7® ROYAL SOCIETY
P OF CHEMISTRY

RSC
Pharmaceutics

View Article Online
View Journal | View Issue

REVIEW

Al-driven innovations in pharmaceuticals:

’ '.) Check for updates ‘
optimizing drug discovery and industry operations

Cite this: RSC Pharm., 2025, 2, 437

Jaskaran Preet Singh Saini, ©& Ankita Thakur = and Deepak Yadav ‘= *

The integration of artificial intelligence into the pharmaceutical industry has led to significant transform-
ation in the process of drug discovery and development and management of the pharmaceutical sector.
Artificial intelligence has accelerated the process of drug discovery by several folds owing to its ability to
analyse large datasets and predict drug—target(receptor) interactions, which effectively reduces the time
and expenditure. Al enables clinical trial design and patient recruitment through predictive analytics
during the trial. It also allows for real-time tracking of patient outcomes and predicts the effectiveness of
a trial. Artificial intelligence-driven automation also assists in manufacturing and supply chain processes,
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enabling inventory optimization and predictive maintenance and thereby improving the productivity as
well as affordability of these processes. The current review discusses various key applications, prospects,
and challenges of Al in the pharmaceutical industry, focussing on its transformative potential while
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1. Introduction

The development of artificial intelligence (AI) is changing the
drug discovery, development, and management paradigm in
the pharmaceutical industry. Thus far, drug discovery and
development have been conventionally long and expensive
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addressing the need for ethical and regulatory frameworks to ensure equitable and safe Al adoption.

processes that have taken as long as 10-15 years, and billions
of dollars need to be spent for one molecule to come to the
market (Fig. 1).' Artificial intelligence has emerged as a
powerful tool that can steer this process by streamlining each
stage, including drug discovery and clinical trials, manufac-
turing, and even supply chain management. Its ability to
analyse big data and find patterns to offer efficient and
precise predictions points towards even more innovations in
the industry.

Al-based technologies, which include machine learning,
natural language processing, and deep learning, are being
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Fig. 1 Comparative representation of how Al can impact drug discovery and approval processes in terms of timelines for different key steps.

applied to address the critical issues in pharmaceuticals. For
instance, artificial intelligence-based drug discovery platforms
accelerate the identification of likely candidates by modelling
complex systems of biology and estimating the drug-target
interactions with greater precision. Further, Al is making clini-
cal trials faster and more efficient by streamlining the pro-
cesses of recruitment, trial design, and real-time monitoring,
thereby shortening the cycles of drug development while
cutting costs.
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In the pharmaceutical manufacturing field, AI holds poten-
tial for revolutionizing processes through predictive mainten-
ance, process automation, and quality control, and it is used
in the supply chain management that optimizes logistics, pre-
dicts demand, and manages inventory effectively. Improving
patients’ results using Al is be the second focus area. Al, upon
analysing the genetic and clinical data, tailors the treatments
to individual patients, hence increasing the efficacy and
decreasing the adverse effects.>*

Although AI adoption has significant advantages, it faces
certain challenges in the pharmaceutical sector. While many
positive outcomes have resulted from Al integration in this
sector, there are always challenges that accompany these
advancements. Critical areas that need to be addressed to
fully realize the potential of Al include data privacy issues,
issues with bias in algorithms, and regulatory frameworks
governing Al-driven processes. However, the combinations of
breakthroughs in quantum computing may open new
avenues by which AI would become significantly more power-
ful and beneficial to drug discovery and development
activities.’ ™

This article will delve deep into the influence of AI on
the pharmaceutical industry, from discovery through phases
of development, manufacturing, and personalized medicine
(Fig. 2), with regard to the ways and mechanisms through
which such impacts may differ at various levels. Most prob-
ably, it will discuss the challenges and ethical consider-
ations when AI is embraced and look forward to future
developments in the succeeding decades that will shape the
industry.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Different processes involved in the pharmaceutical industry where Al can be potentially applied.

2. How Al works?

AI works by artificial neural networks (ANNs), machine learn-
ing (ML) and deep learning (DL) methods through data ana-
lysis, learning and application. Text, graphics, sound, and
other data types that can be encoded can all be included in the
input data format. Inspired by the networks of biological
neurons, an artificial neural network (ANN) is a computational
model in which inputs are converted into output values by the
neurons. Even in a complicated, noisy, and highly nonlinear
environment, the ANN can learn and self-correct. The ANN is
commonly used in scenarios where the dataset is extensive
and cannot be addressed using linear functions. Multilayers
are structured as concealed layers of neurons that have a
diverse range of neuron counts. Input variables are chosen
from the existing information (for example, drug discovery and
drug parameters) such as concentration, compounds, and
ligands, and are refined through several training stages to
achieve the output. The anticipated value is examined and con-
trasted with the known value. The disparity between predicted
and actual values is traced back until the difference is minimal
to obtain the estimated drug values. This is an extremely intri-
cate simultaneous procedure. Thus, ANN is a computational or
mathematical model that relies on a machine learning (ML)
technique.®

Like the human learning model, machine learning (ML)
and deep learning (DL) may progressively identify various data
features, deduce the patterns contained within, and continu-
ously update their model parameters until a reliable model is
created. These techniques do not need direct programming.
ML creates a unique algorithm that concentrates on the data’s
characteristics and turns them into machine-readable knowl-
edge that gives researchers fresh perspectives. Based on the
application contexts, the models can be divided into
regression models and classification models. The distinction
between regression and classification tasks primarily depends
on whether the output variable is continuous or discrete.
Based on the type of learning algorithm needed to address the
issue, models are classified into three groups: supervised
learning, unsupervised learning, and reinforcement learning.
Supervised learning is a process that utilizes labelled data to
train a model on the connection between input and its pre-
defined output, enabling it to forecast the categories or con-
tinuous variables of future inputs. In contrast, unsupervised
techniques are employed to detect patterns in datasets
without labels and to examine a dataset’s possible structures,

© 2025 The Author(s). Published by the Royal Society of Chemistry

facilitating the clustering of data for additional analysis.
Reinforcement learning builds models by continually engaging
in interactive learning, using punishments for setbacks and
incentives for achievements. There are several popular algor-
ithms available for researchers to select from. A Random
Forest algorithm creates an entire hierarchical structure from a
collection of unconnected decision trees, each of which is in
charge of a distinct challenge during model development.”
The decision trees’ majority vote determines the ultimate
choice. One popular machine learning approach is support
vector machines (SVMs). A number of additional machine
learning models including logistic regression (LR), linear dis-
criminant analysis (LDA), principal component analysis (PCA),
and partial least-squares (PLS) have been used in pharma-
ceutical and biological data processing.®°

Deep learning (DL) has gained popularity because of its
impressive capabilities in generalization and feature extrac-
tion; its process for learning and making predictions is con-
ducted in a seamless, end-to-end manner. In contrast to the
conventional machine learning (ML) approach, which often
involves several separate modules, DL produces output data
(output-end) directly from input data (input-end) during the
training of the model and continuously refines and enhances
the model based on the discrepancies between the output and
the actual value, until the desired outcome is achieved. A deep
neural network (DNN) is a type of feed-forward neural network
comprising closely connected input, hidden, and output
layers. A recurrent neural network (RNN) is a type of artificial
neural network, where connected nodes create a directed or
undirected graph over a time sequence. An RNN features a
feedback element that enables signals from one layer to be
sent back to the prior layer. It is the sole neural network
equipped with internal memory, aiding in the challenge of
learning and retaining long-term information."’

An autoencoder (AE), which comprises an encoder and a
decoder, is used to learn effective representations of input
data. The encoder produces an encoding by processing the
input, which the decoder then uses to reconstruct the original
input. Typically, an AE is employed for purposes such as data
compression and dimensionality reduction by utilizing the
representation methods (i.e., the encoding) of a given
dataset.* A dataset intended for a model is generally separated
into a training set, a validation set, and a test set. These sets
serve the specific functions of training the model, fine-tuning
the model, and assessing the model’s performance,
respectively.

RSC Pharm., 2025, 2, 437-454 | 439
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3. Success and failure rate of Al

It is obvious that models are only a rough depiction of reality
and are only useful in specific situations. Complex experimental
techniques must be used to determine the materials and process
parameters. Each model and simulation technique must be
proven to be accurate, dependable, and capable of making pre-
dictions. For the majority of engineering applications, an agree-
ment between simulation and experiment in the range of 10% is
deemed sufficiently accurate. ANNs were employed by Ebube
et al. to forecast the physiochemical characteristics of amorphous
polymers.'”> The model was able to predict accurately (with an
error of 0-8%) the correlations between glass transition tempera-
tures, viscosity, and water absorption patterns and the chemical
composition of the polymer. For IVIVC, using in vitro data and
parameters derived from the physiological traits of human volun-
teers, DeMatas et al. created an ANN model that forecasted the
in vivo effectiveness of dry powder inhaler formulations. The
ANN model was a highly successful IVIVC tool for inhaled medi-
cations, according to the results (R2 ~ 80%), although substan-
tial enhancements to the model can be achieved by incorporat-
ing important input variables, using larger datasets, and increas-
ing the number of subjects."®> Multiple ANNs were created and
evaluated in clinical environments for the detection, treatment,
and prognosis of cancer. Colorectal cancer was identified
through the evaluation of fluorescence (from biological fluoro-
phores) with the use of ANNs. The sensitivity and specificity were
determined to be 99.2% and 99.4%, respectively."* In gastric
cancer, the prediction of cancer metastasis was conducted
through lymph node biopsy. The precision of ANN-1 was 79%,
the sensitivity stood at 88%, and the specificity was 55%." In
pancreatic cancer, the neural computing method achieved a
training accuracy of 91.14% and a testing accuracy of 84.27%,
along with a positive predictive value of 96.25% and a negative
predictive value of 57.22%.'® Wessel, Jurs, Tolan, and Muskal
used an artificial neural network (ANN) to predict the intesti-
nal absorption of new compounds, resulting in an error rate
of 16%. This result is viewed as acceptable, especially given
the varied structure within the dataset.®'”

4. Al and its applications in drug
discovery

The discovery of drugs is typically slow and costly, taking years
and vast amounts of resources before there is a glimmer of
hope in the form of an identified candidate that might make it

Table 1 Al Applications in drug discovery
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to clinical trials. With AI, one could, in theory shave years off
timelines, reduce costs, and give drug candidates a better
chance of success. Al can handle massive data to predict how
chemical compounds could interact and work to model bio-
logical systems, which positions it to change the drug-discov-
ery game.

4.1 Accelerating drug discovery

Drug discovery is a laborious process that searches chemical
compounds in an effort to find those that may well function
therapeutically against some diseases. It takes years if carried
out classically since researchers will more often than not rely
on trial and error. Al is a game-changer. ML algorithms are
used in order to analyse large datasets of chemical compounds
for predicting potential biological activity (Table 1). Al models
are especially identified to be applicable in SAR modelling,
which is the technique for predicting the impact of molecular
structure on biological activity."®

4.1.1 AI and chemical screening. Machine Learning
Algorithms can quickly sieve through huge libraries of chemi-
cals and look for the most promising compounds. Some algor-
ithms applied in tasks of chemical screening include Random
Forest, SVM, and neural networks. For example, SVM can clas-
sify molecules according to some of their structural features,
which helps predict biological activity. Deep learning, a subset
of ML, holds even greater promise; models based on CNNs, for
instance, can very effectively analyse the 3D structures of com-
pounds to predict the drug efficacy.®

4.1.2 Structure-activity relationship modelling. Another
big use of Al is the structure-activity relationship modelling in
which changes in the structure of a molecule reflect its inter-
action with biological targets. Al algorithms do this automati-
cally by scanning patterns on already existing data that would
give predictions on new compounds. By modelling SARs, Al
models help research scientists pinpoint the best candidates for
drug development, hopefully saving time and other resources.*’

4.2 AI Models for drug-target interactions

Perhaps the most difficult step of drug discovery is to under-
stand the drug-target interaction, which simply put, means
predicting the chances of a drug binding to a biological target,
such as a protein. In this, Al excels, particularly through its
deep learning and molecular dynamics simulation tools.

4.2.1 Deep learning models. Recurrent neural networks
(RNNs) and generative adversarial networks (GANs) are
gaining popularity for drug-target interaction prediction. They
are capable of learning large chemical and biological database

AI Model/method Application Case study

Impact

Machine learning
Deep learning

Screening chemical compounds
Predicting drug-target
interactions

Molecular Simulating drug efficacy in silico

dynamics repurposing
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IBM Watson for Drug Discovery
AlphaFold by Deep Mind (Google)

BenevolentAl for COVID-19 drug

Accelerated candidate identification
Accurate protein structure predictions

Faster identification of drug
candidates

© 2025 The Author(s). Published by the Royal Society of Chemistry
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to identify potential drug candidates that will interact best
with disease/target cells. It not only accelerates the identifi-
cation process of effective drugs but also facilitates the design
of novel molecules with desirable properties.*'

4.2.2 Applications in molecular dynamics simulations. Al
also finds applications in molecular dynamics simulations;
it predicts the behaviour of molecules over some period of
time within the biological system. In this regard, through the
simulation of motion, whether by atoms or by molecules, Al
can enable the researcher to comprehend the stability as well
as the efficacy of drug candidates before they are put into a
laboratory test. Ligand-Based Virtual Screening (LBVS) has
been reported.**** In their research, Li et al. implemented
various machine learning techniques to develop classifi-
cation models aimed at identifying liver X receptor (LXR)
agonists.”> This endeavor involved the utilization of opti-
mized property descriptors and topological fingerprints to
effectively characterize small molecules within the database,
resulting in the creation of a total of 324 models using four
distinct algorithms: Naive Bayes (NB), Support Vector
Machine (SVM), K-Nearest Neighbors (KNN), and Recursive
Partitioning (RP). From these, the top 15 models were
chosen for further evaluation, with ten of them achieving an
accuracy exceeding 90%.?® BRGNN has been successfully
trained to predict the biological activity in various cancer
targets.”””*® These neural networks were assessed through
cross-validation and test set prediction experiments, achiev-
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The models of BRGNN trained on 11,12-cyclic carbamate
derivatives of 6-O-methylerythromycin A exhibited a predic-
tion accuracy of 70% for LHRH antagonist activity.*?
Additionally, BRGNN models investigating the inhibition of
acetylcholinesterase by tacrine analogs®® and huprine com-
pounds®* utilized a comprehensive array of 3D descriptors.
The model for tacrines achieved an average test accuracy of
approximately 71%,° while the dataset of huprine analogs
consistently yielded a high accuracy of 85%.>* Furthermore,
BRGNNs were effectively trained to predict the inhibitory
activity against HIV-1 protease of cyclic urea derivatives,*’
employing 2D descriptors and attaining a validation accuracy
of 70%. The PASS (Prediction of Activity Spectra for
Substances) tool was developed to evaluate the biological
activity spectrum of small molecules with molecular weights
ranging from 50 to 1250 Dalton. The findings provided a
classification of potential pharmacological effects, mecha-
nisms of action, toxic and adverse effects, antitargets, and
metabolic pathways, with an average prediction accuracy of
approximately 95%.%>° SmartMLP-1.5 successfully distin-
guished between anticancer and nonactive compounds with
an accuracy of 94.04%.%°

4.3 Examples and case studies

4.3.1 AlphaFold by Google DeepMind. AlphaFold is the
pioneer in Al in drug discovery made by DeepMind, an Al
system that predicts protein 3D structures from its amino acid
are

ing accuracy rates exceeding 65% across all datasets.””*' sequence with never-before-seen accuracy. Proteins
Structure viewer
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Fig. 3 Screenshot of AlphaFold depicting the 3D structure of the protein CYP-450A (feeding input of a series of amino acids will result in the 3D

structure prediction of the protein in space).
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involved in most biological processes, and knowing their 3D
structures would make it easier to design effective drugs.
Previously, it took years of hard work by scientists to arrive at
protein structures. AlphaFold predicts those structures incred-
ibly fast and accurately, which has a very huge impact on drug
discovery (Fig. 3). Indeed, it accelerates the rate of discovery of
drug targets and a step further, speeds up the design of the
molecules that can interact with them.?®

4.3.2 The case of DSP-1181. The development of DSP-1181
is an Al-designed drug candidate for obsessive-compulsive dis-
order (OCD). It is a remarkable case of integrating artificial
intelligence into drug discovery. Exscientia, in partnership
with Sumitomo Dainippon Pharma, designed and optimized
the drug using Al within 12 months; instead of the typical 4-5
years, it would take using traditional drug discovery processes.
The AI platform analysed huge data sets, pinpointed target
interactions, and optimized promising molecules, ensuring to
achieve specificity and lowering costs and failure rates. In early
2020, DSP-1181 was the first Al-designed drug to be entered
into human clinical trials, thereby heralding a new era in
pharmaceutical development. This case epitomizes how Al
can revolutionize the acceleration of drug discovery and
increase the efficiency to long-standing medical
problems.?”

solve

4.4 Impact of Al on drug discovery efficiency

There are myriads of advantages of including Al in drug dis-
covery. Al saves enormous time, money, and effort put into a
discovery by sieving the promising candidates with resultant
focus resources on those candidates. It deals with vast quan-
tities of data much faster than a human can, whereby research-
ers can quickly identify likely drug candidates and filter out
unlikely ones. This leads to the potential for a more targeted
approach with less expenditure in lab testing and clinical
trials. Besides this, the predictability of Al in drug-target inter-
actions and molecular dynamic simulation improves the accu-
racy of predictions, and hence, the success rate of drug
development.

5. Al in drug development and
clinical trials

Since its inception Al has been readily studied for its ability to
enhance the conduction of clinical trials, and certain modifi-

Table 2 Applications of Al in clinical trials
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cations to the current AI models can make them more compa-
tible with clinical trials.

5.1 Conventional drug development and clinical trial phases

Drug development and its associated clinical trials are now
faster with more resources as compared to the old-fashioned,
time-consuming, and resource-consumptive procedures. The
ability to use machine learning models, predictive analytics,
and Al-based monitoring tools facilitates pharmaceutical com-
panies accelerating the end-to-end clinical trial design, patient
recruitment, and monitoring, resulting in new therapies
hitting the markets faster (Table 2).®

5.2 Optimizing clinical trial design

These are also the costliest and most time-consuming activi-
ties of drug development, taking years and millions of
dollars. The new applications of Al provide a solution to both
problems. It can optimize the design of a clinical trial,
predict patient outcomes, and even conduct virtual trials
through in silico simulations. ML models driven by AI can
analyse huge datasets from previous trials, electronic health
records, and genomic data to identify patterns that research-
ers can use in their research for developing more effective
trials.®

5.2.1 In silico simulations. Al allows in silico or computer-
based trials in which algorithms could mimic human trials by
using large volumes of biological data, thereby enabling scien-
tists to predict the safety and efficacy of drugs even before real
physical trials begin. Pharmaceutical companies could quickly
check several clinical scenarios and figure out the most prom-
ising candidates through fewer physical trials by saving much
time and resources.*

5.2.2 Design optimization. The machine-learning algor-
ithms can be used to optimize the parameters of the clinical
trials, for example, selecting perfect demographics and
determining the right dose and the right time of the clinical
trial. AI assists in creating the designs, so that maximum
chances of success are there with minimum risk on patients
as well as on resources, in addition to modelling based on
historical time outcomes.*® Machine learning models can
simulate different clinical trial designs to predict potential
outcomes, helping researchers choose the most efficient pro-
tocol. Al can analyze electronic health records (EHRs) to
identify patients most likely to meet trial inclusion criteria,
improving patient matching and recruitment efficiency.® Al

Clinical trial stage Al tools/method Function

Example

Patient recruitment Predictive analytics, EHR

analysis clinical data
Trial design In silico simulation. ML
optimization models

Real time monitoring ~ NLP, image recognition

real time
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Identify ideal candidates based on genetic and
Optimize trial structure (e.g. dosage duration)

Monitor patient outcomes and adverse reactions in

Tempus for cancer trials
Pfizer Al-optimized trial for

vaccines
AI powered wearable devices
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models can predict which patients are more likely to drop
out of a trial, allowing researchers to proactively address
potential issues and improve retention rates. Al can identify
high-potential recruitment areas based on demographics
and access healthcare facilities. Al can analyze historical
data to more accurately estimate the required sample sizes,
potentially reducing the number of participants needed.*" It
can enable real-time adjustments to clinical trial parameters
such as sample size or treatment arms based on interim
data analysis, leading to faster and more accurate results. It
can detect errors and inconsistencies in clinical trial data,
improving data quality and reliability. AI algorithms can flag
potential safety concerns early on, allowing for timely
interventions.*?

5.3 Predictive modelling for patient recruitment and
outcomes

Recruitment of patients to clinical trials has been identified
as one of the major bottlenecks in the process of drug devel-
opment. One of the areas where AI has proven itself to be
valuable is in hastening and more accurately identifying
potential candidates for a particular clinical trial. Different
data sources would be used through the AI models such as
electronic health records (EHRs), genetic profiles, and social
determinants of health to select candidates that may most
probably respond to the treatment being investigated.** In a
current oncology trial, the application of Mendel AI has
resulted in a 24% to 50% increase in the accurate identifi-
cation of patients who may be eligible, in contrast to conven-
tional methods. Additionally, the process of assessing poten-
tial eligibility with Mendel AI is completed in mere minutes,
whereas the standard prescreening duration averages 19 days
for breast cancer patients and 263 days for those with lung
cancer.”® The implementation of automated electronic health
record (EHR) text-mining for participant identification in
cardiovascular trials could lead to a significant 79.9%
decrease in the number of patients requiring screening.*>** A
study involving pediatric oncology patients demonstrated that
the use of an AI system achieved a 90% reduction in the
workload associated with trial recruitment.’® Furthermore,
the ACTES system was found to decrease patient screening
time by 34% by minimizing the time allocated to administra-
tive duties, discussions, and unstructured collaboration.*’
Additionally, research conducted by Whitty indicated that Al
systems, when utilized in two completed oncology studies
focused on breast and lung cancer at the Comprehensive
Blood and Cancer Center, resulted in a 24% to 50% increase
in the identification of eligible patients compared to tra-
ditional practices.>®***8

5.3.1 Improved recruitment. Al algorithms can automate
the recruitment process by quickly filtering thousands of
EHRs and genetic data in real time. As reported, for instance,
companies such as Deep 6 Al have used NLP to gather signifi-
cant patient data from clinical records, thereby speeding up
recruitment processes by identifying eligible patients much
faster than with traditional manual methods.*’

© 2025 The Author(s). Published by the Royal Society of Chemistry
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5.3.2 Predictive models for outcome. It can predict the
patient’s reaction to treatment based on a history of clinical data
as well as genetic markers, meaning that it will be more accurate
in selecting candidates who are more likely to result in positive
outcomes. The researcher is able to predict which patients will
best respond and the probability of side effects, thus minimizing
risks and maximizing the effectiveness of the trials.*

5.4 Al-driven monitoring tools

Monitoring of data on patients once the trial starts is necess-
ary to ensure safety and efficacy. This real-time tracking of
patient progress can now be done easier with the advent of Al
tools, particularly through the use of NLP and image reco-
gnition technologies, which can discover adverse effects more
rapidly than traditional means.

5.4.1 Real-time monitoring. Al-based systems can monitor
in real time the data of wearables, EHRs, and medical images
for anomalies or early signs of adverse effects. This way, teams
running clinical trials can quickly respond to safety issues and
change the course of treatment if necessary to better patient
safety. Al-based monitoring reduces dropout rates among clini-
cal trial participants by providing closer, individualized care
all along the trial cycle process.>**

5.4.2 NLP and image recognition. Of course, NLP would
tease out very valuable insights in the form of unstructured
clinical trial data, for example, patient feedback, physician
notes, and even the clinical trial report. Al-driven image reco-
gnition can analyse medical scans, identify the slightest
change in the progression of disease or response to treatment,
and help coordinators modify therapies in real time.

5.5 Case studies

5.5.1 BenevolentAl and drug repurposing. One of the best
examples of AI usage in drug development is so-called area of
drug repurposing, particularly with the advent of COVID-19.
BenevolentAl, based in the UK, used algorithms to scan
through extensive biomedical datasets, identifying existing
drugs that could be repurposed to treat COVID-19. Its Al
models flagged that baricitinib, a rheumatoid arthritis drug,
would find utility in the treatment of COVID-19, which was
later revalidated in clinical experiments and received emer-
gency use approval.”

5.5.2 Exscientia and personalized medicine. Another AI-
driven discovery company for drugs is Exscientia, which
applies Al to predict patient responses to cancer treatments.
By analysing the genetic and biomarker data of a patient,
Exscientia designs clinical trials for each patient; this gives
much more tailored, effective treatment outcomes.>>

6. Al in manufacturing and supply
chain management

Artificial intelligence is nowadays applied more significantly in
the optimization of pharmaceutical production and in mana-
ging the pharmaceutical supply chain. Pharmaceutical compa-
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nies can facilitate smoother, cost-effective, and efficient oper-
ations with the support of AI technology. Al enhances predic-
tive maintenance, process automation, inventory management,
and quality control, thus enabling consistent and high-quality
pharmaceutical production. Such examples are those in the
sector wherein Al has the potential to transform the industry’s
prospects for better-market-driven responses, compliance, and
reduced risk.

6.1 Role of Al in pharmaceutical manufacturing industry

Manufacturing in the pharmaceutical industry is highly regu-
lated for quality, safety, and efficiency. AI's role in manufactur-
ing revolves around improving predictive maintenance,
process optimization, and quality control. The aim here is pre-
dictive maintenance:

6.1.1 Predictive maintenance. Traditionally, maintenance
has been fairly reactive, which means that equipment was typi-
cally only repaired after it had broken down. As you can expect,
this can sometimes lead to a halt in production. AI shifts the
model to proactive for this reason. With the ML algorithms
analysing real-time data from machinery sensors, companies
can predict when equipment will likely fail, thereby replacing
and repairing parts in time to avoid failure, hence minimizing
downtime, improving overall equipment effectiveness, and
ensuring smooth production flows.>*>*

6.1.2 Optimization of processes. Al will optimize the pro-
duction processes of pharmaceuticals that are complex, includ-
ing chemical synthesis and formulation. AI models such as
reinforcement learning and neural networks can control in
real time the factors of manufacturing to ensure consistent
quality of products and maximize yields. The technology can
also be used to simulate different manufacturing scenarios, an
aid to a company in choosing the most efficient process in the
reduction of production timelines.>*>>"°

6.1.3 Quality control. The drug product must be of quality
as well as safety. AI improves the quality control by monitoring
data coming from the production line and flags deviation in
standard parameter values. Machine learning models thus get
trained to identify anomalies or defects in chemical, physical
or physical presentation/packaging of the drug, and hence,
corrective action is undertaken in real time. Al further reduces
the chances of human error, the biggest risk factor in the
quality check which is manually carried out.>>*’

6.1.4 Impact of Al to emerging technologies such as 3D
printing, PAT and continuous manufacturing processes. In 3D
printing pharmaceuticals, Al is primarily used to optimize the
design and manufacturing process by predicting optimal print-
ing parameters, analyzing quality control data, and enabling
personalized medicine by tailoring drug release profiles based
on individual patient needs, essentially creating a more
efficient and precise way to produce customized medications
through 3D printing technology.’®™®" Artificial intelligence is
capable of creating complex 3D-printed tablets with internal
structures that regulate drug release over time.’* The 3D prin-
ters can produce tablets with multiple drug layers using Al,
allowing for precise release profiles.®®> Al can create a 3D-
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printed medication that is customized for each patient based
on their medical data.®*

The collaboration of PAT, process data science, and Al
establishes an effective monitoring system for the continuous
manufacturing line. It provides several benefits that will result
in decreased production expenses. This will involve decreased
final product testing due to continuous monitoring and
testing, which allows for the application of PAT principles.
This leads to the capacity to release products with less final
product testing, facilitating lower inventory and quicker recov-
ery of production costs. The benefit is most significant for
pharmaceutical companies planning to manufacture a product
for an extended period. Thoughtful planning paired with
informed leadership, eager to collaborate with regulators, will
be advantageous for shareholders and patients.

Al tools that are beneficial in Process Analytical Technology
(PAT) and continuous manufacturing encompass expert
systems, fuzzy logic approaches, neural networks, case-based
reasoning, genetic algorithms, and ambient intelligence.
These methodologies, combined with computational power,
emulate human-like reasoning and decision-making in
uncertain situations. They find extensive applications in
process control, optimization, monitoring, parameter esti-
mation, prediction, chemometrics, process scale-up and scale-
down, as well as the development of soft sensors. Fuzzy
control systems offer real-time decision support to operators
and facilitate automatic control. Current applications include
fault diagnosis and control, as well as pattern recognition in
various processes. Moreover, Model Predictive Control (MPC)
enables real-time management of quality attributes.®®

Although ANNs have already undergone testing for a
number of uses in the most typical manufacturing pro-
cesses, there are currently few real-time applications for
PAT. The first stage in the production of the API in industrial
pharmaceutical manufacturing is the synthesis of organic
compounds. ANN-based synthesis optimization has been
the subject of numerous studies.®®’° Information from
data-rich PAT tools such as in-line microscopic images has
been extracted using ANNs. When used for contamination
classification, a ResNet CNN demonstrated >98% accuracy
in classifying crystals found in PVM images.”" Additionally,
CNN-based in-line image analysis could be used to measure
the particle size distribution and predict the crystal growth
rate.”? For a continuous wet granulation process, the use of
AI has greatly decreased noise, improved process monitor-
ing, and enhanced process understanding.”? Therefore, Al
may play a significant role in the future development of
intelligent, self-sufficient pharmaceutical production lines.
In addition to lowering the environmental load through
faster, more economic production or waste reduction, auto-
mated systems may also reduce human exposure to hazar-
dous processes or pharmaceutical ingredients such as hor-
mones or cytostatics.”*

For pharmaceutical applications, the US FDA categorizes Al
software as medical devices that must adhere to Good
Manufacturing Practice (GMP)”° and the requirements for vali-
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dating software.”®”’® This indicates that an AI system must
handle the information required for PAT and continuous man-
ufacturing processing systems,”® all while maintaining its vali-
dated status. As indicated in the previous discussion, the regu-
latory endorsement of this system necessitates close collabor-
ation among experienced manufacturing regulators, software
regulators, and company personnel. Consequently, this
implies that gaining regulatory approval will take longer than
normal and the volume of data submitted to regulators will be
substantial.®®

6.2 Process automation

The pharmaceutical production lines morph into smart fac-
tories with Al-driven automation, where machines and systems
can adjust processes autonomously based on live data. These
Al-armed factories use sensor data, robotics, and IoT devices
to fully automate the production of drugs, thereby making
them easier to improve in terms of efficiency, precision, and
scalability.

6.2.1 Al-driven robotics. Robotics contributes a lot to the
automation of recurrent risky operations such as packaging,
labelling, and handling of materials. Robots driven by AI are
not prone to fatigue; hence they can work round-the-clock with
consistent production levels and minimal human errors.
Furthermore, robots can handle toxic substances and hazar-
dous environments better than humans without risking con-
tamination or accidents.®°

6.2.2 Smart manufacturing. AI makes real-time adjust-
ments in parameters such as temperature, pressure, or mixing
speed because sensor feedback dictates. While this kind of
flexibility can be so important to consistency in the batches
being made, it can also be critical for biologics, where small
changes could mean drastically affecting the quality of fin-
ished products. In a case study conducted by Novartis in 2020,
the use of Al-enabled automation at its manufacturing site
reflected a 15% improvement in production efficiency and a
20% cut in running expenses.

6.3 Inventory and supply chain optimization

Pharmaceutical supply chains include numerous layers and
levels, making them complex. It requires smooth management
for the delivery of raw materials as well as final products on
time. Al is critical in inventory management and demand fore-
casting and optimization of the overall supply chain:

6.3.1 Demand forecasting. The Al tools, including predic-
tive analytics and machine learning models, help the demand
to be forecasted more accurately through an analysis based on
past sales data, market trends, and external factors such as
seasonal variations or global health crisis. Predicting demand
may either lead to overproduction or shortage, leading to delay
in drug availability.®"

6.3.2 Inventory optimization. The intelligent inventory
management systems can provide pharmaceutical companies
with the right quantities of raw materials and finished goods
at the right moment. An intelligent inventory management
system allows such companies to fully automate reorders for
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materials from real-time data, so they can avoid stockouts or
overstocking. For example, Pfizer has used Al for the optimiz-
ation of its inventory and supply chain for vaccine production,
so that raw materials are always on hand just in case without
building up too much in inventory.®>

6.3.3 Enhancing supply chain resilience. Al makes supply
chains more resilient by scanning what might disrupt them by
way of geopolitical risks, raw material shortages, or supplier
failures. AI systems can model different scenarios and rec-
ommend alternative sourcing strategies or logistic routes;
hence, drug manufacturing and distribution would
continue.®"*

6.4 Reducing costs and improving efficiency

Al integration into pharmaceutical manufacturing would then
imply the following huge opportunities for cost savings
through enhancing production accuracy, minimizing waste,
and optimizing use of resources.

6.4.1 Better quality in production. Algorithms based on
artificial intelligence, including machine learning models,
have kept tight control over production parameters. Al can
read sensor data online as part of manufacturing equipment
in real time and identify inefficiencies or other variance issues
that could otherwise influence drug quality. Continuous
adjustments ensure consistency in product quality, lowering
the risk of costly product recalls and batch failure. This also
lowers the potential for human error, the biggest cost driver in
pharmaceutical production.’”

6.4.2 Waste minimization. The most significant role of Al
in the waste minimization process is played through its predic-
tive capabilities. Predictive failures of the equipment and sche-
duling predictive maintenance by AI prevent increased time
wastage in unplanned downtime and machine faults, which
eventually result in the wastage of products. Apart from that,
Al-driven quality control systems could detect early defects
during the production process and prevent defective products
from moving further down the line. As revealed by a study pub-
lished in the International Journal of Production Economics,
Al-based methods can actually reduce up to 25% waste com-
pared to traditional methods if subpar batches are not allowed
to proceed to production.

6.4.3 Resource optimization. The Al-based systems assist
the companies in optimizing the raw material and human
capital usage. Al can calculate the exact quantities of the raw
material to be consumed, so that waste is avoided. It also does
not overproduce by using the demand forecasting models,
which accurately predict the requirement of the market in the
future. It becomes a significantly resource-efficient usage,
which further minimizes the cost through the supply
chain.?"%3

6.5 Case study examples: Pfizer and Novartis

6.5.1 Pfizer. They used Al in the designing and manufac-
turing stages of the COVID vaccine to optimize its manufactur-
ing process and supply chain. Pfizer could predict possible dis-
ruption, guarantee the timeliness of raw materials at the right
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moment, and increase the volume of production without com-
promising on the quality of the product due to AL®?

6.5.2 Novartis. The organization has installed AI at most of
its global manufacturing plants to support the automation of
processes and predictive maintenance. It managed to signifi-
cantly reduce losses in terms of lost time through the use of Al
in its production lines. Resource utilization increased with AI,
indicating a major step forward with regard to very tight regu-
latory standards.

7. Al in personalized medicine and
pharmacovigilance

Al is revolutionizing both personalized medicine and pharma-
covigilance. This is how AI can tailor a patient’s medical treat-
ments while further enhancing post-market drug safety surveil-
lance. The introduction of Al based on machine learning,
natural language processing, and big data analytics to facilitate
real-time, data-driven decision-making has further helped to
increase the benefits from the improvements in patient out-
comes, early adverse drug reaction detection, or efficient moni-
toring of drug safety.’*%°

7.1 Personalized medicine

Adjusting health care to the specific needs of every individual
in the context of personalized medicine involves tailoring
decisions regarding medical care, treatment, practice, or
product to each patient. Furthermore, Al is particularly crucial
for realizing personalized medicine through the use of geno-
mics and other biological data.

7.1.1 Al and genomics. Using Al, you could process a large
amount of data related to genetic information. Here you could
determine very specific biomarkers to show potential response
towards a particular drug, and so on. Machine learning
models, especially deep learning algorithms, can predict what
kind of response a person would have to certain drugs based
on his or her genome, lifestyle, and medical history. It leads to
a better selection of drugs that have a higher probability of
working for a given patient, but with a reduced possibility of
adverse reaction.

7.1.2 Al platforms for personalized medicine. These are Al
platforms such as IBM Watson Health and Tempus, which use
complex data analytics to match patients with the most
effective treatments. Such a platform integrates genomic data,
electronic health records, and clinical research to help phys-
icians make or tailor their decisions according to a patient’s
condition. For instance, Tempus merges Al with molecular
data in an effort to enable oncologists to discover the most
likely anticancer therapy to recommend to a patient based on
his genetic makeup.®®

7.1.3 Roche’s impact on cancer treatment. Roche is the
first to introduce Al-driven personalized medicine solutions.
The subsidiary of the company, Foundation Medicine, uses Al
in analysing tumor samples to identify mutations treated with
particular drugs. This has enabled more effective treatment in
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cancer through a tailored regimen. Interventions were signifi-
cantly reduced accompanied by the side effects.®”

7.2 Pharmacovigilance and safety monitoring

Pharmacovigilance is monitoring the effects of licensed medic-
inal drugs after they have been marketed, especially to identify,
assess, understand, and prevent adverse effects or any other
drug-related problems. AI actually is important to enhance
pharmacovigilance as it is a method through which data col-
lection and analysis can be automatically done.

7.2.1 Post-market data analysis. Al systems can analyse
vast datasets including adverse event reports, EHRs, social
media discussions, and patient feedback, much better than
human operators to catch safety signals much more efficiently.
For instance, NLP models can scan through free-text medical
records for unseen adverse drug reactions not picked up by
conventional reporting mechanisms. Timely data analysis will
thus enable pharmaceutical companies to have proactive
measures against a potential threat to clinical safety.*®

7.2.2 Al-powered pharmacovigilance platforms. Companies
like Aetion and BenevolentAl have developed Al-powered phar-
macovigilance platforms. These are tools capable of analysing
post-marketing drug data in relation to detecting rare or unex-
pected adverse events that otherwise would have gone unde-
tected. They aid in the optimum and efficient use of pharma-
covigilance with continued learning through continuous
streams of new data through ML algorithms.?*%

7.3 Real-time monitoring of adverse drug reactions

One of the most promising applications of Al in pharmacovigi-
lance is the real-time monitoring of adverse drug reactions.
The systems of pharmacovigilance are basically manual report-
ing by healthcare professionals or patients, which results in
delays far too great to identify dangerous side effects. Al,
instead, can analyse data streams through various sources in
real time and raise an alert on potential ADRs as soon as they
appear.

7.3.1 NLP for ADR detection. NLP algorithms can be used
in very useful ways in this field. From clinical notes to online
forums, social media, and even patient surveys, unstructured
text data can be mined towards the detection of patterns in
language which are suggestive of adverse drug reactions.
Patient feedback can make a healthcare provider and agency
alert to several emergent safety issues before these become
widespread through real-time monitoring.

7.3.2 Machine learning for predictive safety monitoring.
Machine learning models can also be used to predict the likeli-
hood of an ADR event resulting from patient demographics,
co-morbidities, and medication history. Importantly, machine
learning can take data from multiple sources, especially
genetic data to assess the ADR risk for individual patients with
more personal safety monitoring. For instance, predictive
models help the pharmaceuticals manage safety better
through IBM Watson Health’s analysis of adverse events and
prediction of patient outcomes (Table 3).5¢
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Al platform Application

Data sources used

Outcome

IBM Watson Personalized treatment
Health recommendation
NLP models Real time adverse event detection
records
Aetion Pharmacovigilance

7.4 Case study examples

7.4.1 Roche’s Al tools. Roche has been at the steering
wheel of utilizing Al for its pharmacovigilance efforts. Al-based
solutions by the company can scour through gigantic real-
world datasets to track and detect adverse drug reactions in
real time. The applications of AI by Roche went beyond
Foundation Medicine, to pharmacovigilance, tracking genetic
mutations in patients suspected to be linked with some drugs
that could lead to adverse responses. It is a way of fine-tuning
safer treatment options for patients.®”

7.4.2 FDA sentinel initiative. The United States Food and
Drug Administration has been using AI models to examine
EHRs and insurance claims as part of its Sentinel Initiative for
the early detection of adverse events. By using machine learn-
ing, the Sentinel Initiative thus facilitated the timely determi-
nation of drug safety issues during the post-market surveil-
lance process.

8. Al in pharmaceutical management

Artificial Intelligence, also known as Al, has changed drug
development and, ultimately, clinical trials as well as the wider
scope of operational and management functions in pharma-
ceutical companies. By deploying Al into management func-
tions, pharmaceutical companies can drive greater operational
efficiency, increase data-driven decision-making, and ensure
compliance with regulatory requirements for bottom-line
improvement in performance and reduction of risks.

8.1 Operational efficiency

Efficiency in operations is a must factor across the different
departments of the pharmaceutical industry, such as R&D,
financial operation, supply chain, and HR. In current times, Al
is being used to automate and streamline such operations:

8.1.1 Research and development efficiency. Al is used to
optimize the management of R&D processes by automating
routine, administrative activities such as data entry and track-
ing experiments. Automation minimizes the scope of errors,
puts staff in better positions to handle crucial tasks, and
increases the accuracy of R&D timelines.®®

8.1.2 Supply chain optimization. Al-based solutions enable
an organization to track and predict how business disruptions
are manifesting in supply chains and avoid bottlenecks for
pharmaceutical firms. AI can also automate the management
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Genomic data, EHRs
Patient feedback, medical

Post-market surveillance data

Tailored treatment plans based on patient data
Early detection of adverse drug reactions

Continuous monitoring and faster ADR
identification

of the inventory, so that essential materials would not run out
and are not overstocked in the shelves.®"%

8.1.3 Human resources and financial operations. Al helps
with HR activities within the organization such as payroll pro-
cessing, employee scheduling and recruitment. At financial
operation level Al algorithms analyse budgets and financial state-
ments, forecast future costs and support decision making on
resource optimization. This means pharma companies can better
manage their finances and make the most of their resources.*

8.2 Data-driven decision-making

Data-driven decision-making is a key area in pharmaceutical
management that Al has come to highly impact on. Coupled
with the capacity of AI, which can process huge amounts of
data, pharmaceutical managers will be able to utilize predic-
tive analytics in terms of insights for the boosting of decision-
making. These Al tools analyse types of internal and external
data, whether they are market trends, sales figures, or research
data. From these insights, the Al tools help in strategizing and
planning as well as in the allocation of resources.

8.2.1 Predictive analytics. Al algorithms take the historical
data and forecast the outcome of the future. For example,
based on historical data, a machine learning algorithm can
predict the success rate of new drugs, thus perfecting invest-
ment decisions.

8.2.2 Sales and marketing optimization. AI tools such as
Salesforce or Veeva Systems help the company to monitor the
sales performance to predict future sales, as well as identify
the potential market. Such tools also avail designs for targeted
and efficient marketing strategies through the analysis of the
data of the customers.

8.3 Regulatory compliance and risk management

One of the issues tackled by the regulatory is ensuring that the
practices implemented by those pharmaceutical companies
comply with specific guidelines laid out by organizations such
as FDA (U.S. Food and Drug Administration) and EMA
(European Medicines Agency). Hence, compliance with these
regulations also rests significantly on AI as it is helping the
pharmaceutical companies by which you are staying up to the
mark of norms and standards.

8.3.1 Compliance monitoring. AI continuously monitors
operations to ensure that the ones being monitored are con-
forming to regulatory requirements. For instance, a software
package powered by AI can evaluate gigantic heaps of data,
such as clinical trial records or manufacturing logs, to deter-
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mine issues with compliance and flag up these for corrective
action. This prevents the company from facing severe penalties
related to the non-compliance of its operations with regulatory
requirements.”

8.3.2 Risk prediction. Al-based systems can predict and
prevent various risks, such as legal issues, financial instability
or even product recalls. All these happen according to data
obtained from various sources such as previous audits, market
tendencies, and activities of competitors, where Al tools bring
in suggestions on proactive measures to take in relation to
such a risk before the problem escalates.

8.3.3 Fraud detection. This is also a capability of the Al to
analyse large datasets in real time, making it very effective in
detecting fraud or non-compliant behaviour. The simple
example of this is when pharmaceutical firms apply Al for
identification purposes in financial records to ensure that they
abide by internal and external regulations.

8.4 Al tools in pharmaceutical management

Pharmaceutical companies have various Al tools and plat-
forms, especially designed for their operations management.
What also makes these platforms powerful is they automate
mundane tasks and delivering analytics for decision-making
and compliance management.

8.4.1 SAP. SAP is ERP software used worldwide, integrating
modules with Al for supply chain management, HR, and finan-
cial operations. Its Al capabilities allow it to monitor in real-
time resource flow and performance metrics, thus enhancing
the efficiency of operation for pharmaceutical companies.

8.4.2 Salesforce. It is a customer relationship management
(CRM) sale tracking application, using AI capabilities.
Pharmaceuticals use Salesforce to track sales performance, opti-
mize the marketing plan, and ensure regulatory compliance.
Pharmaceutical managers are able to analyse customer as well as
sales data in order to forecast what is expected in the near future.

8.4.3 Veeva systems. Veeva is the portfolio of cloud-based
solutions for the pharmaceutical and life sciences industries.
Veeva’s modules, powered by Al, help companies streamline
clinical data management, regulatory submissions, and quality
control.

9. Challenges and ethical
considerations

The pharmaceutical world is witnessing significant changes
with the development of Artificial Intelligence. However, it
also brings several challenges and ethical issues.
Pharmaceutical companies are facing numerous data privacy-
related concerns, regulatory compliance, algorithmic biases,
and many such factors in their efforts to utilize Al suitably and
responsibly.

9.1 Data privacy and security

Pharmaceutical companies deal with bulk sensitive infor-
mation regarding patients during drug discovery, clinical
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trials, and personalized medicine applications. The use of Al,
especially machine learning models that take considerable
amounts of data for training, raises concerns over data privacy,
breaches, and misuse. Robust data security is thus a critical
issue, and the companies must follow various strategies for
the protection of patient information.

9.1.1 Data encryption. Data encryption allows protection of
patient data in that, if intercepted, they are still unreadable
without proper decryption keys. The pharmaceutical compa-
nies are making greater use of the end-to-end encryption in
protecting patient records and other sensitive information
transmitted and stored.”

9.1.2 Anonymization techniques. Another significant
approach is data anonymization for the patient information.
The process of removing personally identifiable information
(PII) from datasets ensures a company that its data used for
training AI models or developing drugs cannot be traced
back to any patient. Data masking and synthetic data gene-
ration techniques enable researchers to use a realistic
dataset without compromising the patients’ rights to
privacy.”*

9.1.3 Regulatory frameworks (GDPR, HIPAA). In the
current context, regulatory authorities refer to the General
Data Protection Regulation (GDPR) in Europe and the Health
Insurance Portability and Accountability Act (HIPPA) in the U.
S. They broadly specify certain constraints associated with data
privacy and security; GDPR emphasizes issues associated with
consent and access rights as well as their erasure, while HIPAA
highlights certain regulations regarding sharing patient’s data
and storing it within health care settings. These regulations
are critical for ensuring that AI systems comply with legal stan-
dards and maintain patient trust.”*

9.2 Regulatory hurdles

The pharma industry is still in the infancy stage of AI adop-
tion, while regulators try to catch up with the rapid technologi-
cal advancement. Each of the three principal areas, namely
drug discovery based on Al, clinical trials, and patient care, is
taking the regulatory evaluation into new territories, unlike the
traditional approaches that involved drug development with
well-defined regulatory guidelines.

9.2.1 Lack of standardization. There is currently no stan-
dard framework established for the evaluation of AI tools in
drug development. The regulator body including the U.S. Food
and Drug Administration is currently putting together the
guideline that will include the dynamic nature of AI algor-
ithms during deployment, as it learns with new data incorpor-
ated later. The uncertainty this brought has so far led to the
deferment of the general use of AI in the pharmaceutical
sector.

9.2.2 Lack of transparency in decision making. Al models
are always not transparent, which makes it difficult for regulat-
ory bodies to comprehensively assess a decision-making
process. For patient safety and in the development of drugs,
Al-driven decisions should be safe, effective, and explainable.
Hence, for the assurance of safety and effectiveness, regulatory
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bodies are seeking transparent mechanisms of Al models and
systems that account for errors.

9.3 Ethical implications

Using Al within the pharmaceutical industry opens a particu-
larly wide and weighty door concerning ethical issues,
especially that of bias in algorithms and machine-driven
dependency.

9.3.1 Bias of Al algorithms. The quality of Al algorithms is
the quality of the training data. Datasets are biased; the result-
ing AT model may also be biased, and so similarly, bias in drug
development and patient care may result. For instance, evi-
dence has shown that some AI diagnostic tools are less precise
for certain racial or gender groups raising valid questions
about whether AI applications in healthcare are fair and equi-
table.”> Determining an exact percentage of data bias in artifi-
cial intelligence utilized within the pharmaceutical sector and
clinical trials is a challenge, given the intricate characteristics
of data and the diverse uses of AL°*°* However, numerous
experts suggest that a significant proportion of Al models
employed in healthcare including pharmaceuticals may be
influenced by bias stemming from the data on which they are
trained. This bias could result in error rates that vary from
10% to over 30%, contingent upon the particular application
and the quality of the data involved.

Research indicates that a significant number of Al models
used in healthcare, particularly in clinical trials, are prone to
substantial bias due to the use of non-representative datasets.
This bias often originates from the initial selection of patient
populations for clinical trials, which frequently lack demo-
graphic diversity, potentially resulting in distorted outcomes
when these models are trained.®® Even with efforts to construct
diverse datasets, unconscious biases may still affect both data
collection and interpretation. Various factors contribute to
data bias, including limited patient demographics and gender
bias, as historical trends in clinical trials have often favored
male participants, which can skew drug efficacy evaluations
for female patients, as well as racial and ethnic disparities.®®
In the realm of pharmaceutical manufacturing, even a minor
degree of bias in AI systems can lead to significant repercus-
sions, affecting drug efficacy, safety, and patient outcomes.
More intricate AI models may be particularly vulnerable to
bias if they are not meticulously designed and validated. To
address such data bias, it is essential to implement diverse
data collection strategies, conduct thorough data quality
assessments, make algorithmic adjustments such as employ-
ing weighting algorithms to rectify data imbalances, and
ensure transparency and comprehensive reporting.

Data bias of this nature can result in significant ethical con-
sequences such as misdiagnosis, biased treatment options,
ineffective medications for specific demographic groups, and
potential harm to the company’s reputation if not managed
appropriately. Ethical obligations encompass the proactive
reduction of bias through the collection of diverse datasets,
thorough evaluation of models, and clear communication of
limitations.’” Consequently, pharmaceutical companies using
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AI must engage in practices that promote diverse data collec-
tion, implement quality assurance measures, employ tech-
niques for bias detection, ensure transparent reporting, and
conduct regular monitoring while seeking expert evaluations
from ethics committees to examine the possible ethical ramifi-
cations of Al applications.’®°® Failure to address data bias may
lead to legal challenges, cause damage to reputation, and
result in increased health disparities.

9.3.2 Human oversight. Although it may prove to be advan-
tageous in enhancing the quality of decisions concerning the
pharmaceutical business, human oversight and decision-
making remain crucial. Al should supplement, not supplant
human judgment. Moreover, ensuring healthcare pro-
fessionals are included in the decision-making process can
help mitigate risks associated with algorithmic errors or
biases.”!

9.3.3 Transparency and ability to explain. The algorithms
that are produced by Al, particularly by deep learning models,
are often referred to as “black boxes” because they lack trans-
parency. For ethical deployment of Al in drug discovery and for
providing care to patients, Al models must be explainable, that
is, healthcare professionals and regulators need to understand
how AI reaches its conclusions. If such transparency is absent,
there may likely be over-reliance on AI without proper over-
sight, which can be dangerous.'®

9.4 The way for regulatory agencies to adopt Al

The FDA and EMEA have the opportunity to integrate artificial
intelligence into manufacturing and clinical trials by develop-
ing comprehensive guidelines that encompass the creation,
validation, and continuous oversight of AI-driven systems.
These guidelines should prioritize transparency, data integrity,
and patient safety, while also offering a structured approach
for manufacturers to submit applications that incorporate Al
technologies for evaluation and approval.'®" Regulatory bodies
can set forth criteria to assess the accuracy, sensitivity, and
specificity of AI models used in manufacturing and clinical
trials, taking into account potential biases present in the data
sets.'® Furthermore, agencies should mandate stringent data
collection protocols, appropriate data annotation, and
thorough documentation of data origins to ensure the depend-
ability of AI models trained on such information. The guide-
lines must emphasize the establishment of rigorous validation
techniques to verify the performance and reliability of AI
systems in practical applications including ongoing perform-
ance assessment after market introduction.'® Additionally,
there should be a concerted effort to identify and address
potential risks linked to AI deployment, such as algorithmic
bias, concerns regarding data privacy, and vulnerabilities
related to cybersecurity.'**

Specific guidelines may be established for the utilization of
artificial intelligence in the analysis of real-time sensor data to
detect and forecast potential challenges within the manufac-
turing process, thereby facilitating proactive modifications and
enhancing quality control.'®> The implementation of Al-driven
systems can enable automatic adjustments to manufacturing
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parameters based on real-time data, ensuring consistent
product quality. Additionally, AT guidelines can be issued to
anticipate equipment failures in manufacturing environments,
allowing for preventative maintenance and reducing pro-
duction downtime.'® In the context of clinical trials, guide-
lines can be developed for patient recruitment and stratifica-
tion, real-time monitoring of clinical data, and the application
of Al in the analysis of medical images such as X-rays and MRI
scans to aid in diagnosis and track disease progression. Close
collaboration with industry stakeholder, including pharma-
ceutical companies, medical device manufacturers, and Al
developers will be essential to ensure that these guidelines are
both practical and feasible. Furthermore, it is important to
design guidelines that can adapt to advancements in Al
technology.'®”

9.5 Case study

9.5.1 Racial bias in medical algorithms. In 2019, in the
United States of America, a commercially used healthcare
algorithm exhibited racial bias. Healthcare system made mys-
terious decisions regarding withholding further care from
Black patients. Designated to predict the patients most likely
to benefit from further care, the model was less likely to pre-
scribe additional care for those patients if they happen to be
Black compared to their white counterparts even when both
had similar ailments. This was because the model was trained
from biased data that represented prevalent healthcare
disparities.*”

9.5.2 Gender bias in AI diagnostic tools. Some fields of
medicine were shown to have better Al diagnostic tools for
men than for women. Heart disease presents somewhat differ-
ently in men than in women, so it is diagnosed according to
different manifestations, but most of the models used were
trained based on data collected from mostly males. This has
therefore resulted in misdiagnosis or delayed diagnosis for the
heart diseases in women especially in an accident and emer-
gency department or in assessing risk factors. The difference
in the diagnostic models might have caused a worse health for
women. Due to the above discussion, there was more concern
on the issue of gender inequality in AI tool development and
the need for diverse datasets with equal data from both male
and female.

9.5.3 AI misdiagnoses in radiology. AI intended for
medical imaging, for example, to detect lung cancer or pneu-
monia from X-rays or CT scans, had a propensity for making
false diagnosis due to the artificial intelligence models that
had not been trained with rich datasets having variables such
as wide ranges of age or ethnic backgrounds or other comorbid
conditions. For instance, in one such instance, there was an Al
tool utilized in certain hospitals, which proved to be much
more prone to missing pneumonia signs in older patients or
those having other underlying respiratory conditions, for
which it had not been properly accounted during the training
data. This only adds fuel to the fire of debate regarding the
authenticity and reliability of AI tools, particularly in life-or-
death conditions when timely diagnosis is of paramount
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importance. This calls for more intense testing and validation
as well as continued monitoring of these Al systems in clinical
environments.

10. Training needs of pharmaceutical
and clinical trial professionals to
adopt Al

The integration of artificial intelligence in pharmaceutical
manufacturing and clinical trials necessitates comprehensive
training for industrial personnel across several domains. This
includes foundational knowledge in data science, familiarity
with specific Al algorithms pertinent to their roles, under-
standing of regulatory compliance associated with AI, data
management techniques, critical thinking abilities for inter-
preting Al-generated results, and awareness of ethical impli-
cations related to Al applications in healthcare.'%%'°

In the context of pharmaceutical manufacturing, personnel
will require training focused on process monitoring and
control through Al This involves leveraging AI models to fore-
cast and optimize manufacturing parameters such as tempera-
ture, pressure, and ingredient ratios in real time. Additionally,
quality control will benefit from AI applications, including AI-
driven image analysis for defect detection and quality assur-
ance in both drug substances and products. Training will also
be essential for predictive maintenance, enabling personnel to
use Al for anticipating equipment failures and scheduling pre-
ventive maintenance. Furthermore, data integration and ana-
lysis training will be necessary to connect manufacturing data
from various sources for the training and deployment of Al
models."°

Training will be essential for clinical trial personnel to
effectively recruit and stratify patients using artificial intelli-
gence, which will assist in identifying appropriate candidates
for clinical trials based on their demographics and medical
histories.*® Subsequently, personnel will need to undergo
training focused on optimizing clinical trial design, utilizing
AT to create more efficient trials that require fewer participants
and can be completed within shorter timeframes.'"!
Additional training will encompass real-time patient monitor-
ing, enabling the analysis of patient data from clinical thera-
pies and other sources through Al to identify potential adverse
events at an early stage. Furthermore, training in data analysis
and interpretation will be necessary, where AI algorithms will
be employed to analyze intricate clinical trial data and derive
significant insights."*? Similarly, IT personnel and data scien-
tists will require training in advanced AI methodologies,
gaining practical experience in constructing, validating, and
deploying AI models within a production setting, as well as
understanding cloud computing for data storage and proces-
sing to facilitate large-scale AI applications, alongside data
security and privacy considerations.*® These training programs
can be delivered through a combination of online courses,
tutorials, in-person workshops, seminars, mentorship initiat-
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ives, simulation exercises, customized training sessions, and
ongoing learning opportunities.

11. Conclusion and future prospects

This future of AI in the pharmaceutical industry is full of
potential changes that will reshape many aspects of developing
a drug, conducting clinical trials of that drug, its manufactur-
ing, and the care that comes after. Growth in AI technologies
will bring further discoveries in quantum computing,
reinforcement learning, and personalized medicine.

The most notable development area will be the incorpor-
ation of quantum computers into drug discovery. Quantum
computers will enable an AI algorithm to execute complex
molecular simulations at an unprecedented speed and accu-
racy that a classical computer could not, solving certain pro-
blems in oncology and neurodegenerative diseases. Al appli-
cations in personalized medicine will expand further with the
use of multi-omics data to predict specific responses by
patients to personalized therapies.

From manufacturing to supply chain, smart factories would
incorporate Al-driven adjustments of the given processes using
real-time data for efficient resource utilization with reduced
waste. Similarly, by predictive demand and prevention of short-
age scenarios, resilience in supply chains will also increase.

However, with these come problems. For example, data
privacy, bias of algorithms, and transparency of AI models
raise ethical issues. There would be a need for the FDA and
EMA among others to align their frameworks in new settings
with that objective to assess the safety and efficacy of Al-driven
tools in pharmaceuticals.

In summary, Al already showed transformative power
across the pharmaceutical landscape through solutions
related to drug development and patient safety that are
faster, more efficient, and personalized. As AI technologies
continue to evolve, it is necessary that the industry collabor-
ates with regulatory bodies and answers ethical questions to
actually tap into the deeper resources of Al for improved
benefit to healthcare outcomes. With the capacity to stream-
line operations, accelerate innovation, and improve the care
of patients, AI will be the core cornerstone of the future
pharmaceutical industry.

Abbreviations

Al Artificial intelligence

CNN Convolutional neural network
GANs  Generative adversarial networks
ML Machine learning

NLP Natural language processing
DL Deep learning

SAR Structural activity relationship
HTS High-throughput screening
SVM Support vector machine
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RNNs  Recurrent neural networks
NDA New drug application
USFDA United States Food and Drug Administration
CDSCO Central Drug Standards and Control Organization
MHLW  Ministry of Health and Labour Welfare
PMDA  Pharmaceuticals and Medical Devices Agency
EHR Electronic health record
ADR Adverse drug reaction
R&D Research and development
HR Human resources
EMA European Medicines Agency
GDPR  General data protection regulation
HIPPA Health insurance portability and accountability act
IoT Internet of things
RL Reinforcement learning
NIBR Novartis Institutes for BioMedical Research
CT Clinical trials
CTMS  Clinical trial management system
CRO Contract research organization
PMS Post-marketing surveillance
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