View Article Online

View Journal

Organic &
Biomolecular
Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: K. L. Steffen, M.
Rangel-Grimaldo, T. J. C. Sauters, D. C. Rinker, H. Raja, T. Graf, A. Gumilang, O. L. Riedling, G. Goldman,
N. H. Oberlies and A. Rokas, Org. Biomol. Chem., 2025, DOI: 10.1039/D50B01965F.

; This is an Accepted Manuscript, which has been through the
Organic & o Royal Society of Chemistry peer review process and has been
Biomolecular accepted for publication.

Chemistry

Accepted Manuscripts are published online shortly after acceptance,
before technical editing, formatting and proof reading. Using this free
service, authors can make their results available to the community, in
citable form, before we publish the edited article. We will replace this
Accepted Manuscript with the edited and formatted Advance Article as
soon asitis available.

You can find more information about Accepted Manuscripts in the
Information for Authors.

Please note that technical editing may introduce minor changes to the
text and/or graphics, which may alter content. The journal’s standard
Terms & Conditions and the Ethical guidelines still apply. In no event
~ oo shall the Royal Society of Chemistry be held responsible for any errors
Vo OF CHERIETRY or omissions in this Accepted Manuscript or any consequences arising
from the use of any information it contains.

#® LOYAL SOCIETY rsc.li/obc
ap OF CHEMISTRY


http://rsc.li/obc
http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/
https://doi.org/10.1039/d5ob01965f
https://pubs.rsc.org/en/journals/journal/OB
http://crossmark.crossref.org/dialog/?doi=10.1039/D5OB01965F&domain=pdf&date_stamp=2026-01-14

Page 1 of 41

Open Access Article. Published on 14 January 2026. Downloaded on 1/15/2026 5:35:38 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Organic & Biomolecular Chemistry

View Article Online
DOI: 10.1039/D50B01965F

An integrative chemical and genomic similarity approach linking fungal secondary

metabolites and biosynthetic gene clusters

Authors

Karin Steffen!, Manuel Rangel-Grimaldo?3, Thomas J. C. Sauters!, David C. Rinker!, Huzefa A.
Raja?, Tyler N. Graf?, Adiyantara Gumilang', Olivia L. Riedling', Gustavo H. Goldman?,
Nicholas H. Oberlies?, & Antonis Rokas!-"

Addresses

1 Department of Biological Sciences and Evolutionary Studies Initiative, Vanderbilt University,

Nashville, TN 37235, USA

2 Department of Chemistry and Biochemistry, University of North Carolina at Greensboro,
Greensboro, NC 27402, USA

3 Department of Natural Products, Institute of Chemistry, Universidad Nacional Auténoma de
Meéxico, Mexico City, 04510, Mexico.

4 Faculdade de Ciencias Farmacéuticas de Ribeirdo Preto, Universidade de Sao Paulo, Ribeirdo

Preto 14040-903, Brazil

Corresponding author: antonis.rokas@vanderbilt.edu

Keywords: Natural product, secondary metabolite (SM), specialized metabolite (SM),
biosynthetic gene cluster (BGC), metabologenomics, integrative omics, chemodiversity,

secondary metabolite gene cluster (SMGC), extrolites


mailto:antonis.rokas@vanderbilt.edu
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ob01965f

Open Access Article. Published on 14 January 2026. Downloaded on 1/15/2026 5:35:38 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Organic & Biomolecular Chemistry

View Article Online
DOI: 10.1039/D50B01965F

Abstract

Fungi are well known to biosynthesize structurally complex secondary metabolites (SMs) with
diverse bioactivities. These fungal SMs are frequently produced by biosynthetic gene clusters
(BGCs). Linking SMs to their BGCs is key to understanding their chemical and biological
functions. Reasoning that structural similarity of SMs arises from similarities in the genes
involved in their biosynthesis, we developed an integrative approach that leverages known SM-
BGC pairs to infer links between detected SMs and genome-predicted BGC regions in fungi. As
proof of concept, we structurally characterized 60 metabolites from metabolomic data of 16
strains of the filamentous fungus Aspergillus fischeri. Our approach assigned 22 to known SM-
BGC pairs and proposed specific links to BGCs and genetic pathways for the remaining 38
metabolites. These results suggest that coupling chemical structure similarity and genomic
sequence similarity is a straightforward and high-throughput approach for linking fungal SMs to

their BGCs.

Introduction

Secondary or specialized metabolites (SMs), together with allelochemicals, effectors, and
extrolites, are all molecules isolated from Nature that are instrumental to fungal ecology (1).
Fungal SMs contribute to various functions, including micronutrient acquisition (e.g.,
siderophores such as ferrichrome (2)), defense (e.g., antibacterials such as penicillin (3)), and
pathogenicity (e.g., virulence factors such as gliotoxin (4) and ToxA (5,6)). By virtue of their
potent bioactivities, SMs are essential to drug discovery pipelines (7,8) and for medical and

agricultural research more broadly (9).
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In fungal genomes, the pathways involved in SM biosynthesis typically contain a set of
neighboring, co-regulated genes, collectively referred to as biosynthetic gene clusters or BGCs
(1). A typical BGC contains genes coding for ‘core’ or ‘backbone-forming’ enzymes responsible
for the biosynthesis of the scaffold of the SM, tailoring enzymes that modify the scaffold, and
cluster-specific transcription factors and transporters (1). The clustering and content of genes in
fungal secondary metabolite pathways led to the development of many different methods to
predict BGCs (10). These include CASSIS, a tool for predicting BGCs around a given anchor (or
backbone) gene (11); CLOCI, which predicts BGCs based on co-occurring loci and orthologous
clusters (12); DeepBGC, a machine learning-based tool trained on distinguishing BGC genomic
regions from non-BGC regions in prokaryotic genomes (13); the fai and zol set of tools that
employ sequence orthology information for targeted detection of BGCs across genomes (14),
and protein domain-based tools like the popular antiSMASH (15) that predict BGC presence
using profile hidden Markov models targeting required biosynthetic domains, along with BGC

class-specific rules (15,16).

Widespread access of column chromatography coupled with mass spectrometry (i.e., LC-MS and
LC-MS/MS or LC-MS") has driven the annotation of metabolites from extracts of fungal cultures
and even in situ from the cultures themselves (17—19). Yet, due to technical limitations, the
degree of certainty of an observation of a SM can vary based on the approach used (20).
Assigning the chemical identity, and hence structure, of compounds within an extract of an
organism can be categorized into four levels of certainty (21): 1) identified compounds for which
there are orthogonal supporting structural data, 2) putatively annotated compounds for which

there are matches to spectral libraries, 3) putatively characterized compound classes for which
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there are matches to the class of compounds, if not the specific compound, and 4) unknown
compounds. For the purposes of this report, we focused on the identified compounds (#1 in the
list above), where the compounds were isolated and characterized by mass spectrometry and
NMR spectroscopy or there were matches to a dereplication database that was built upon fully

characterized compounds (22,23).

To date, more than 30,000 fungal metabolites have been characterized (24), and genomic
examinations suggest that there are likely millions of predicted BGCs in fungal genomes (25—
29). In contrast, there are only about 608 experimentally verified SM-BGC pairs in fungi (27,30—
32). This 50-fold discrepancy between identified metabolites and linked BGCs arises largely
because SM-BGC pairings are typically established on a case-by-case basis, since confirmation
of their pairing requires experimental validation (16,33,34). Thus, the SMs biosynthesized by
predicted BGCs in fungal genomes have not yet been discovered, and as such, most of these
BGCs are considered “orphans”. Similarly, the biosynthetic pathways responsible for the vast
majority of characterized fungal metabolites also remain uncharacterized, hindering efforts to

study their biosynthesis.

The very small number of SM-BGC pairs identified to date, coupled with the much larger
numbers of fungal metabolites and predicted orphan BGCs in fungal genomes, underscores the
need for methods and strategies to predict SM-BGC pairs. To bridge this gap between
chemotype and genotype, several general and specific methodologies have been developed to
associate SMs and their cognate BGCs (35,16,36,37,34). At the heart of these general approaches

lies the independent identification of BGCs via predictions from the genome, and structural
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identification of SMs via metabolomics, followed by an algorithm predicting connections.
Importantly, many of these algorithms take advantage of the MIBiG database (30,32), a
community effort cataloguing BGCs and their SMs, which includes information on the
gene/protein sequences of the BGC with their known or putative functions, the organism the SM-

BGC pair was identified, and the resulting SM structures and bioactivities.

Strategies have sought to enhance SM-BGC prediction by integrating large metabolomics data.
For example, correlation-based approaches statistically associate BGC or gene cluster family
(GCF)—SM pairs based on co-occurrence patterns (36), while feature-based approaches rely on
specific, searchable attributes (e.g., core enzymes, transcription factors or metabolomic spectral
features like fragments and isotopes) to generate “forward” (BGC to SM) or “reverse” (SM to
BGC) associations. These approaches have recently uncovered a novel class of BGCs, the
isocyanide synthases (37), and linked peptide natural products (e.g., ribosomally synthesized and
post-translationally modified peptides (RiPPs) or non-ribosomal peptide synthetases (NRPSs)) to
their core genes (35,38,39). Stable isotope labelling has also been used to connect mass
spectrometric features (i.e., mass to charge values coupled with chromatographic retention times

for metabolites/SMs) to BGCs by tracing the biosynthesis from known BGC substrates (40).

Here, we introduce a new strategy to link the chemical structures of experimentally identified
SMs to their cognate BGCs via structural similarity to known SM-BGC pairs. We then applied
this strategy to the metabolomes and genomes of 16 strains of the filamentous fungus Aspergillus
fischeri and the known SM-BGC pairs in the MIBiG database. This enabled us to confidently

assign more than one third of detected metabolites to known BGCs that are present in A. fischeri
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genomes, and generate testable SM-BGC hypotheses in a straightforward, fast and ab initio
manner for all the remaining SMs. Our results suggest that coupling chemical structure-based
similarity with genomic similarity is a powerful approach for linking detected SMs to their BGCs

in fungal genomes.
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Leveraging chemical and genomic similarity to infer SM-BGC pairs

A SM-driven arm of the workflow

SMILES and names of i SMILES and names of Structural similarity of SMs of interest
structures of interest i structures from MIBIG to SMs from MIBiG database (Table S2)
SM name Most similar | Similarity
MIBIG SM score
name
Data table SM1name |MIBIGSMx |0.7
{compounds_for_clustering.csv) name
SMILES 1 SM 1 name
SMILES n SM n name SMnamen | MIBIG SM y
name
MIBIG SMILES m MIBIG SM m name

All-vs-all pairwise Hierarchical clustering (Figure $4)

structural similarity

S PR

SM name 1 M

calculation SM group #1
- SM name 2
SM name 1 SM name n | MIBIG SM name x MIBIG SM x name
SMname 1 1 02|04 0.7 SM name m ™ SMgroup #2
0.2 1 SM name E [
SM name SM group #3
SM namen 0.4 1 MIBIG SM y name
MIBiG SM name x | 0.7 1

B Integrative arm of the workflow
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Structural similarity of SMs of interest to SMs Genome-based BGC detection
from MIBIG database (Table §2)
SMname | Most similar Similarity MIBIG BGC name | Presence
MIBiG SM name score
SM 1 name | MIBiG SM x name | 0.7 MIBiG BGC a yes
L]
=
SM name n | MIBiG SM y name MIBiG BGC n No/not detected

Leveraging chemical and genomic similarity
to infer SM-BGC pairs

Strain BGC SM
Organism A BGC x: yes SM x: yes
Organism N BGCy: no SMy: yes

Figure 1: Schematic of workflow of the SM-BGC co-analyses. A. SM-driven arm of
the workflow: All pairwise structural similarities between structures of experimentally
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identified SMs and all MIBiG-derived fungal SMs were calculated. From the resulting
matrix, the highest structural similarity match between an experimentally identified SM
and a MIBiG-derived SM were collected in a table. The matrix was also use to
hierarchically cluster structurally similar groups of compounds (i.e., putatively from the
same BGC). B. Integrative arm of the workflow: Evaluating the SM-BGC links in the
presence of genome-based BGC predictions allowed for orthogonal validation of in
silico-predicted BGCs, thereby providing a focused and reliable view of biosynthetic
capacities of the fungi.

We developed an integrative approach based on chemical structural similarity to link SMs to
BGCs (Figure 1 A, B). This approach evaluates structural similarity by matching machine-
readable molecular fingerprints from candidate compounds to those stored in the MIBiG
database, allowing for the inference of putative SM-BGC relationships. Leveraging the MIBiG
database, which contains 3,158 structures from 1,896 bacterial and eukaryotic BGCs, including
692 SMs from 377 fungal BGCs, allows us to connect listed SMs and their BGC genes via their
BGC accession IDs (30). Our study demonstrates that metabolomics data from fungal culture

extracts can be used to improve the quality and accuracy of genome-based BGC predictions.

Establishing chemical structure similarity

Structural similarity of small molecules can be assessed via digital fingerprints, i.e., a bit vector
of each structure generated from SMILES (simplified molecular-input line-entry system, i.e. text
abstractions of 2D or 3D structures of molecules) (28,41-43). The similarity between a pair of
fingerprints is then expressed using the Tanimoto (Jaccard) index, which is the ratio of the
number of shared fingerprint bits (i.e., substructures) to the union of bits in a pairwise

comparison. As proposed here, Tanimoto similarity is a heuristic for generating SM-BGC links.
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Similarity can be computed between any two given structures and we opted to provide users with

the result(s) and leave it up to them to evaluate the quality of the match(es).

The structure similarity linking approach that we employ assumes that SMs from the same BGC
are much more similar (as expressed by Tanimoto pairwise similarity) than SMs from different
BGCs. To validate this assumption, we calculated the pairwise structural similarity among all
SMs in MIBiG (Figure 2). We found that SMs from the same BGC are, on average, significantly
more similar than SMs from different BGCs (average Tanimoto pairwise similarity for SMs from
the same BGC = 0.568; for SMs from different BGCs = 0.101; permutation test with 1000

permutations gave no permuted statistic as extreme as the observed and a p value <0.001).

Comparison_Type

& Between BGCs
Within BGC

density

0.00 025 0.50 0.75 1,00
Similarity

Figure 2: Background distribution of pairwise structure similarities for SMs within the
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same BGC (n = 5,889 pairwise comparisons) vs SMs between BGCs (n = 8,586,692
pairwise comparisons). Each density is normalized to integrate to 1; i.e., distributions
are shown independent of sample size. *SM structures and their records in MIBiG v4.0
were curated to exclude multiple entries of the same BGCs.

Experimental data: Sixty structurally characterized metabolites

from A. fischeri

We next applied our approach to a data set containing the metabolomes and genomes of 16
strains of Aspergillus fischeri, a filamentous fungus that is gaining attention as a close, non-
pathogenic relative of the major human pathogen Aspergillus fumigatus (44—46). Using aspects
of the “one strain many compounds” approach, the production of SM was evaluated at two
temperatures (30°C and 37°C) using UPLC-MS/MS, recently (46,47). In doing so, the number of
compounds detected per strain increased,(46) as would have growing them on e.g., different
media (44,48). Metabolites were identified based on either a direct match in LC-MS/MS to
reference standards, all of which had been fully characterized by NMR, or to a class of fungal
metabolites (i.e., via mass defect filtering (22,23)). A total of 60 metabolites were identified at
two levels of confidence (Table 1, ‘A’ and ‘B’ respectively), subsequently referred to as
‘identified SMs’. Three biological replicates provided insight into the consistency of SM
production by the various BGCs and strains (Figure S1). Overall, we found the most
biosynthetically rich strains across all replicates and temperatures yielded up to three times more
SMs than the least-producing strains (e.g., CBS 150748: N=45 vs. CBS 54465 : N=15).
Interestingly, strains with the greatest consistency of SM production across all biological

replicates produced fewer metabolites (e.g., 18/20 SMs were detected in all replicates of strain
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CBS 150750 at 30°C (90%) (Figure S2)(46).

Predicting the BGCs linked to experimentally identified SMs

To generate hypotheses about the biosynthetic origin of SMs from A. fischeri, we calculated
pairwise Tanimoto similarities for all 60 experimentally identified chemical structures from A.
fischeri and all known SMs from the MIBiG database. We next used the all-versus-all structural
similarity matrix to perform hierarchical clustering and generate groups of highly similar SMs
(Table 1, Figure 3; Figure S3). The highest match between an identified SM and an SM (or a
set of SMs) from MIBIG, which is already linked to a BGC, enabled us to assign the identified
SM to that corresponding BGC; we refer to these assignments as hypothetical SM-BGC links

(Table 1).

Identified SMs were thus linked to putative BGCs via their highest structural similarity to SMs
from MIBIG. In doing so, we generated BGC hypotheses for all 60 identified metabolites from
A. fischeri. Of these, 22 A. fischeri metabolites were identical to SMs in the MIBiG database, i.e.,
representing known SM-BGC links, and 37 metabolites were structurally similar, but not
identical, to SMs in MIBiG (Table S1 ‘confidence’ column: ‘reported’ and ‘predicted,’
respectively). The sole remaining metabolite is a sterol, which was not linked to a BGC, as sterol
biosynthesis is part of primary metabolism (49,50). Structural similarity between identified SMs
and SMs in MIBIiG varied substantially for the 37 metabolites examined (Figure 3). For
example, the experimentally identified SM acetylaszonalenin produces an exact match with the

acetylaszonalenin SM present in the MIBiG database (Figure 3A). Two additional
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experimentally identified SMs have a high similarity with acetylaszonalenin: aszonalenin and 4-
hyrdroxyaszonalenin. Upon further investigation, the link of aszonalenin with the
acetylaszonalenin BGC is confirmed by literature (but not recorded in MIBiG), while the link
between 4-hyrdroxyaszonalenin and the acetylaszonalenin BGC remains a hypothetical
connection not yet experimentally confirmed. In other cases, such the breviamides (Figure 3B),
the similarity score between experimentally identified SMs and MIBiG SMs is lower, which
suggests that these metabolites may be biosynthesized by a BGC not currently present in the
MIBIiG database. All SM groups and hypotheses are described in Table 1, and are subsequently

evaluated in depth.
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Figure 3. Pairwise structural similarities among secondary metabolites (SMs) within an
SM group (blue) and between experimentally identified SMs and all MIBiG metabolites
(red). Each dot represents a Tanimoto similarity between two structures. A. Matching an
SM group to a known MIBiG metabolites. Three experimentally identified aszonalenin
analogs show high mutual similarity (0.59-0.81) and were therefore grouped. Their
similarities to MIBiG metabolites are shown in red; dashed lines mark each metabolite’s
highest MIBiG match. Acetylaszonalenin, which is also present in MIBiG
(BGC0000293), matches itself with a similarity of 1 and also shows the highest similarity
to aszonalenin and 4-hydroxyaszonalenin. This group was therefore linked to
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BGC0000293. B. SM group without a MIBiG counterpart. Seven brevianamides show
high within-group similarity (0.44—0.83) and were grouped accordingly. Their similarities
to MIBiG SMs (red) show that the closest MIBiG match (tryprostatin B to brevianamide
V) falls below the lowest within-group similarity. Although all share the same L-Trp/L-Pro
diketopiperazine core, they differ in prenylation and other modifications. Thus, this
group was not linked to any known MIBiG metabolite.

Table 1: The 60 metabolites identified from 16 strains of A. fischeri were hierarchically
clustered into 25 SM groups based on structural similarity. Each group was assigned an
arbitrary identifier (i.e., 1 to 25). The superscript after the SM name indicates the level of
experimental support: A MS/MS and NMR or MS/MS and dereplication with in-house
database/standard; B MS/MS only. For each SM, the BGC(s) linked by structural
similarity clustering are indicated, with the underlined BGCs yielding the highest
Tanimoto similarity match. Hypothetical links that were confirmed post-hoc based on
experimental data (e.g., identical SM structures, evidence from the literature) are
denoted as ‘reported’, and all newly generated hypotheses without additional evidence
are denoted as ‘predicted’. For SMs of known BGCs, all generated hypotheses were
accurate. For an overview of all structurally similar metabolites from A. fischeri together
with their top SM hits in MIBiG database, where available, see Figure S5.

SM :

group BGC !
# SM BGC link present confidence Reference

BGC0001923, 5

1 llicicolin E B BGC0001924 (New BGC 1) | no predicted (51) !

(3B,22E)-Ergosta-

4,6,8(14),22-tetraene-3-ol A (primary metabolism) - - (49) |

1

Fumagillol B BGC0001067 yes reported (52) |

BGC0001084, l

4 Brevianamide A/B B BGC0000816 (New BGC 2) | no predicted |

BGC0001084, |

4 Brevianamide C/D B BGC0000816 (New BGC 2) | no predicted !

5 Brevianamide Q B BGC0000442 (New BGC 3) | no predicted :

5 Brevianamide R B BGC0000442 (New BGC 3) | no predicted !

5 Brevianamide T B BGC0000442 (New BGC 3) | no predicted .

5 Brevianamide U B BGC0000442 (New BGC 3) | no predicted |

5 Brevianamide V/W B BGC0000356 (New BGC 3) | no predicted |

5 Brevianamide K B BGC0000442 (New BGC 3) | no predicted |

6 Cottoquinazoline E A BGC0000355 putative predicted (53,54) I

6 Cottoquinazoline F A BGC0000355 putative predicted (53,54) :

6 Cottoquinazoline G A BGC0000355 putative predicted (53,54) |

BGC0001142, ;

7 Fumitremorgin F B BGC0000355 (New BGC 4) | no predicted (55)

BGC0001142, |

7 Fumitremorgin G/L B BGC0000355 (New BGC 4) | no predicted (55) |
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BGC0000293,
8 4-Hydroxyaszonalenin B (BGC0002272) yes predicted (56)
BGC0000293, ,
8 Acetylaszonalenin A (BGC0002272) yes reported (56) '
BGC0000293, |
8 Aszonalenin A (BGC0002272) yes reported (56,57) !
9 Isoroquefortine C B BGC0000420 yes reported (58,59) :
9 Roquefortine C B BGC0000420 yes reported (58,59) |
BGC0002272, |
10 Brevianamide E B BGC0002617 no predicted {
11 13-O-prenylfumitremorgin B A | BGC0000356 yes predicted (60,61) ]
11 Brevianamide F B BGC0000356 yes reported (60,61) ,
11 Deoxybrevianamide E B BGC0000356 yes predicted (60,61) '
11 Fumitremorgin A A BGC0000356 yes reported (62) Z
11 Fumitremorgin B A BGC0000356 yes reported (60,61) :
11 Fumitremorgin C A BGC0000356 yes reported (60,61) i
spiro[5H,10H-dipyrrolo-[1,2- |
a:1',2"-d]pyrazine-2-(3H),2'"- !
[2H]-indole]-3',5,10(1'H)trione !
11 A BGC0000356 yes predicted (63) -
11 Tryprostatin B B BGC0000356 yes reported (60,61) .
11 Tryprostatin C/D B BGC0000356 yes predicted (60,61) :
11 Verruculogen B BGC0000356 yes reported (60,61) ;
hexadehydroastechrome ;
12 (monomer) B BGC0000372 yes reported (64) .
BGC0000420, |
12 Trihistatin A BGC0000372 yes predicted (64) |
16-0O-deacetyl helvolic acid !
13 21,16-lactone B BGC0000686 yes predicted (65) :
13 Helvolic acid # BGC0000686 yes reported (65) :
BGC0000129, |
14 Pyripyropene F B BGC0001068 yes predicted (66) .
BGC0000129, |
14 Pyripyropene H B BGC0001068 yes predicted (66) |
BGC0000129, :
14 Pyripyropene | B BGC0001068 yes predicted (66) )
BGC0000129, |
14 Pyripyropene O B BGC0001068 yes predicted (66) _'
15 Azonapyrone A A BGC0002604 yes predicted (67) |
15 Sartorypyrone A A BGC0002604 yes reported (67) |
BGC0000355, ?
BGC0001652, j
BGC0000448, :
BGC0000409, ;
16 Circumdatin C A BGC0000303 (New BGC 5) | no predicted '
BGC0000355, |
BGC0001652, I
16 Dimetoxycircumdatin C A BGC0000448, no predicted |
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Assigning BGCs to identical pairs of structures

There were 13 A. fischeri SMs that had an identical SM structure included in the MIBi1G

database (Table 1). While unsurprising and seemingly trivial, the ability of our approach to

quickly assign BGCs for experimentally identified SMs also present in the MIBiG database

offers considerable practical utility, since the natural products literature does not dictate a

consistent nomenclature process for SMs, which makes lookups by name futile. Lack of well-

catalogued data further complicates fast identification (43).

BGC0000409,
BGC0000303 (New BGC 5)
BGC0002165, ,
17 Betaenone E B BGC0001264 (New BGC 6) | no predicted (68) |
BGC0002165, !
17 Betaenone G/I/J B BGC0001264 (New BGC 6) | no predicted (68) !
BGC0002165, :
17 Betaenone H B BGC0001264 (New BGC 6) | no predicted (68) |
18 Clavaric acid B BGC0001248 yes reported (69,70) |
BGC0002539, |
BGC0000968, !
19 Chaetoglobosin 542 B BGC0001182 yes predicted (71) :
20 Neosartoricin B BGC0001144 yes reported (72,73) :
20 Neosartoricin C B BGC0001144 yes reported (72,73) |
20 Neosartoricin D B BGC0001144 yes reported (72,73) 7
BGC0002208, T
21 Brevianamide L B BGC0002242 (New BGC 7) | no predicted (74) T
BGC0002208, T
21 Brevianamide O B BGC0002242 (New BGC 7) | no predicted (74) |
BGC0002208,
21 Brevianamide P B BGC0002242 (New BGC 7) | no predicted (74) |
Secalonic acids (A/ B/ C/ D/ BGC0002063, :
E/ F/ F1/ G; 4,4'-Secalonic BGC0001886, .
22 acid E) B BGC0001988 yes reported (75) i
BGC0002275, |
23 Nidiascin C A BGC0002171 (New BGC 8) | no predicted |
24 Neosartorin A BGC0001988 yes reported (76) '
Bisdethiobis(methylthio)-
25 gliotoxin A BGC0000361 yes reported (4)
25 Gliotoxin A BGC0000361 yes reported (4) :
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The 13 SMs identified from A. fischeri with an identical SM match in the MIBiG database are:
acetylaszonalenin, brevianamide F, clavaric acid, fumagilol, fumitremorgin B and C, helvolic
acid, hexadehydroastechrom, neosartorin, roquefortine C, sartorypyrone A, tryprostatin B, and
verruculogen. Notably, three known SM-BGC pairs were missed by our structure similarity
approach due to database limitations. These were bisdethiobis(methylthio)gliotoxin and
gliotoxin, both produced by gliotoxin BGC0000361, which was retired in MIBiG v3.1, and
secalonic acid(s) for which the SM(s) were not structurally identified in our study nor when

describing the BGC (and hence neither in the corresponding MIBiG BGC0001886 entry).

Uncovering BGCs for SMs not present in the MIBiG database

Not all known biosynthetic intermediates, shunt products or possible SMs are deposited in the
MIBIiG database. Thus, six additional SM-BGC links were confirmed based on primary
literature. These are aszonalenin in BGC0000293 (56), fumitremorgin A in BGC0000356 (62),
isoroquefortine C in BGC0000420(58), and neosartoricin, neosartoricin C, and neosartoricin D in
BGC0001144 (72). Notably, isoroquefortine C is an artifact produced by the isomerization of
roquefortine C caused by pH or light (58). Similarly, neosartoricin C and D might be artifacts
related to the production of neosartoricin B (72). Indeed, artifacts — compounds that were
isolated but whose structure slightly differs from the true SM, possibly due to extraction solvents
or sample handling — are a well-known challenge in the natural products literature (77). Finally,
fumitremorgin A is technically not considered a product of the verruculogen BGC
(BGC0000356), as the gene encoding the FtmPT3 protein responsible for converting
verruculogen to fumitremorgin A is not part of the BGC (62). However, this variation in the

degree of biosynthetic gene clustering is not unusual (78). Given that fumitremorgin A is
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produced from verruculogen, an SM of this BGC, it is reasonable to include it in the set of SMs
attributed to BGC0000356. In summary, our approach directly assigned BGCs for 22 of the 60

experimentally identified SMs (36%).

The remaining 38 A. fischeri identified metabolites did not have identical matches to SM
structures included in the MIBiG database or biosynthetic information in the literature. Thus, we
augmented the SM-BGC hypotheses for each of these metabolites based on structural similarity
by examining whether 4. fischeri genomes contained the SM-linked BGCs (for details on BGC
prediction/detection, see Methods and the next section). Our predictions can be broadly grouped
into three level-of-confidence categories: (i) attributing the metabolite to a known BGC that is
present in the respective A. fischeri strain genome(s) (e.g., 4-hydroxyaszonalenin —
BGC0000293, Figure 3A), (i) linking the SM to a BGC not present in the respective 4. fischeri
genome(s), and (iii) ascribing the SM (or SM group) as a novel metabolite(s) likely encoded by
an unknown BGC (i.e., no similar SMs are present in the MIBiG database, Figure 3B). Given
the dearth of fungal BGCs in MIBIiG (i.e., only 377), we were pleased that our approach
predicted 13 SMs in category (i), 11 SMs in category (ii), and 13 SMs in category (iii) (see
extended Table S1 for more details, and Table S2 for all Tanimoto similarities). Notably, we
found that the BGCs associated with 38 of the 59 predicted SM-BGC links (64%) are in the
curated list of A. fischeri BGCs (Table S1). For the remaining “undetected” BGCs, hypotheses
to explain this pattern are consistent with the presence of a homologous but divergent/convergent
BGC or with genome incompleteness. The latter possibility is less likely because the estimated

genome completeness is very high (46).
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Genomic characterization of A. fischeri BGCs

To evaluate the hypotheses generated for the 38 remaining metabolites without known BGCs, we
next examined the BGC content of the 4. fischeri genomes. We first analyzed the 16 genomes
using antiSMASH v7, which predicts ‘BGC regions’ —i.e., continuous stretches in the genome
containing BGC(s) and other genes (Figure 4). For traceability, we also identified and grouped
homologous BGCs across the individual genomes. Across all 16 genomes, antiSMASH predicted
44 BGC regions that corresponded to 42 unique BGCs (BGC0001248 and BGC0002710 were
each detected in two regions of the genomes), as well as 20 candidate BGC regions (‘unnamed’
or ‘orphan’ putative BGCs). The mean number of BGCs per strain was 53.3 (range 51-56), a
number consistent with previous reports (79). Note that we refer to these predicted BGCs by the

accession numbers of their reference BGCs in the MIBiG database.

antiSMASH-predicted BGCs were classified as ‘present’ in 4. fischeri when they contained all
the genes present in the reference MIBiG entry, or when they were incomplete but supported by
evidence from structurally identified SMs. Additionally, BGCs were classified as ‘putative’ in 4.
fischeri when they were incomplete with at least half of the genes detected but without evidence
from the metabolomics study. Otherwise, BGCs were classified as ‘absent’ (i.e., fewer than half
of the genes were found and no evidence from metabolomics was present). Examining each of
the 44 antiSMASH-predicted BGC regions across A. fischeri genomes, we classified 20 BGCs as
‘present’, 9 as ‘putative’, and 15 as ‘absent’ (Table S3). We also specifically searched for the

protein sequences of each MIBiG BGC in the RNAseqg-based gene annotations(46), allowing us
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to manually curate and revise the antiSMASH predictions. These additional analyses enabled us
to classify 7 additional BGCs as ‘present’ and 4 BGCs as ‘putative’. A full list of BGCs is given
in Table S3, with information on sequence identity with known BGC genes and genomic
location in Table S4. Subsequently, we detail issues and difficulties in faithfully assessing the

number and identity of BCGs present in genomes.

Among all 40 BGCs classified as ‘present’ or ‘putative’, five artifacts reduce the total BGC
count. These primarily stem from the current cataloging approach for BGCs and the scientific
community’s limited understanding of them. MIBiG defines each BGC in the genome it is
reported in, sometimes listing the 'same’' (i.e., homologous) BGC multiple times from different
organisms. Similarly, one BGC that biosynthesizes one SM can be nested within another, larger
BGC that biosynthesizes a different SM. These situations can lead to ‘collisions’, i.e. the

assignment of the same set of genes to multiple BGCs.

There were collisions in two pairs of BGCs where the same set of proteins in 4. fischeri is
classified as two different BGCs due to similarity of the MIBiG reference sequences
(BGC0000361 gliotoxin / BGC0001609 gliovirin, and BGC0001144 neosartoricin B /
BGC0002646 hancockinone A), reducing the number of unique BGCs by two. The BGC for
biotin is listed twice in the MIBiG database (BGC0001238 and BGC0001239) but was counted
only once, as it matches the same set of genes. Similarly, there are two slightly different BGCs
matching a congruent set of genes for the metabolite ilicicolin H (BGC0002035 and
BGC0002093), which were counted as one BGC, further decreasing the total count by two.

Additionally, the BGC for clavaric acid (BGC0001248), which is composed of a single gene,
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was found twice (Table S4). However, only one of the two homologs identified (homolog ID
221721 1) contains the sequence motif VSDCISE, which was previously found in Fusarium

graminearum to be involved in clavaric acid production (70).

In total, we infer that 4. fischeri contains 35 ‘present’ and ‘putative’ BGCs (Figure 4, Table S3).
Overall, BGC content was largely conserved and consistent across the 16 strains, with most

BGCs (82%; 29/35 total ‘present’ and ‘putative’ BGCs) detected in all strains.
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Figure 4: Map of BGC and SM presence in A. fischeri. BGCs across the 16 strains of
Aspergillus fischeri. The black circle around a given data point indicates the BGC was
detected by antiSMASH in the respective genome. The fill indicates the BGC
completeness (ratio of expected to verified genes). The x denotes instances in which a
known SM for a given BGC was identified in the respective strain. The five artifactual
BGCs, antiSMASH-predicted BGCs found ‘absent’, and unnamed BGC regions were
not included. For a complete evaluation of all antiSMASH-predicted BGCs, see Table
S$3. Empirically, we find that the lowest number of verified genes for an active BGC (SM
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identified), is in BGC0000420, where we detect 3 or 4 out of 7 expected genes. This
aligns with our threshold of 50% of genes present for ‘putatively present’ BGCs.

Caveats for using antiSMASH as tool for accurate BGC surveys

We chose the comparison and validation of antiSMASH, since it is a widely used (and very
useful) tool for BGC prediction in fungal genomes (34). antiSMASH is designed to discover
regions containing known or novel BGCs (15). In practice, the tool is frequently also used to
discover BGCs (rather than regions containing BGCs) in fungal genomes, with the results being
taken at face value without further scrutiny. While examining the correspondence between A.
fischeri BGCs identified by antiSMASH and their inferred references in the MIBiG database, we
noted five sources of error associated with the common practice of conflating the BGC regions

identified by antiSMASH with individual BGCs.

First, in most known BGCs, the locus predicted by antiSMASH to contain a BGC was much
larger (up to approximately three times the number of genes) than the actual BGC. This is by
design, as BGC boundaries are difficult to define (formerly possible with CASSIS (11)) and
hence the more relaxed/inclusive ‘region’ concept in antiSMASH (Figure 4, S5A). Second, as
BGCs are known to co-localize, particularly in telomeric or low complexity regions of genomes
(80,81), their physical proximity on chromosomes, in combination with this ‘regions’ concept,
can lead to BGCs masking each other (Figure 5B). This masking occurred in the proximal BGCs
BGC0001403 for trypacidin and BGC0001988 for neosartorin, and with BGC0000356 for
verruculogen and BGC0001067 for fumagillin. Examination of 16 strains of 4. fischeri revealed
some instances where the same homologous genes were predicted as part of different BGCs in

different strains (Figure SC). Third, at low identities, the BGC predictions from the module *--
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cb-knownclusters’ may be misleading/arbitrary as we found several instances of the same
orthologous region being labeled as different BGCs. A fourth source of inaccuracies stems from
version differences of the MIBiG database used for the BGC prediction. Curation processes
continually expand the knowledge base (32), but sometimes, valid BGCs are removed or lacking,
thus leading to missed predictions (e.g., the extensively studied gliotoxin BGC, which was
retired, i.e. removed in MIBiG v3.1/v4.0) (Figure 4). Finally, we noted instances of BGCs

missed by antiSMASH (but detected by protein sequence searches) for reasons that are not

apparent (Figure 4).
A B C
BGCO000356 —1— €8BS 150752 [ ® Ll FPHOM - BGCoo00TE! q ’ |NE> « ”q%’
BGCO001306 1 L 3 3925000 3975000
BGC0000293 1 F DM i) BGCO000161 ‘ } N[:> (” m @N
BECO00988 i U bR * 3020000 4 3960000 4000000
BGCO002164 - 1
BGC0001252 [ CBS 150751 | ] DI GO BGC0000161 ‘ ' '[)MD (H KN@N
BGCO002276 7 {Ii' 3925000 3975000
BGCO000968 4 .o
Ao Hi cesiso7so | @ MMM MMM BAcooooien D> (I
BGC0001290 1 3925000 3975000
BECO00z22T * costrast @ MG | BGCO001290 e e (]
BeEhaaEan] - 3900000 3940000 3980000
BGCO002161 1 CBS 118456 [ ® ik HOHN O BGCO001290 MD « "H 4(]' '
BGCO0D06E7 - 1 3800000 3850000
BGC0000307 1
i I cesisors | e MG FOIMM-  BGC0000T6! EHHD U
BGC0000420 it s 3840000 3880000 3920000
] | & § ossisss i e MG OO cGCoot200 HH<NED-HI-<BD>
& eccowzise a ) 3830000 3870000 3910000
2 Becoootees- + GBS 150759 | ° b OO BGGO000E0T > (P
gggggg:}:;g 5 {=- 3825000 3875000
BGC0002093 4 I CBS 150757 | @ 4 sk I i il BGC0000307 } 'N[:> « ‘ M
BGC00016214 .-ﬂ' 3625000 3875000
BGCO000161+ O = L
mtCoooeser] sl CBS 150756 ® o — QKOO
sl h 3850000 3900000
BGC0001118 4 3 CBS 54465 - [ DD O
gggggg;gsz 1 -Il'b 3920000 3960000 4000000
BGO00018304 | CBS 50748 [® @ DN O BGCoooo16T < H N[> « ll@ '
BGC0O00O129 4 II— - 3850000 3900000
BGCO001475 1]
peooootis] |1 costsorsaf @ MMM ammioon - escoocorer D> {| WD UMD
BCh i 3850000 3900000
Sl B com| e mmieromen  scoon Q] KM
BGCO0O0D6B6- W 3825000 3875000 3925000
BGCooo13584
BGCO001436 | CBS 420.96 - [ ] DML <D
BGCO000007 - | 5940000 3980000 2020000 ] 25000 50000 75000 10000C
—t T -
-10 0 10 20 30 40 , verified gene presence homologous region across the genomes
antiSMASH BGC size overprediction antiSMASH ”g ; g ; g
in numbers of genes prediction  BGC @ [JJ] Bccooot40s e [} Bacocorsss classified inconsistently by antiSMASH

Figure 5. antiSMASH-predicted BGC regions in fungal genomes do not correspond to
predicted BGCs. There are five reasons for this lack of correspondence, including (A)
region overprediction, (B) merging/masking, and (C) inconsistent BGC assignments. A.
Region overprediction: Overprediction is defined as the difference between the
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number of genes included in the antiSMASH “region” and the true BGC boundaries.
Predicted regions frequently extend into neighboring BGCs, which can promote artificial
merging of adjacent clusters (see B). B. Merging and masking: Example of
BGC0001403 and BGC0001988, two adjacent clusters in A. fischeri. Their proximity
leads antiSMASH to merge them in all but one genome, causing BGC0001988 to mask
BGC0001403. Although both BGCs occur in all strains, antiSMASH failed to list
BGC0001403 in 15 of 16 cases. C. Inconsistent prediction across strains: Using the
same strains as in panel B, ortholog tracking shows that an identical genomic region
was assigned to different BGC accessions (BGC0000161, BGC0000307,
BGC0001290). Plotting all orthologs attributed to BGC0001290 illustrates that the same
gene set was labeled as three different BGCs across strains.

Discussion

There are at least 30,000 reported fungal metabolites (24,82—84) and millions of BGCs predicted
in fungal genomes (26—28) but only a few hundred SM-BGC pairs (32), suggesting that linking
SMs and BGCs remains challenging. To address this challenge, we developed an SM-BGC
linking approach based on chemical similarity, that requires a minimum of input data (e.g., a
single SM) and can be performed using experimental data or data retrieved from natural product
databases (82—85). Across 16 strains of a single fungal species, our approach recovered 22
known SM-BGC pairs and generated hypotheses for 37 more, including 11 that could be SMs
attributed to BGCs present in MIBiG. Thus, our approach efficiently automated SM-driven
linking of SM and BGCs, and faithfully recovered known connections, additional links not
included in MIBIiG, and new hypotheses. This approach offers two advantages: (1) it can provide
orthogonal BGC validation (in case of known links i.e., Tanimoto similarity =1), and (2) it can
generate hypotheses for SMs whose biosynthetic pathways are not known (i.e., Tanimoto

similarity <1).

Method development in BGC detection from genomic data has produced many tools (e.g.,

SMURF (86), antiSMASH (15), BiG-SCAPE (87), cblaster (88), DeepBGC (13), BGCFlow
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(89), CLOCI (12), zol and fai (14)). Additionally, SM-BGC links can be established via
correlation analyses, an approach termed ‘metabologenomics’, or specific experiments such as
‘IsoAnalyst’ (40). Metabologenomics can yield de novo SM-BGC links, but requires large
datasets (> 100 species) from extensive experimental data as well as sophisticated fine-tuning of
scoring functions and parameters, dependent on BGC class (NP Linker)(36,90). These genome-
or BGC-driven innovations stand in contrast to the number of integrative tools for linking SMs
(SANDPUMA (91), GNP (92), PARAS (93)), which typically are limited to specific taxa or
classes of SMs. Furthermore, only two tools are available that can link SMs to BGCs: RIPPminer
(94) and Prism (95,96), which again are limited to specific classes of SMs or taxa. The method
outlined here fills a gap, where the strategy of connecting SMs to BGC is agnostic to chemical

structural class, organism, data size or specificity.

As a consequence of the aforementioned challenges in SM-BGC linking, existing strategies for
straightforward orthogonal validation of BGCs are lacking. SM-BGC links are typically
validated via gene knock-out studies (e.g., (65,97,98)). In contrast, in silico tools linking SMs to
BGCs deliver unvalidated predictions or connections. The wealth of BGC prediction tools with
various strategies, focused on specific BGC classes or more general tools (10) poses a challenge
because presence/absence or identity of a predicted BGC are frequently a function of arbitrary
cutoffs (Figure 5). BGCs can be interpreted with some fluidity, e.g., many genes in described
BGCs are of unknown function and may not be essential to the BGC, synteny conservation is
sometimes low, and with increasing phylogenetic/evolutionary distance, gene and protein

sequences naturally diverge. Using metabolomics as orthogonal validation can be a means to
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avoid arbitrary thresholds confirming the presence of a BGC with the unambiguous presence of

its SM product(s).

In our structural similarity analyses, we refrained from setting a similarity threshold, due to the
known patchiness of SMs present in the MIBiG database (i.e., only 692 fungal SMs out of
>30,000 reported in the literature), general limitations in SM-BGC pairing knowledge, and
previously documented challenges with threshold-based approaches (36). Moreover, some SMs
(particularly biosynthetic intermediates) are not necessarily unique to any single BGC. For
example, the diketopiperazine brevianamide F (cyclo-L-Trp-L-Pro) is the first product of the
biosynthesis of verruculogen by BGC000356 in A. fumigatus (60) as well as of the biosynthesis
of notoamide A by BGC0000818 in Aspergillus versicolor (99) and brevianamide A by the bvn

gene cluster (currently not listed in MIBiG) in Penicillium brevicompactum NRRL 864 (100).

Our chemical structure similarity approach also has caveats. Our results are based on the
examination of strains of an Aspergillus species, one of the most well studied fungal genera in
terms of prior knowledge of SM-BGC pairs. Studies of less-studied organisms may be more
challenging, especially if their chemodiversity differs from the SMs currently represented in the
MIBIiG database, resulting in hypotheses (SM-BGC links and SM groups) that may be a poor fit.
As we have shown, some published SM-BGC pairs are not currently included in the MIBiG
database. Yet, as databases grow, so does the utility of this approach. This methodology could
further be expanded to work on partial structures or m/z fingerprints in the same manner as using
SMILES as input. Additionally, chemical conversions that alter the backbone or skeleton of a

SM sufficiently could mask a better clustering fit. Furthermore, when SMs are produced by
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multiple non-homologous BGCs (e.g., brevianamide F), genomic evidence is necessary to
determine which BGC it is produced by. Such instances of convergently evolved SMs would
only be detected in this strategy when finding the SM and not the BGC (but this inference would
be based on the absence of evidence). Putative examples of this in our data are chaetoglobosin
542 and ilicicolin E. Chaetoglobosin 542 is structurally very similar to chaetoglobosin A
produced by BGC0000968 (101), which is similar to two different A. fischeri BGCs.
Interestingly, the presence-absence patterns of the BGC and the SM match only for one of the
BGC:s. In the second case, ilicicolin E differs from ascochlorin of BGC0001923 (51) only by the
presence of an a,B-unsaturated ketone instead of the aliphatic ketone, respectively, in the 6-
membered ring. However, A. fischeri genomes do not contain any related BGCs, suggesting that
the observed structural similarity of the two SMs may result from convergent evolution. Of
course, another possibility is that the BGC is present in the genome but not part of the genome

assembly (e.g., because it resides in an otherwise highly repetitive region).

These caveats notwithstanding, our approach successfully inferred SM-BGC pairs for nearly one
third of the fungal metabolites identified and predicted SM-BGC pair hypotheses for nearly all
the rest. Ultimately, our approach is a hypothesis-generating strategy and must be validated
experimentally (e.g., by modifying putative BGCs in the native host or through heterologous
expression of the putative BGC)(33,102). The approach applied in this work leveraged similarity
among known SM structures and BGCs to bidirectionally link SMs and BGCs via the MIBiG
database and thereby successfully generated testable biosynthetic hypotheses in a high-
throughput fashion and validated the presence of predicted BGCs. This increases the fidelity of

the biological conclusions drawn based on the BGCs and their implications for the chemotype
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(i.e., SM profile), lifestyle, and niche of an organism. While our approach is hypothesis-
generating and requires further validation, it can augment the fidelity of stand-alone tools that

operate solely either on metabolomic or genomic data.

Methods

All genomic and metabolomic data were taken from Rinker ef al.(46) and are available via

FigShare (https://doi.org/10.6084/m9.figshare.25316452).

Chemical fingerprinting and clustering

Structures (SMILES, simplified molecular-input line-entry system; a text string representing the
molecule) for all SMs identified from untargeted metabolomics were collected via ChemDraw
v23.1.1 (Revvity) and combined with structures from known BGCs deposited in the MIBiG
database (32). Chemoinformatic analyses were carried out in Jupyter notebook(103) using RDKit
and PubChemPy(104). To facilitate the subsequent search for the detected metabolites, we
prefixed the names of structures from MIBiG with the BGC accession ID, and those of
metabolites found in extracts with 'chem_'. For comparing structural similarity and clustering the
metabolites, we calculated the Morgan fingerprint for each metabolite with
GetMorganFingerprintAsBitVect() using chirality with a radius of 2, and 2048 bits, and
converted the fingerprints to binary strings using ToBitString(). We calculated Tanimoto
similarity (Jaccard index, the intersection of set bitflags divided by the union) between all
pairwise comparisons using calculate tanimoto() resulting in a symmetric similarity matrix of

all-vs-all comparisons. With linkage(method="average', metric="euclidean') and dendrogram()
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from scipy, we performed hierarchical clustering of the metabolites based on the distance matrix
and used matplotlib to plot and save the resulting figure (Figure S3). SM groups were initially

b

delineated by searching the dendrogram for the tag “chem_ " and grouping similar structures.
Subsequently, for every identified SM, the highest pairwise similarity scores with a SM (or a set
of SMs) in the MIBIiG database was extracted from the similarity matrix, thereby generating
biosynthetic hypotheses for each SM. To test validity, we performed bootstrap resampling (1000
replicates) yielding a 95% confidence interval of [0.475, 0.498] for the median difference,

confirming the robustness of the result.

BGC predictions

BGCs were predicted using antiSMASH v7.1.0(15) and DIAMOND v2.1.6.160 blastp
searches(105) of the MIBiG database v3.1(30). All subsequent analyses were performed in R
v4.4.0(106). Conventionally, BGCs are defined in a specific genome. However, in this
manuscript, we refer to the predicted candidate BGCs by their MIBiG accession number for

convenience.

After the antiSMASH prediction (--fullhmmer --rre --cc-MIBiG --cb-knownclusters --cb-
subclusters --cb-general, using the corresponding gff3 annotation file), we aggregated results
from individual runs into a single file. Across the different strains, known and unknown BGCs
were aggregated by comparing gene content. This approach yielded meaningful clusters as
evidenced by the correct grouping of known BGCs (with their MIBiG BGC accession ID). This
clustering revealed instances in which the same genes were attributed to different BGCs (both

known and “anonymous” candidate clusters) by antiSMASH.
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For the amino acid sequence search, the 16 genomes were queried with all sequences in MIBiG
v3.1 (diamond blastp -f6 gseqid sseqid pident length mismatch gapopen gstart gend sstart send

evalue bitscore qcovhsp glen slen full _sseq) and the results concatenated.

To validate the antiSMASH BGC predictions, the genes in each predicted region were searched
using DIAMOND blastp. Additionally, the hits were filtered for high identity (pident >80%,
minimum 50% query coverage), as well as for runs of hits against the same BGC in proximity
(low identity clustering of putative, diverged BGCs). By using DIAMOND blastp to confirm 4.
fischeri BGC genes based on known BGCs, we tagged every BGC gene with a BGC ID from

MIBIiG hence allowing for interoperability of biological and chemical data.

BGCs were classified as present if all genes were found in proximity, regardless of whether a
corresponding SM was detected, or if they were recovered partially, i.e. incomplete but with
evidence from SMs. BGCs were classified as putative if more than half of the genes were present
but there was no evidence for their presence based on metabolomics. BGCs were classified as
absent if fewer than half of the genes were found and no evidence from metabolomics was

present.

Additional data (https://figshare.com/s/27blal3ca534cle646f4) and analysis code

(https://figshare.com/s/a2¢267ec94e82e062bdd) for this study can be found on FigShare.
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