. The total internal energy of adsorption,
Ugh, was highest in the case of COF-362 (−42 × 103 kJ mol−1),

followed by COF-363 (−15.94 × 103 kJ mol−1), COF-398 (−9.40 ×
103 kJ mol−1), and COF-206 (−8.43 × 103 kJ mol−1). These
values indicate that COF-362 will exhibit the slowest release of
5-FU. This study highlights the role of molecular simulation
and machine learning in the drug delivery application of
advanced porous nanomaterials, i.e., COFs. In respect of
machine learning, random forest, decision tree and deep
neural networks were constructed from which DNN model-3
performed the best, and hence, it was chosen for further ana-
lysis. The SHapley Additive exPlanations (SHAP) analysis and
feature importance chart indicate that, among the structural
descriptors, i.e. Sacc, LCD, and Vf, and the chemical descrip-
tors, i.e. C, H, and N, these factors exert the most positive
influence on the model’s output predictions. Finally, a GUI
that is presented in this work will be very useful for predicting
the 5-FU loading capacity by taking as input data the chemical
and structural parameters of the COF. This will save time for
users who will not need to run code and investigate prelimi-
nary experimental studies on drug loading.
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Data availability

An ESI† is also available with this work.
The GUI can be accessed through the following link:

https://github.com/ashutoshy701/5FU-Loading.

Fig. 16 The GUI page showing the chemical and structural descriptors.
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