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Abstract

Fungi are well known to biosynthesize structurally complex secondary metabolites (SMs) with 

diverse bioactivities. These fungal SMs are frequently produced by biosynthetic gene clusters 

(BGCs). Linking SMs to their BGCs is key to understanding their chemical and biological 

functions. Reasoning that structural similarity of SMs arises from similarities in the genes 

involved in their biosynthesis, we developed an integrative approach that leverages known SM-

BGC pairs to infer links between detected SMs and genome-predicted BGC regions in fungi. As 

proof of concept, we structurally characterized 60 metabolites from metabolomic data of 16 

strains of the filamentous fungus Aspergillus fischeri. Our approach assigned 22 to known SM-

BGC pairs and proposed specific links to BGCs and genetic pathways for the remaining 38 

metabolites. These results suggest that coupling chemical structure similarity and genomic 

sequence similarity is a straightforward and high-throughput approach for linking fungal SMs to 

their BGCs. 

Introduction

Secondary or specialized metabolites (SMs), together with allelochemicals, effectors, and 

extrolites, are all molecules isolated from Nature that are instrumental to fungal ecology (1). 

Fungal SMs contribute to various functions, including micronutrient acquisition (e.g., 

siderophores such as ferrichrome (2)), defense (e.g., antibacterials such as penicillin  (3)), and 

pathogenicity (e.g., virulence factors such as gliotoxin (4) and ToxA (5,6)). By virtue of their 

potent bioactivities, SMs are essential to drug discovery pipelines (7,8) and for medical and 

agricultural research more broadly (9).
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In fungal genomes, the pathways involved in SM biosynthesis typically contain a set of 

neighboring, co-regulated genes, collectively referred to as biosynthetic gene clusters or BGCs 

(1). A typical BGC contains genes coding for ‘core’ or ‘backbone-forming’ enzymes responsible 

for the biosynthesis of the scaffold of the SM, tailoring enzymes that modify the scaffold, and 

cluster-specific transcription factors and transporters (1). The clustering and content of genes in 

fungal secondary metabolite pathways led to the development of many different methods to 

predict BGCs (10). These include CASSIS, a tool for predicting BGCs around a given anchor (or 

backbone) gene (11); CLOCI, which predicts BGCs based on co-occurring loci and orthologous 

clusters (12); DeepBGC, a machine learning-based tool trained on distinguishing BGC genomic 

regions from non-BGC regions in prokaryotic genomes (13); the fai and zol set of tools that 

employ sequence orthology information for targeted detection of BGCs across genomes (14), 

and protein domain-based tools like the popular antiSMASH (15) that predict BGC presence 

using profile hidden Markov models targeting required biosynthetic domains, along with BGC 

class-specific rules (15,16). 

Widespread access of column chromatography coupled with mass spectrometry (i.e., LC-MS and 

LC-MS/MS or LC-MSn) has driven the annotation of metabolites from extracts of fungal cultures 

and even in situ from the cultures themselves (17–19). Yet, due to technical limitations, the 

degree of certainty of an observation of a SM can vary based on the approach used (20). 

Assigning the chemical identity, and hence structure, of compounds within an extract of an 

organism can be categorized into four levels of certainty (21): 1) identified compounds for which 

there are orthogonal supporting structural data, 2) putatively annotated compounds for which 

there are matches to spectral libraries, 3) putatively characterized compound classes for which 
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there are matches to the class of compounds, if not the specific compound, and 4) unknown 

compounds. For the purposes of this report, we focused on the identified compounds (#1 in the 

list above), where the compounds were isolated and characterized by mass spectrometry and 

NMR spectroscopy or there were matches to a dereplication database that was built upon fully 

characterized compounds (22,23).

To date, more than 30,000 fungal metabolites have been characterized (24), and genomic 

examinations suggest that there are likely millions of predicted BGCs in fungal genomes (25–

29). In contrast, there are only about 608 experimentally verified SM-BGC pairs in fungi (27,30–

32). This 50-fold discrepancy between identified metabolites and linked BGCs arises largely 

because SM-BGC pairings are typically established on a case-by-case basis, since confirmation 

of their pairing requires experimental validation (16,33,34). Thus, the SMs biosynthesized by 

predicted BGCs in fungal genomes have not yet been discovered, and as such, most of these 

BGCs are considered “orphans”. Similarly, the biosynthetic pathways responsible for the vast 

majority of characterized fungal metabolites also remain uncharacterized, hindering efforts to 

study their biosynthesis.

The very small number of SM-BGC pairs identified to date, coupled with the much larger 

numbers of fungal metabolites and predicted orphan BGCs in fungal genomes, underscores the 

need for methods and strategies to predict SM-BGC pairs. To bridge this gap between 

chemotype and genotype, several general and specific methodologies have been developed to 

associate SMs and their cognate BGCs (35,16,36,37,34). At the heart of these general approaches 

lies the independent identification of BGCs via predictions from the genome, and structural 
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identification of SMs via metabolomics, followed by an algorithm predicting connections. 

Importantly, many of these algorithms take advantage of the MIBiG database (30,32), a 

community effort cataloguing BGCs and their SMs, which includes information on the 

gene/protein sequences of the BGC with their known or putative functions, the organism the SM-

BGC pair was identified, and the resulting SM structures and bioactivities.

Strategies have sought to enhance SM-BGC prediction by integrating large metabolomics data. 

For example, correlation-based approaches statistically associate BGC or gene cluster family 

(GCF)–SM pairs based on co-occurrence patterns (36), while feature-based approaches rely on 

specific, searchable attributes (e.g., core enzymes, transcription factors or metabolomic spectral 

features like fragments and isotopes) to generate “forward” (BGC to SM) or “reverse” (SM to 

BGC) associations. These approaches have recently uncovered a novel class of BGCs, the 

isocyanide synthases (37), and linked peptide natural products (e.g., ribosomally synthesized and 

post-translationally modified peptides (RiPPs) or non-ribosomal peptide synthetases (NRPSs)) to 

their core genes (35,38,39). Stable isotope labelling has also been used to connect mass 

spectrometric features (i.e., mass to charge values coupled with chromatographic retention times 

for metabolites/SMs) to BGCs by tracing the biosynthesis from known BGC substrates (40). 

Here, we introduce a new strategy to link the chemical structures of experimentally identified 

SMs to their cognate BGCs via structural similarity to known SM-BGC pairs. We then applied 

this strategy to the metabolomes and genomes of 16 strains of the filamentous fungus Aspergillus 

fischeri and the known SM-BGC pairs in the MIBiG database. This enabled us to confidently 

assign more than one third of detected metabolites to known BGCs that are present in A. fischeri 
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genomes, and generate testable SM-BGC hypotheses in a straightforward, fast and ab initio 

manner for all the remaining SMs. Our results suggest that coupling chemical structure-based 

similarity with genomic similarity is a powerful approach for linking detected SMs to their BGCs 

in fungal genomes. 
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Results

Leveraging chemical and genomic similarity to infer SM-BGC pairs

Figure 1: Schematic of workflow of the SM-BGC co-analyses. A. SM-driven arm of 
the workflow: All pairwise structural similarities between structures of experimentally 
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identified SMs and all MIBiG-derived fungal SMs were calculated. From the resulting 
matrix, the highest structural similarity match between an experimentally identified SM 
and a MIBiG-derived SM were collected in a table. The matrix was also use to 
hierarchically cluster structurally similar groups of compounds (i.e., putatively from the 
same BGC). B. Integrative arm of the workflow: Evaluating the SM-BGC links in the 
presence of genome-based BGC predictions allowed for orthogonal validation of in 
silico-predicted BGCs, thereby providing a focused and reliable view of biosynthetic 
capacities of the fungi. 

We developed an integrative approach based on chemical structural similarity to link SMs to 

BGCs (Figure 1 A, B). This approach evaluates structural similarity by matching machine-

readable molecular fingerprints from candidate compounds to those stored in the MIBiG 

database, allowing for the inference of putative SM-BGC relationships. Leveraging the MIBiG 

database, which contains 3,158 structures from 1,896 bacterial and eukaryotic BGCs, including 

692 SMs from 377 fungal BGCs, allows us to connect listed SMs and their BGC genes via their 

BGC accession IDs (30). Our study demonstrates that metabolomics data from fungal culture 

extracts can be used to improve the quality and accuracy of genome-based BGC predictions. 

Establishing chemical structure similarity 

Structural similarity of small molecules can be assessed via digital fingerprints, i.e., a bit vector 

of each structure generated from SMILES (simplified molecular-input line-entry system, i.e. text 

abstractions of 2D or 3D structures of molecules) (28,41–43). The similarity between a pair of 

fingerprints is then expressed using the Tanimoto (Jaccard) index, which is the ratio of the 

number of shared fingerprint bits (i.e., substructures) to the union of bits in a pairwise 

comparison. As proposed here, Tanimoto similarity is a heuristic for generating SM-BGC links. 
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Similarity can be computed between any two given structures and we opted to provide users with 

the result(s) and leave it up to them to evaluate the quality of the match(es). 

The structure similarity linking approach that we employ assumes that SMs from the same BGC 

are much more similar (as expressed by Tanimoto pairwise similarity) than SMs from different 

BGCs. To validate this assumption, we calculated the pairwise structural similarity among all 

SMs in MIBiG (Figure 2). We found that SMs from the same BGC are, on average, significantly 

more similar than SMs from different BGCs (average Tanimoto pairwise similarity for SMs from 

the same BGC = 0.568; for SMs from different BGCs = 0.101; permutation test with 1000 

permutations gave no permuted statistic as extreme as the observed and a p value ≤ 0.001). 

Figure 2: Background distribution of pairwise structure similarities for SMs within the 
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same BGC (n = 5,889 pairwise comparisons) vs SMs between BGCs (n = 8,586,692 
pairwise comparisons). Each density is normalized to integrate to 1; i.e., distributions 
are shown independent of sample size. *SM structures and their records in MIBiG v4.0 
were curated to exclude multiple entries of the same BGCs.

Experimental data: Sixty structurally characterized metabolites 

from A. fischeri

We next applied our approach to a data set containing the metabolomes and genomes of 16 

strains of Aspergillus fischeri, a filamentous fungus that is gaining attention as a close, non-

pathogenic relative of the major human pathogen Aspergillus fumigatus (44–46). Using aspects 

of the “one strain many compounds” approach, the production of SM was evaluated at two 

temperatures (30C and 37C) using UPLC-MS/MS, recently (46,47). In doing so, the number of 

compounds detected per strain increased,(46) as would have growing them on e.g., different 

media (44,48). Metabolites were identified based on either a direct match in LC-MS/MS to 

reference standards, all of which had been fully characterized by NMR, or to a class of fungal 

metabolites (i.e., via mass defect filtering (22,23)). A total of 60 metabolites were identified at 

two levels of confidence (Table 1, ‘A’ and ‘B’ respectively), subsequently referred to as 

‘identified SMs’. Three biological replicates provided insight into the consistency of SM 

production by the various BGCs and strains (Figure S1). Overall, we found the most 

biosynthetically rich strains across all replicates and temperatures yielded up to three times more 

SMs than the least-producing strains (e.g., CBS 150748: N=45 vs. CBS 54465 : N=15). 

Interestingly, strains with the greatest consistency of SM production across all biological 

replicates produced fewer metabolites (e.g., 18/20 SMs were detected in all replicates of strain 
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CBS 150750 at 30C (90%) (Figure S2)(46).

Predicting the BGCs linked to experimentally identified SMs 

To generate hypotheses about the biosynthetic origin of SMs from A. fischeri, we calculated 

pairwise Tanimoto similarities for all 60 experimentally identified chemical structures from A. 

fischeri and all known SMs from the MIBiG database. We next used the all-versus-all structural 

similarity matrix to perform hierarchical clustering and generate groups of highly similar SMs 

(Table 1, Figure 3; Figure S3). The highest match between an identified SM and an SM (or a 

set of SMs) from MIBiG, which is already linked to a BGC, enabled us to assign the identified 

SM to that corresponding BGC; we refer to these assignments as hypothetical SM-BGC links 

(Table 1).

Identified SMs were thus linked to putative BGCs via their highest structural similarity to SMs 

from MIBiG. In doing so, we generated BGC hypotheses for all 60 identified metabolites from 

A. fischeri. Of these, 22 A. fischeri metabolites were identical to SMs in the MIBiG database, i.e., 

representing known SM-BGC links, and 37 metabolites were structurally similar, but not 

identical, to SMs in MIBiG (Table S1 ‘confidence’ column: ‘reported’ and ‘predicted,’ 

respectively). The sole remaining metabolite is a sterol, which was not linked to a BGC, as sterol 

biosynthesis is part of primary metabolism (49,50). Structural similarity between identified SMs 

and SMs in MIBiG varied substantially for the 37 metabolites examined (Figure 3). For 

example, the experimentally identified SM acetylaszonalenin produces an exact match with the 

acetylaszonalenin SM present in the MIBiG database (Figure 3A). Two additional 
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experimentally identified SMs have a high similarity with acetylaszonalenin: aszonalenin and 4-

hyrdroxyaszonalenin. Upon further investigation, the link of aszonalenin with the 

acetylaszonalenin BGC is confirmed by literature (but not recorded in MIBiG), while the link 

between 4-hyrdroxyaszonalenin and the acetylaszonalenin BGC remains a hypothetical 

connection not yet experimentally confirmed. In other cases, such the breviamides (Figure 3B), 

the similarity score between experimentally identified SMs and MIBiG SMs is lower, which 

suggests that these metabolites may be biosynthesized by a BGC not currently present in the 

MIBiG database. All SM groups and hypotheses are described in Table 1, and are subsequently 

evaluated in depth.
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Figure 3. Pairwise structural similarities among secondary metabolites (SMs) within an 
SM group (blue) and between experimentally identified SMs and all MIBiG metabolites 
(red). Each dot represents a Tanimoto similarity between two structures. A. Matching an 
SM group to a known MIBiG metabolites. Three experimentally identified aszonalenin 
analogs show high mutual similarity (0.59–0.81) and were therefore grouped. Their 
similarities to MIBiG metabolites are shown in red; dashed lines mark each metabolite’s 
highest MIBiG match. Acetylaszonalenin, which is also present in MIBiG 
(BGC0000293), matches itself with a similarity of 1 and also shows the highest similarity 
to aszonalenin and 4-hydroxyaszonalenin. This group was therefore linked to 
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BGC0000293. B. SM group without a MIBiG counterpart. Seven brevianamides show 
high within-group similarity (0.44–0.83) and were grouped accordingly. Their similarities 
to MIBiG SMs (red) show that the closest MIBiG match (tryprostatin B to brevianamide 
V) falls below the lowest within-group similarity. Although all share the same L-Trp/L-Pro 
diketopiperazine core, they differ in prenylation and other modifications. Thus, this 
group was not linked to any known MIBiG metabolite.

Table 1: The 60 metabolites identified from 16 strains of A. fischeri were hierarchically 
clustered into 25 SM groups based on structural similarity. Each group was assigned an 
arbitrary identifier (i.e., 1 to 25). The superscript after the SM name indicates the level of 
experimental support: A MS/MS and NMR or MS/MS and dereplication with in-house 
database/standard; B MS/MS only. For each SM, the BGC(s) linked by structural 
similarity clustering are indicated, with the underlined BGCs yielding the highest 
Tanimoto similarity match. Hypothetical links that were confirmed post-hoc based on 
experimental data (e.g., identical SM structures, evidence from the literature) are 
denoted as ‘reported’, and all newly generated hypotheses without additional evidence 
are denoted as ‘predicted’. For SMs of known BGCs, all generated hypotheses were 
accurate. For an overview of all structurally similar metabolites from A. fischeri together 
with their top SM hits in MIBiG database, where available, see Figure S5.

SM 
group 
# SM BGC link

BGC 
present confidence Reference

1 Ilicicolin E B
BGC0001923, 
BGC0001924 (New BGC 1) no predicted (51)

2
(3β,22E)-Ergosta-
4,6,8(14),22-tetraene-3-ol A (primary metabolism) – – (49)

3 Fumagillol B BGC0001067 yes reported (52)

4 Brevianamide A/B B
BGC0001084, 
BGC0000816 (New BGC 2) no predicted  

4 Brevianamide C/D B
BGC0001084, 
BGC0000816 (New BGC 2) no predicted  

5 Brevianamide Q B BGC0000442 (New BGC 3) no predicted  
5 Brevianamide R B BGC0000442 (New BGC 3) no predicted  
5 Brevianamide T B BGC0000442 (New BGC 3) no predicted  
5 Brevianamide U B BGC0000442 (New BGC 3) no predicted  
5 Brevianamide V/W B BGC0000356 (New BGC 3) no predicted  
5 Brevianamide K B BGC0000442 (New BGC 3) no predicted  
6 Cottoquinazoline E A BGC0000355 putative predicted (53,54)
6 Cottoquinazoline F A BGC0000355 putative predicted (53,54)
6 Cottoquinazoline G A BGC0000355 putative predicted (53,54)

7 Fumitremorgin F B
BGC0001142, 
BGC0000355 (New BGC 4) no predicted (55)

7 Fumitremorgin G/L B
BGC0001142, 
BGC0000355 (New BGC 4) no predicted (55)
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8 4-Hydroxyaszonalenin B
BGC0000293, 
(BGC0002272) yes predicted (56)

8 Acetylaszonalenin A
BGC0000293, 
(BGC0002272) yes reported (56)

8 Aszonalenin A
BGC0000293, 
(BGC0002272) yes reported (56,57)

9 Isoroquefortine C B BGC0000420 yes reported (58,59)
9 Roquefortine C B BGC0000420 yes reported (58,59)

10 Brevianamide E B
BGC0002272, 
BGC0002617 no predicted  

11 13-O-prenylfumitremorgin B A BGC0000356 yes predicted (60,61) 
11 Brevianamide F B BGC0000356 yes reported (60,61)
11 Deoxybrevianamide E B BGC0000356 yes predicted (60,61)
11 Fumitremorgin A A BGC0000356 yes reported (62)
11 Fumitremorgin B A BGC0000356 yes reported (60,61)
11 Fumitremorgin C A BGC0000356 yes reported (60,61)

11

spiro[5H,10H-dipyrrolo-[1,2-
a:1′,2′-d]pyrazine-2-(3H),2′-
[2H]-indole]-3′,5,10(1′H)trione 
A BGC0000356 yes predicted (63)

11 Tryprostatin B B BGC0000356 yes reported (60,61)
11 Tryprostatin C/D B BGC0000356 yes predicted (60,61)
11 Verruculogen B BGC0000356 yes reported (60,61)

12
hexadehydroastechrome 
(monomer) B BGC0000372 yes reported (64)

12 Trihistatin A
BGC0000420, 
BGC0000372 yes predicted (64)

13
16-O-deacetyl helvolic acid 
21,16-lactone B BGC0000686 yes predicted (65)

13 Helvolic acid A BGC0000686 yes reported (65)

14 Pyripyropene F B
BGC0000129, 
BGC0001068 yes predicted (66)

14 Pyripyropene H B
BGC0000129, 
BGC0001068 yes predicted (66)

14 Pyripyropene I B
BGC0000129, 
BGC0001068 yes predicted (66)

14 Pyripyropene O B
BGC0000129, 
BGC0001068 yes predicted (66)

15 Azonapyrone A A BGC0002604 yes predicted (67)
15 Sartorypyrone A A BGC0002604 yes reported (67)

16 Circumdatin C A

BGC0000355, 
BGC0001652, 
BGC0000448, 
BGC0000409, 
BGC0000303 (New BGC 5) no predicted  

16 Dimetoxycircumdatin C A

BGC0000355, 
BGC0001652, 
BGC0000448, no predicted  
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BGC0000409, 
BGC0000303 (New BGC 5)

17 Betaenone E B
BGC0002165, 
BGC0001264 (New BGC 6) no predicted (68)

17 Betaenone G/I/J B
BGC0002165, 
BGC0001264 (New BGC 6) no predicted (68)

17 Betaenone H B
BGC0002165, 
BGC0001264 (New BGC 6) no predicted (68)

18 Clavaric acid B BGC0001248 yes reported (69,70)

19 Chaetoglobosin 542 B

BGC0002539, 
BGC0000968, 
BGC0001182 yes predicted (71)

20 Neosartoricin B BGC0001144 yes reported (72,73)
20 Neosartoricin C B BGC0001144 yes reported (72,73)
20 Neosartoricin D B BGC0001144 yes reported (72,73)

21 Brevianamide L B
BGC0002208, 
BGC0002242 (New BGC 7) no predicted (74)

21 Brevianamide O B
BGC0002208, 
BGC0002242 (New BGC 7) no predicted (74)

21 Brevianamide P B
BGC0002208, 
BGC0002242 (New BGC 7) no predicted (74)

22

Secalonic acids (A/ B/ C/ D/ 
E/ F/ F1/ G; 4,4'-Secalonic 
acid E) B

BGC0002063, 
BGC0001886, 
BGC0001988 yes reported (75)

23 Nidiascin C A
BGC0002275, 
BGC0002171 (New BGC 8) no predicted  

24 Neosartorin A BGC0001988 yes reported (76)

25
Bisdethiobis(methylthio)-
gliotoxin A BGC0000361 yes reported (4)

25 Gliotoxin A BGC0000361 yes reported (4)

Assigning BGCs to identical pairs of structures

There were 13 A. fischeri SMs that had an identical SM structure included in the MIBiG 

database (Table 1). While unsurprising and seemingly trivial, the ability of our approach to 

quickly assign BGCs for experimentally identified SMs also present in the MIBiG database 

offers considerable practical utility, since the natural products literature does not dictate a 

consistent nomenclature process for SMs, which makes lookups by name futile. Lack of well-

catalogued data further complicates fast identification (43). 
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The 13 SMs identified from A. fischeri with an identical SM match in the MIBiG database are: 

acetylaszonalenin, brevianamide F, clavaric acid, fumagilol, fumitremorgin B and C, helvolic 

acid, hexadehydroastechrom, neosartorin, roquefortine C, sartorypyrone A, tryprostatin B, and 

verruculogen. Notably, three known SM-BGC pairs were missed by our structure similarity 

approach due to database limitations. These were bisdethiobis(methylthio)gliotoxin and 

gliotoxin, both produced by gliotoxin BGC0000361, which was retired in MIBiG v3.1, and 

secalonic acid(s) for which the SM(s) were not structurally identified in our study nor when 

describing the BGC (and hence neither in the corresponding MIBiG BGC0001886 entry). 

Uncovering BGCs for SMs not present in the MIBiG database

Not all known biosynthetic intermediates, shunt products or possible SMs are deposited in the 

MIBiG database. Thus, six additional SM-BGC links were confirmed based on primary 

literature. These are aszonalenin in BGC0000293 (56), fumitremorgin A in BGC0000356 (62), 

isoroquefortine C in BGC0000420(58), and neosartoricin, neosartoricin C, and neosartoricin D in 

BGC0001144 (72). Notably, isoroquefortine C is an artifact produced by the isomerization of 

roquefortine C caused by pH or light (58). Similarly, neosartoricin C and D might be artifacts 

related to the production of neosartoricin B (72). Indeed, artifacts – compounds that were 

isolated but whose structure slightly differs from the true SM, possibly due to extraction solvents 

or sample handling – are a well-known challenge in the natural products literature (77). Finally, 

fumitremorgin A is technically not considered a product of the verruculogen BGC 

(BGC0000356), as the gene encoding the FtmPT3 protein responsible for converting 

verruculogen to fumitremorgin A is not part of the BGC (62). However, this variation in the 

degree of biosynthetic gene clustering is not unusual (78). Given that fumitremorgin A is 
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produced from verruculogen, an SM of this BGC, it is reasonable to include it in the set of SMs 

attributed to BGC0000356. In summary, our approach directly assigned BGCs for 22 of the 60 

experimentally identified SMs (36%). 

The remaining 38 A. fischeri identified metabolites did not have identical matches to SM 

structures included in the MIBiG database or biosynthetic information in the literature. Thus, we 

augmented the SM-BGC hypotheses for each of these metabolites based on structural similarity 

by examining whether A. fischeri genomes contained the SM-linked BGCs (for details on BGC 

prediction/detection, see Methods and the next section). Our predictions can be broadly grouped 

into three level-of-confidence categories: (i) attributing the metabolite to a known BGC that is 

present in the respective A. fischeri strain genome(s) (e.g., 4-hydroxyaszonalenin – 

BGC0000293, Figure 3A), (ii) linking the SM to a BGC not present in the respective A. fischeri 

genome(s), and (iii) ascribing the SM (or SM group) as a novel metabolite(s) likely encoded by 

an unknown BGC (i.e., no similar SMs are present in the MIBiG database, Figure 3B). Given 

the dearth of fungal BGCs in MIBiG (i.e., only 377), we were pleased that our approach 

predicted 13 SMs in category (i), 11 SMs in category (ii), and 13 SMs in category (iii) (see 

extended Table S1 for more details, and Table S2 for all Tanimoto similarities). Notably, we 

found that the BGCs associated with 38 of the 59 predicted SM-BGC links (64%) are in the 

curated list of A. fischeri BGCs (Table S1). For the remaining “undetected” BGCs, hypotheses 

to explain this pattern are consistent with the presence of a homologous but divergent/convergent 

BGC or with genome incompleteness. The latter possibility is less likely because the estimated 

genome completeness is very high (46). 

Page 18 of 41Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 5

:3
5:

38
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5OB01965F

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ob01965f


Genomic characterization of A. fischeri BGCs 

To evaluate the hypotheses generated for the 38 remaining metabolites without known BGCs, we 

next examined the BGC content of the A. fischeri genomes. We first analyzed the 16 genomes 

using antiSMASH v7, which predicts ‘BGC regions’ –i.e., continuous stretches in the genome 

containing BGC(s) and other genes (Figure 4). For traceability, we also identified and grouped 

homologous BGCs across the individual genomes. Across all 16 genomes, antiSMASH predicted 

44 BGC regions that corresponded to 42 unique BGCs (BGC0001248 and BGC0002710 were 

each detected in two regions of the genomes), as well as 20 candidate BGC regions (‘unnamed’ 

or ‘orphan’ putative BGCs). The mean number of BGCs per strain was 53.3 (range 51–56), a 

number consistent with previous reports (79). Note that we refer to these predicted BGCs by the 

accession numbers of their reference BGCs in the MIBiG database.

antiSMASH-predicted BGCs were classified as ‘present’ in A. fischeri when they contained all 

the genes present in the reference MIBiG entry, or when they were incomplete but supported by 

evidence from structurally identified SMs. Additionally, BGCs were classified as ‘putative’ in A. 

fischeri when they were incomplete with at least half of the genes detected but without evidence 

from the metabolomics study. Otherwise, BGCs were classified as ‘absent’ (i.e., fewer than half 

of the genes were found and no evidence from metabolomics was present). Examining each of 

the 44 antiSMASH-predicted BGC regions across A. fischeri genomes, we classified 20 BGCs as 

‘present’, 9 as ‘putative’, and 15 as ‘absent’ (Table S3). We also specifically searched for the 

protein sequences of each MIBiG BGC in the RNAseq-based gene annotations(46), allowing us 

Page 19 of 41 Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 5

:3
5:

38
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5OB01965F

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ob01965f


to manually curate and revise the antiSMASH predictions. These additional analyses enabled us 

to classify 7 additional BGCs as ‘present’ and 4 BGCs as ‘putative’. A full list of BGCs is given 

in Table S3, with information on sequence identity with known BGC genes and genomic 

location in Table S4. Subsequently, we detail issues and difficulties in faithfully assessing the 

number and identity of BCGs present in genomes.

Among all 40 BGCs classified as ‘present’ or ‘putative’, five artifacts reduce the total BGC 

count. These primarily stem from the current cataloging approach for BGCs and the scientific 

community’s limited understanding of them. MIBiG defines each BGC in the genome it is 

reported in, sometimes listing the 'same' (i.e., homologous) BGC multiple times from different 

organisms. Similarly, one BGC that biosynthesizes one SM can be nested within another, larger 

BGC that biosynthesizes a different SM. These situations can lead to ‘collisions’, i.e. the 

assignment of the same set of genes to multiple BGCs. 

There were collisions in two pairs of BGCs where the same set of proteins in A. fischeri is 

classified as two different BGCs due to similarity of the MIBiG reference sequences 

(BGC0000361 gliotoxin / BGC0001609 gliovirin, and BGC0001144 neosartoricin B / 

BGC0002646 hancockinone A), reducing the number of unique BGCs by two. The BGC for 

biotin is listed twice in the MIBiG database (BGC0001238 and BGC0001239) but was counted 

only once, as it matches the same set of genes. Similarly, there are two slightly different BGCs 

matching a congruent set of genes for the metabolite ilicicolin H (BGC0002035 and 

BGC0002093), which were counted as one BGC, further decreasing the total count by two. 

Additionally, the BGC for clavaric acid (BGC0001248), which is composed of a single gene, 
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was found twice (Table S4). However, only one of the two homologs identified (homolog ID 

221721_1) contains the sequence motif VSDCISE, which was previously found in Fusarium 

graminearum to be involved in clavaric acid production (70). 

In total, we infer that A. fischeri contains 35 ‘present’ and ‘putative’ BGCs (Figure 4, Table S3). 

Overall, BGC content was largely conserved and consistent across the 16 strains, with most 

BGCs (82%; 29/35 total ‘present’ and ‘putative’ BGCs) detected in all strains. 

Figure 4: Map of BGC and SM presence in A. fischeri. BGCs across the 16 strains of 
Aspergillus fischeri. The black circle around a given data point indicates the BGC was 
detected by antiSMASH in the respective genome. The fill indicates the BGC 
completeness (ratio of expected to verified genes). The x denotes instances in which a 
known SM for a given BGC was identified in the respective strain. The five artifactual 
BGCs, antiSMASH-predicted BGCs found ‘absent’, and unnamed BGC regions were 
not included. For a complete evaluation of all antiSMASH-predicted BGCs, see Table 
S3. Empirically, we find that the lowest number of verified genes for an active BGC (SM 
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identified), is in BGC0000420, where we detect 3 or 4 out of 7 expected genes. This 
aligns with our threshold of 50% of genes present for ‘putatively present’ BGCs.

Caveats for using antiSMASH as tool for accurate BGC surveys

We chose the comparison and validation of antiSMASH, since it is a widely used (and very 

useful) tool for BGC prediction in fungal genomes (34). antiSMASH is designed to discover 

regions containing known or novel BGCs (15). In practice, the tool is frequently also used to 

discover BGCs (rather than regions containing BGCs) in fungal genomes, with the results being 

taken at face value without further scrutiny. While examining the correspondence between A. 

fischeri BGCs identified by antiSMASH and their inferred references in the MIBiG database, we 

noted five sources of error associated with the common practice of conflating the BGC regions 

identified by antiSMASH with individual BGCs. 

First, in most known BGCs, the locus predicted by antiSMASH to contain a BGC was much 

larger (up to approximately three times the number of genes) than the actual BGC. This is by 

design, as BGC boundaries are difficult to define (formerly possible with CASSIS (11)) and 

hence the more relaxed/inclusive ‘region’ concept in antiSMASH (Figure 4, 5A). Second, as 

BGCs are known to co-localize, particularly in telomeric or low complexity regions of genomes 

(80,81), their physical proximity on chromosomes, in combination with this ‘regions’ concept, 

can lead to BGCs masking each other (Figure 5B). This masking occurred in the proximal BGCs 

BGC0001403 for trypacidin and BGC0001988 for neosartorin, and with BGC0000356 for 

verruculogen and BGC0001067 for fumagillin. Examination of 16 strains of A. fischeri revealed 

some instances where the same homologous genes were predicted as part of different BGCs in 

different strains (Figure 5C). Third, at low identities, the BGC predictions from the module ‘--
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cb-knownclusters’ may be misleading/arbitrary as we found several instances of the same 

orthologous region being labeled as different BGCs. A fourth source of inaccuracies stems from 

version differences of the MIBiG database used for the BGC prediction. Curation processes 

continually expand the knowledge base (32), but sometimes, valid BGCs are removed or lacking, 

thus leading to missed predictions (e.g., the extensively studied gliotoxin BGC, which was 

retired, i.e. removed in MIBiG v3.1/v4.0) (Figure 4). Finally, we noted instances of BGCs 

missed by antiSMASH (but detected by protein sequence searches) for reasons that are not 

apparent (Figure 4).

Figure 5. antiSMASH-predicted BGC regions in fungal genomes do not correspond to 
predicted BGCs. There are five reasons for this lack of correspondence, including (A) 
region overprediction, (B) merging/masking, and (C) inconsistent BGC assignments. A. 
Region overprediction: Overprediction is defined as the difference between the 
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number of genes included in the antiSMASH “region” and the true BGC boundaries. 
Predicted regions frequently extend into neighboring BGCs, which can promote artificial 
merging of adjacent clusters (see B). B. Merging and masking: Example of 
BGC0001403 and BGC0001988, two adjacent clusters in A. fischeri. Their proximity 
leads antiSMASH to merge them in all but one genome, causing BGC0001988 to mask 
BGC0001403. Although both BGCs occur in all strains, antiSMASH failed to list 
BGC0001403 in 15 of 16 cases. C. Inconsistent prediction across strains: Using the 
same strains as in panel B, ortholog tracking shows that an identical genomic region 
was assigned to different BGC accessions (BGC0000161, BGC0000307, 
BGC0001290). Plotting all orthologs attributed to BGC0001290 illustrates that the same 
gene set was labeled as three different BGCs across strains.

Discussion

There are at least 30,000 reported fungal metabolites (24,82–84) and millions of BGCs predicted 

in fungal genomes (26–28) but only a few hundred SM-BGC pairs (32), suggesting that linking 

SMs and BGCs remains challenging. To address this challenge, we developed an SM-BGC 

linking approach based on chemical similarity, that requires a minimum of input data (e.g., a 

single SM) and can be performed using experimental data or data retrieved from natural product 

databases (82–85). Across 16 strains of a single fungal species, our approach recovered 22 

known SM-BGC pairs and generated hypotheses for 37 more, including 11 that could be SMs 

attributed to BGCs present in MIBiG. Thus, our approach efficiently automated SM-driven 

linking of SM and BGCs, and faithfully recovered known connections, additional links not 

included in MIBiG, and new hypotheses. This approach offers two advantages: (1) it can provide 

orthogonal BGC validation (in case of known links i.e., Tanimoto similarity =1), and (2) it can 

generate hypotheses for SMs whose biosynthetic pathways are not known (i.e., Tanimoto 

similarity <1).

Method development in BGC detection from genomic data has produced many tools (e.g., 

SMURF (86), antiSMASH (15), BiG-SCAPE (87), cblaster (88), DeepBGC (13), BGCFlow 
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(89), CLOCI (12), zol and fai (14)). Additionally, SM-BGC links can be established via 

correlation analyses, an approach termed ‘metabologenomics’, or specific experiments such as 

‘IsoAnalyst’ (40). Metabologenomics can yield de novo SM-BGC links, but requires large 

datasets (> 100 species) from extensive experimental data as well as sophisticated fine-tuning of 

scoring functions and parameters, dependent on BGC class (NP Linker)(36,90). These genome- 

or BGC-driven innovations stand in contrast to the number of integrative tools for linking SMs 

(SANDPUMA (91), GNP (92), PARAS (93)), which typically are limited to specific taxa or 

classes of SMs. Furthermore, only two tools are available that can link SMs to BGCs: RIPPminer 

(94) and Prism (95,96), which again are limited to specific classes of SMs or taxa. The method 

outlined here fills a gap, where the strategy of connecting SMs to BGC is agnostic to chemical 

structural class, organism, data size or specificity. 

As a consequence of the aforementioned challenges in SM-BGC linking, existing strategies for 

straightforward orthogonal validation of BGCs are lacking. SM-BGC links are typically 

validated via gene knock-out studies (e.g., (65,97,98)). In contrast, in silico tools linking SMs to 

BGCs deliver unvalidated predictions or connections. The wealth of BGC prediction tools with 

various strategies, focused on specific BGC classes or more general tools (10) poses a challenge 

because presence/absence or identity of a predicted BGC are frequently a function of arbitrary 

cutoffs (Figure 5). BGCs can be interpreted with some fluidity, e.g., many genes in described 

BGCs are of unknown function and may not be essential to the BGC, synteny conservation is 

sometimes low, and with increasing phylogenetic/evolutionary distance, gene and protein 

sequences naturally diverge. Using metabolomics as orthogonal validation can be a means to 
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avoid arbitrary thresholds confirming the presence of a BGC with the unambiguous presence of 

its SM product(s).

In our structural similarity analyses, we refrained from setting a similarity threshold, due to the 

known patchiness of SMs present in the MIBiG database (i.e., only 692 fungal SMs out of 

>30,000 reported in the literature), general limitations in SM-BGC pairing knowledge, and 

previously documented challenges with threshold-based approaches (36). Moreover, some SMs 

(particularly biosynthetic intermediates) are not necessarily unique to any single BGC. For 

example, the diketopiperazine brevianamide F (cyclo-L-Trp-L-Pro) is the first product of the 

biosynthesis of verruculogen by BGC000356 in A. fumigatus (60) as well as of the biosynthesis 

of notoamide A by BGC0000818 in Aspergillus versicolor (99) and brevianamide A by the bvn 

gene cluster (currently not listed in MIBiG) in Penicillium brevicompactum NRRL 864 (100).

Our chemical structure similarity approach also has caveats. Our results are based on the 

examination of strains of an Aspergillus species, one of the most well studied fungal genera in 

terms of prior knowledge of SM-BGC pairs. Studies of less-studied organisms may be more 

challenging, especially if their chemodiversity differs from the SMs currently represented in the 

MIBiG database, resulting in hypotheses (SM-BGC links and SM groups) that may be a poor fit. 

As we have shown, some published SM-BGC pairs are not currently included in the MIBiG 

database.  Yet, as databases grow, so does the utility of this approach. This methodology could 

further be expanded to work on partial structures or m/z fingerprints in the same manner as using 

SMILES as input. Additionally, chemical conversions that alter the backbone or skeleton of a 

SM sufficiently could mask a better clustering fit. Furthermore, when SMs are produced by 
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multiple non-homologous BGCs (e.g., brevianamide F), genomic evidence is necessary to 

determine which BGC it is produced by. Such instances of convergently evolved SMs would 

only be detected in this strategy when finding the SM and not the BGC (but this inference would 

be based on the absence of evidence). Putative examples of this in our data are chaetoglobosin 

542 and ilicicolin E. Chaetoglobosin 542 is structurally very similar to chaetoglobosin A 

produced by BGC0000968 (101), which is similar to two different A. fischeri BGCs. 

Interestingly, the presence-absence patterns of the BGC and the SM match only for one of the 

BGCs. In the second case, ilicicolin E differs from ascochlorin of BGC0001923 (51) only by the 

presence of an α,β-unsaturated ketone instead of the aliphatic ketone, respectively, in the 6-

membered ring. However, A. fischeri genomes do not contain any related BGCs, suggesting that 

the observed structural similarity of the two SMs may result from convergent evolution. Of 

course, another possibility is that the BGC is present in the genome but not part of the genome 

assembly (e.g., because it resides in an otherwise highly repetitive region).

These caveats notwithstanding, our approach successfully inferred SM-BGC pairs for nearly one 

third of the fungal metabolites identified and predicted SM-BGC pair hypotheses for nearly all 

the rest. Ultimately, our approach is a hypothesis-generating strategy and must be validated 

experimentally (e.g., by modifying putative BGCs in the native host or through heterologous 

expression of the putative BGC)(33,102). The approach applied in this work leveraged similarity 

among known SM structures and BGCs to bidirectionally link SMs and BGCs via the MIBiG 

database and thereby successfully generated testable biosynthetic hypotheses in a high-

throughput fashion and validated the presence of predicted BGCs. This increases the fidelity of 

the biological conclusions drawn based on the BGCs and their implications for the chemotype 
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(i.e., SM profile), lifestyle, and niche of an organism. While our approach is hypothesis-

generating and requires further validation, it can augment the fidelity of stand-alone tools that 

operate solely either on metabolomic or genomic data.

Methods

All genomic and metabolomic data were taken from Rinker et al.(46) and are available via  

FigShare (https://doi.org/10.6084/m9.figshare.25316452).

Chemical fingerprinting and clustering

Structures (SMILES, simplified molecular-input line-entry system; a text string representing the 

molecule) for all SMs identified from untargeted metabolomics were collected via ChemDraw 

v23.1.1 (Revvity) and combined with structures from known BGCs deposited in the MIBiG 

database (32). Chemoinformatic analyses were carried out in Jupyter notebook(103) using RDKit 

and PubChemPy(104). To facilitate the subsequent search for the detected metabolites, we 

prefixed the names of structures from MIBiG with the BGC accession ID, and those of 

metabolites found in extracts with 'chem_'. For comparing structural similarity and clustering the 

metabolites, we calculated the Morgan fingerprint for each metabolite with 

GetMorganFingerprintAsBitVect() using chirality with a radius of 2, and 2048 bits, and 

converted the fingerprints to binary strings using ToBitString(). We calculated Tanimoto 

similarity (Jaccard index, the intersection of set bitflags divided by the union) between all 

pairwise comparisons using calculate_tanimoto() resulting in a symmetric similarity matrix of 

all-vs-all comparisons. With linkage(method='average', metric='euclidean') and dendrogram() 
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from scipy, we performed hierarchical clustering of the metabolites based on the distance matrix 

and used matplotlib to plot and save the resulting figure (Figure S3). SM groups were initially 

delineated by searching the dendrogram for the tag “chem_” and grouping similar structures. 

Subsequently, for every identified SM, the highest pairwise similarity scores with a SM (or a set 

of SMs) in the MIBiG database was extracted from the similarity matrix, thereby generating 

biosynthetic hypotheses for each SM. To test validity, we performed bootstrap resampling (1000 

replicates) yielding a 95% confidence interval of [0.475, 0.498] for the median difference, 

confirming the robustness of the result.

BGC predictions 

BGCs were predicted using antiSMASH v7.1.0(15) and DIAMOND v2.1.6.160 blastp 

searches(105) of the MIBiG database v3.1(30). All subsequent analyses were performed in R 

v4.4.0(106). Conventionally, BGCs are defined in a specific genome. However, in this 

manuscript, we refer to the predicted candidate BGCs by their MIBiG accession number for 

convenience.

After the antiSMASH prediction (--fullhmmer --rre --cc-MIBiG --cb-knownclusters --cb-

subclusters --cb-general, using the corresponding gff3 annotation file), we aggregated results 

from individual runs into a single file. Across the different strains, known and unknown BGCs 

were aggregated by comparing gene content. This approach yielded meaningful clusters as 

evidenced by the correct grouping of known BGCs (with their MIBiG BGC accession ID). This 

clustering revealed instances in which the same genes were attributed to different BGCs (both 

known and “anonymous” candidate clusters) by antiSMASH. 
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For the amino acid sequence search, the 16 genomes were queried with all sequences in MIBiG 

v3.1 (diamond blastp -f6 qseqid sseqid pident length mismatch gapopen qstart qend sstart send 

evalue bitscore qcovhsp qlen slen full_sseq) and the results concatenated. 

To validate the antiSMASH BGC predictions, the genes in each predicted region were searched 

using DIAMOND blastp. Additionally, the hits were filtered for high identity (pident >80%, 

minimum 50% query coverage), as well as for runs of hits against the same BGC in proximity 

(low identity clustering of putative, diverged BGCs). By using DIAMOND blastp to confirm A. 

fischeri BGC genes based on known BGCs, we tagged every BGC gene with a BGC ID from 

MIBiG hence allowing for interoperability of biological and chemical data.

BGCs were classified as present if all genes were found in proximity, regardless of whether a 

corresponding SM was detected, or if they were recovered partially, i.e. incomplete but with 

evidence from SMs. BGCs were classified as putative if more than half of the genes were present 

but there was no evidence for their presence based on metabolomics. BGCs were classified as 

absent if fewer than half of the genes were found and no evidence from metabolomics was 

present.

Additional data (https://figshare.com/s/27b1a13ca534c1e646f4) and analysis code 

(https://figshare.com/s/a2c267ec94e82e062bdd) for this study can be found on FigShare.

Page 30 of 41Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 5

:3
5:

38
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5OB01965F

https://figshare.com/s/27b1a13ca534c1e646f4
https://figshare.com/s/a2c267ec94e82e062bdd
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ob01965f


Funding information

KS was supported by a PostDoc stipend of the Swedish Pharmaceutical Society. Research in the 

AR lab is supported by the National Science Foundation (DEB-2110404) and the National 

Institutes of Health/National Institute of Allergy and Infectious Diseases (R01 AI153356).

OLR was supported by the National Science Foundation Graduate Research Fellowship Program 

under Grant No. 2444112. Any opinions, findings, and conclusions or recommendations 

expressed in this material are those of the author(s) and do not necessarily reflect the views of 

the National Science Foundation. GHG thanks the Conselho Nacional de Desenvolvimento 

Científico e Tecnológico (CNPq) and Fundação Coordenação de Aperfeiçoamento do Pessoal do 

Ensino Superior (CAPES) grant number 405934/2022-0 (The National Institute of Science and 

Technology INCT Funvir), and CNPq 301058/2019-9 from Brazil. 

Competing Interest Statement

AR is a scientific consultant for LifeMine Therapeutics, Inc. NHO has ownership interests in 

Ionic Pharmaceuticals, LLC and is a member of the Scientific Advisory Board of Mycosynthetix, 

Inc. HAR, TNG, and N.H.O. are members of the Scientific Advisory Board of Clue Genetics, 

Inc. KS is a data scientist at Olink part of Thermo Fisher Scientific.

Page 31 of 41 Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 5

:3
5:

38
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5OB01965F

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ob01965f


References

1. Keller NP. Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev 
Microbiol. 2019 Mar;17(3):167–80. 

2. Wiemann P, Lechner BE, Baccile JA, Velk TA, Yin WB, Bok JW, et al. Perturbations in 
small molecule synthesis uncovers an iron-responsive secondary metabolite network in 
Aspergillus fumigatus. Front Microbiol [Internet]. 2014 Oct 24 [cited 2024 Nov 14];5. 
Available from: http://journal.frontiersin.org/article/10.3389/fmicb.2014.00530/abstract

3. Fleming A. On the Antibacterial Action of Cultures of a Penicillium, with Special Reference 
to their Use in the Isolation of B. influenzæ. Br J Exp Pathol. 1929;10(3):226–36. 

4. Dolan SK, O’Keeffe G, Jones GW, Doyle S. Resistance is not futile: gliotoxin biosynthesis, 
functionality and utility. Trends Microbiol. 2015 July;23(7):419–28. 

5. Tomas A. Purification of a Cultivar-Specific Toxin from Pyrenophora tritici-repentis, 
Causal Agent of Tan Spot of Wheat. Mol Plant Microbe Interact. 1990;3(4):221. 

6. Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, et al. Emergence of a 
new disease as a result of interspecific virulence gene transfer. Nat Genet. 2006 
Aug;38(8):953–6. 

7. Newman DJ, Cragg GM. Natural Products as Sources of New Drugs over the Nearly Four 
Decades from 01/1981 to 09/2019. J Nat Prod. 2020 Mar 27;83(3):770–803. 

8. the International Natural Product Sciences Taskforce, Atanasov AG, Zotchev SB, Dirsch 
VM, Supuran CT. Natural products in drug discovery: advances and opportunities. Nat Rev 
Drug Discov. 2021 Mar;20(3):200–16. 

9. Niego AGT, Lambert C, Mortimer P, Thongklang N, Rapior S, Grosse M, et al. The 
contribution of fungi to the global economy. Fungal Divers. 2023 July;121(1):95–137. 

10. Weber T, Kim HU. The secondary metabolite bioinformatics portal: Computational tools to 
facilitate synthetic biology of secondary metabolite production. Synth Syst Biotechnol. 
2016 June;1(2):69–79. 

11. Wolf T, Shelest V, Nath N, Shelest E. CASSIS and SMIPS: promoter-based prediction of 
secondary metabolite gene clusters in eukaryotic genomes. Bioinformatics. 2016 Apr 
15;32(8):1138–43. 

Page 32 of 41Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 5

:3
5:

38
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5OB01965F

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ob01965f


12. Konkel Z, Kubatko L, Slot JC. CLOCI: unveiling cryptic fungal gene clusters with 
generalized detection. Nucleic Acids Res. 2024 July 17;gkae625. 

13. Hannigan GD, Prihoda D, Palicka A, Soukup J, Klempir O, Rampula L, et al. A deep 
learning genome-mining strategy for biosynthetic gene cluster prediction. Nucleic Acids 
Res. 2019 Oct 10;47(18):e110–e110. 

14. Salamzade R, Tran PQ, Martin C, Manson AL, Gilmore MS, Earl AM, et al. zol and fai: 
large-scale targeted detection and evolutionary investigation of gene clusters. Nucleic Acids 
Res. 2025 Jan 24;53(3):gkaf045. 

15. Blin K, Shaw S, Augustijn HE, Reitz ZL, Biermann F, Alanjary M, et al. antiSMASH 7.0: 
new and improved predictions for detection, regulation, chemical structures and 
visualisation. Nucleic Acids Res. 2023 July 5;51(W1):W46–50. 

16. Van Der Hooft JJJ, Mohimani H, Bauermeister A, Dorrestein PC, Duncan KR, Medema MH. 
Linking genomics and metabolomics to chart specialized metabolic diversity. Chem Soc 
Rev. 2020;49(11):3297–314. 

17. Oberlies NH, Knowles SL, Amrine CSM, Kao D, Kertesz V, Raja HA. Droplet probe: 
coupling chromatography to the in situ evaluation of the chemistry of nature. Nat Prod Rep. 
2019;36(7):944–59. 

18. Jarmusch SA, Van Der Hooft JJJ, Dorrestein PC, Jarmusch AK. Advancements in capturing 
and mining mass spectrometry data are transforming natural products research. Nat Prod 
Rep. 2021;38(11):2066–82. 

19. Dong Y, Aharoni A. Image to insight: exploring natural products through mass spectrometry 
imaging. Nat Prod Rep. 2022;39(7):1510–30. 

20. Alseekh S, Aharoni A, Brotman Y, Contrepois K, D’Auria J, Ewald J, et al. Mass 
spectrometry-based metabolomics: a guide for annotation, quantification and best reporting 
practices. Nat Methods. 2021 July;18(7):747–56. 

21. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed 
minimum reporting standards for chemical analysis: Chemical Analysis Working Group 
(CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2007 Sept 19;3(3):211–
21. 

22. El-Elimat T, Figueroa M, Ehrmann BM, Cech NB, Pearce CJ, Oberlies NH. High-Resolution 
MS, MS/MS, and UV Database of Fungal Secondary Metabolites as a Dereplication 
Protocol for Bioactive Natural Products. J Nat Prod. 2013 Sept 27;76(9):1709–16. 

23. Paguigan ND, El-Elimat T, Kao D, Raja HA, Pearce CJ, Oberlies NH. Enhanced 
dereplication of fungal cultures via use of mass defect filtering. J Antibiot (Tokyo). 2017 
May;70(5):553–61. 

Page 33 of 41 Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 5

:3
5:

38
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5OB01965F

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ob01965f


24. Bérdy J. Thoughts and facts about antibiotics: Where we are now and where we are heading. 
J Antibiot (Tokyo). 2012 Aug;65(8):385–95. 

25. Amos GCA, Awakawa T, Tuttle RN, Letzel AC, Kim MC, Kudo Y, et al. Comparative 
transcriptomics as a guide to natural product discovery and biosynthetic gene cluster 
functionality. Proc Natl Acad Sci [Internet]. 2017 Dec 26 [cited 2024 Nov 15];114(52). 
Available from: https://pnas.org/doi/full/10.1073/pnas.1714381115

26. Kautsar SA, Blin K, Shaw S, Weber T, Medema MH. BiG-FAM: the biosynthetic gene 
cluster families database. Nucleic Acids Res. 2021 Jan 8;49(D1):D490–7. 

27. Palaniappan K, Chen IMA, Chu K, Ratner A, Seshadri R, Kyrpides NC, et al. IMG-ABC 
v.5.0: an update to the IMG/Atlas of Biosynthetic Gene Clusters Knowledgebase. Nucleic 
Acids Res. 2019 Oct 29;gkz932. 

28. Zhang S, Shi G, Xu X, Guo X, Li S, Li Z, et al. Global Analysis of Natural Products 
Biosynthetic Diversity Encoded in Fungal Genomes. J Fungi. 2024 Sept 13;10(9):653. 

29. Riedling OL, Rokas A. mGem: How many fungal secondary metabolites are produced by 
filamentous fungi? Conservatively, at least 1.4 million. Rodrigues M, editor. mBio. 2025 
Oct 8;16(10):e01381-25. 

30. Terlouw BR, Blin K, Navarro-Muñoz JC, Avalon NE, Chevrette MG, Egbert S, et al. MIBiG 
3.0: a community-driven effort to annotate experimentally validated biosynthetic gene 
clusters. Nucleic Acids Res. 2023 Jan 6;51(D1):D603–10. 

31. Riedling O, Walker AS, Rokas A. Predicting fungal secondary metabolite activity from 
biosynthetic gene cluster data using machine learning. Anderson MZ, editor. Microbiol 
Spectr. 2024 Feb 6;12(2):e03400-23. 

32. Zdouc MM, Blin K, Louwen NLL, Navarro J, Loureiro C, Bader CD, et al. MIBiG 4.0: 
advancing biosynthetic gene cluster curation through global collaboration. Nucleic Acids 
Res. 2024 Dec 9;gkae1115. 

33. Kjærbølling I, Mortensen UH, Vesth T, Andersen MR. Strategies to establish the link 
between biosynthetic gene clusters and secondary metabolites. Fungal Genet Biol. 2019 
Sept;130:107–21. 

34. Lv HW, Tang JG, Wei B, Zhu MD, Zhang HW, Zhou ZB, et al. Bioinformatics assisted 
construction of the link between biosynthetic gene clusters and secondary metabolites in 
fungi. Biotechnol Adv. 2025 July;81:108547. 

35. Dejong CA, Chen GM, Li H, Johnston CW, Edwards MR, Rees PN, et al. Polyketide and 
nonribosomal peptide retro-biosynthesis and global gene cluster matching. Nat Chem Biol. 
2016 Dec;12(12):1007–14. 

Page 34 of 41Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 5

:3
5:

38
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5OB01965F

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ob01965f


36. Caesar LK, Butun FA, Robey MT, Ayon NJ, Gupta R, Dainko D, et al. Correlative 
metabologenomics of 110 fungi reveals metabolite–gene cluster pairs. Nat Chem Biol. 2023 
July;19(7):846–54. 

37. Nickles GR, Oestereicher B, Keller NP, Drott MT. Mining for a new class of fungal natural 
products: the evolution, diversity, and distribution of isocyanide synthase biosynthetic gene 
clusters. Nucleic Acids Res. 2023 Aug 11;51(14):7220–35. 

38. Kersten RD, Yang YL, Xu Y, Cimermancic P, Nam SJ, Fenical W, et al. A mass 
spectrometry–guided genome mining approach for natural product peptidogenomics. Nat 
Chem Biol. 2011 Nov;7(11):794–802. 

39. Behsaz B, Bode E, Gurevich A, Shi YN, Grundmann F, Acharya D, et al. Integrating 
genomics and metabolomics for scalable non-ribosomal peptide discovery. Nat Commun. 
2021 May 28;12(1):3225. 

40. McCaughey CS, Van Santen JA, Van Der Hooft JJJ, Medema MH, Linington RG. An 
isotopic labeling approach linking natural products with biosynthetic gene clusters. Nat 
Chem Biol. 2022 Mar;18(3):295–304. 

41. Voser TM, Campbell MD, Carroll AR. How different are marine microbial natural products 
compared to their terrestrial counterparts? Nat Prod Rep. 2022;39(1):7–19. 

42. Morgan HL. The Generation of a Unique Machine Description for Chemical Structures-A 
Technique Developed at Chemical Abstracts Service. J Chem Doc. 1965 May 1;5(2):107–
13. 

43. Steffen K, Oberlies NH, Rokas A. Machine-Readable Structural Information Is Essential for 
Natural Products Research. J Nat Prod. 2025 Nov 28;88(11):2815–21. 

44. Mead ME, Knowles SL, Raja HA, Beattie SR, Kowalski CH, Steenwyk JL, et al. 
Characterizing the Pathogenic, Genomic, and Chemical Traits of Aspergillus fischeri , a 
Close Relative of the Major Human Fungal Pathogen Aspergillus fumigatus. Mitchell AP, 
editor. mSphere. 2019 Feb 27;4(1):e00018-19. 

45. Rokas A. Evolution of the human pathogenic lifestyle in fungi. Nat Microbiol. 2022 May 
4;7(5):607–19. 

46. Rinker DC, Sauters TJC, Steffen K, Gumilang A, Raja HA, Rangel-Grimaldo M, et al. Strain 
heterogeneity in a non-pathogenic Aspergillus fungus highlights factors associated with 
virulence. Commun Biol. 2024 Sept 4;7(1):1082. 

47. Bode HB, Bethe B, Höfs R, Zeeck A. Big Effects from Small Changes: Possible Ways to 
Explore Nature’s Chemical Diversity. ChemBioChem. 2002 July 3;3(7):619. 

48. VanderMolen KM, Raja HA, El-Elimat T, Oberlies NH. Evaluation of culture media for the 
production of secondary metabolites in a natural products screening program. AMB 
Express. 2013 Dec;3(1):71. 

Page 35 of 41 Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 5

:3
5:

38
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5OB01965F

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ob01965f


49. Desmond E, Gribaldo S. Phylogenomics of Sterol Synthesis: Insights into the Origin, 
Evolution, and Diversity of a Key Eukaryotic Feature. Genome Biol Evol. 2009 Jan 
1;1:364–81. 

50. Dhingra S, Cramer RA. Regulation of Sterol Biosynthesis in the Human Fungal Pathogen 
Aspergillus fumigatus: Opportunities for Therapeutic Development. Front Microbiol 
[Internet]. 2017 Feb 1 [cited 2025 Feb 6];8. Available from: 
http://journal.frontiersin.org/article/10.3389/fmicb.2017.00092/full

51. Araki Y, Awakawa T, Matsuzaki M, Cho R, Matsuda Y, Hoshino S, et al. Complete 
biosynthetic pathways of ascofuranone and ascochlorin in Acremonium egyptiacum. Proc 
Natl Acad Sci. 2019 Apr 23;116(17):8269–74. 

52. Lin HC, Chooi YH, Dhingra S, Xu W, Calvo AM, Tang Y. The Fumagillin Biosynthetic 
Gene Cluster in Aspergillus fumigatus Encodes a Cryptic Terpene Cyclase Involved in the 
Formation of β- trans -Bergamotene. J Am Chem Soc. 2013 Mar 27;135(12):4616–9. 

53. O’Hanlon KA, Gallagher L, Schrettl M, Jöchl C, Kavanagh K, Larsen TO, et al. 
Nonribosomal Peptide Synthetase Genes pesL and pes1 Are Essential for Fumigaclavine C 
Production in Aspergillus fumigatus. Appl Environ Microbiol. 2012 May;78(9):3166–76. 

54. Ames BD, Haynes SW, Gao X, Evans BS, Kelleher NL, Tang Y, et al. Complexity 
Generation in Fungal Peptidyl Alkaloid Biosynthesis: Oxidation of Fumiquinazoline A to 
the Heptacyclic Hemiaminal Fumiquinazoline C by the Flavoenzyme Af12070 from 
Aspergillus fumigatus. Biochemistry. 2011 Oct 11;50(40):8756–69. 

55. Gao X, Chooi YH, Ames BD, Wang P, Walsh CT, Tang Y. Fungal Indole Alkaloid 
Biosynthesis: Genetic and Biochemical Investigation of the Tryptoquialanine Pathway in 
Penicillium aethiopicum. J Am Chem Soc. 2011 Mar 2;133(8):2729–41. 

56. Yin WB, Grundmann A, Cheng J, Li SM. Acetylaszonalenin Biosynthesis in Neosartorya 
fischeri. J Biol Chem. 2009 Jan;284(1):100–9. 

57. Wakana D, Hosoe T, Itabashi T, Nozawa K, Kawai K ichi, Okada K, et al. Isolation of 
Isoterrein from Neosartorya fischeri. Mycotoxins. 2006;56(1):3–6. 

58. Shangguan N, Hehre WJ, Ohlinger WS, Beavers MP, Joullié MM. The Total Synthesis of 
Roquefortine C and a Rationale for the Thermodynamic Stability of Isoroquefortine C over 
Roquefortine C. J Am Chem Soc. 2008 May 1;130(19):6281–7. 

59. García-Estrada C, Ullán RV, Albillos SM, Fernández-Bodega MÁ, Durek P, von Döhren H, 
et al. A Single Cluster of Coregulated Genes Encodes the Biosynthesis of the Mycotoxins 
Roquefortine C and Meleagrin in Penicillium chrysogenum. Chem Biol. 2011 
Nov;18(11):1499–512. 

60. Maiya S, Grundmann A, Li S, Turner G. The Fumitremorgin Gene Cluster of Aspergillus 
fumigatus : Identification of a Gene Encoding Brevianamide F Synthetase. ChemBioChem. 
2006 July 3;7(7):1062–9. 

Page 36 of 41Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 5

:3
5:

38
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5OB01965F

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ob01965f


61. Grundmann A, Kuznetsova T, Afiyatullov SSh, Li S. FtmPT2, an N ‐Prenyltransferase from 
Aspergillus fumigatus , Catalyses the Last Step in the Biosynthesis of Fumitremorgin B. 
ChemBioChem. 2008 Sept;9(13):2059–63. 

62. Mundt K, Wollinsky B, Ruan H, Zhu T, Li S. Identification of the Verruculogen 
Prenyltransferase FtmPT3 by a Combination of Chemical, Bioinformatic and Biochemical 
Approaches. ChemBioChem. 2012 Nov 26;13(17):2583–92. 

63. Tsunematsu Y, Ishikawa N, Wakana D, Goda Y, Noguchi H, Moriya H, et al. Distinct 
mechanisms for spiro-carbon formation reveal biosynthetic pathway crosstalk. Nat Chem 
Biol. 2013 Dec;9(12):818–25. 

64. Yin WB, Baccile JA, Bok JW, Chen Y, Keller NP, Schroeder FC. A Nonribosomal Peptide 
Synthetase-Derived Iron(III) Complex from the Pathogenic Fungus Aspergillus fumigatus. J 
Am Chem Soc. 2013 Feb 13;135(6):2064–7. 

65. Lv JM, Hu D, Gao H, Kushiro T, Awakawa T, Chen GD, et al. Biosynthesis of helvolic acid 
and identification of an unusual C-4-demethylation process distinct from sterol 
biosynthesis. Nat Commun. 2017 Nov 21;8(1):1644. 

66. Itoh T, Tokunaga K, Matsuda Y, Fujii I, Abe I, Ebizuka Y, et al. Reconstitution of a fungal 
meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases. 
Nat Chem. 2010 Oct;2(10):858–64. 

67. Wang WG, Du LQ, Sheng SL, Li A, Li YP, Cheng GG, et al. Genome mining for fungal 
polyketide-diterpenoid hybrids: discovery of key terpene cyclases and multifunctional 
P450s for structural diversification. Org Chem Front. 2019;6(5):571–8. 

68. Li H, Hu J, Wei H, Solomon PS, Stubbs KA, Chooi Y. Biosynthesis of a Tricyclo[6.2.2.0 2,7 
]dodecane System by a Berberine Bridge Enzyme‐Like Aldolase. Chem – Eur J. 2019 Nov 
27;25(66):15062–6. 

69. Godio RP, Fouces R, Martín JF. A Squalene Epoxidase Is Involved in Biosynthesis of Both 
the Antitumor Compound Clavaric Acid and Sterols in the Basidiomycete H. sublateritium. 
Chem Biol. 2007 Dec;14(12):1334–46. 

70. Godio RP, Martín JF. Modified oxidosqualene cyclases in the formation of bioactive 
secondary metabolites: Biosynthesis of the antitumor clavaric acid. Fungal Genet Biol. 
2009 Mar;46(3):232–42. 

71. Perlatti B, Nichols CB, Lan N, Wiemann P, Harvey CJB, Alspaugh JA, et al. Identification 
of the Antifungal Metabolite Chaetoglobosin P From Discosia rubi Using a Cryptococcus 
neoformans Inhibition Assay: Insights Into Mode of Action and Biosynthesis. Front 
Microbiol. 2020 July 28;11:1766. 

72. Yin WB, Chooi YH, Smith AR, Cacho RA, Hu Y, White TC, et al. Discovery of Cryptic 
Polyketide Metabolites from Dermatophytes Using Heterologous Expression in Aspergillus 
nidulans. ACS Synth Biol. 2013 Nov 15;2(11):629–34. 

Page 37 of 41 Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 5

:3
5:

38
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5OB01965F

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ob01965f


73. Chooi YH, Fang J, Liu H, Filler SG, Wang P, Tang Y. Genome Mining of a Prenylated and 
Immunosuppressive Polyketide from Pathogenic Fungi. Org Lett. 2013 Feb 15;15(4):780–
3. 

74. Zheng L, Wang H, Ludwig-Radtke L, Li SM. Oxepin Formation in Fungi Implies Specific 
and Stereoselective Ring Expansion. Org Lett. 2021 Mar 19;23(6):2024–8. 

75. Neubauer L, Dopstadt J, Humpf HU, Tudzynski P. Identification and characterization of the 
ergochrome gene cluster in the plant pathogenic fungus Claviceps purpurea. Fungal Biol 
Biotechnol. 2016 Dec;3(1):2. 

76. Matsuda Y, Gotfredsen CH, Larsen TO. Genetic Characterization of Neosartorin 
Biosynthesis Provides Insight into Heterodimeric Natural Product Generation. Org Lett. 
2018 Nov 16;20(22):7197–200. 

77. Capon RJ. Extracting value: mechanistic insights into the formation of natural product 
artifacts – case studies in marine natural products. Nat Prod Rep. 2020;37(1):55–79. 

78. Rokas A, Wisecaver JH, Lind AL. The birth, evolution and death of metabolic gene clusters 
in fungi. Nat Rev Microbiol. 2018 Dec;16(12):731–44. 

79. Steenwyk JL, Mead ME, Knowles SL, Raja HA, Roberts CD, Bader O, et al. Variation 
Among Biosynthetic Gene Clusters, Secondary Metabolite Profiles, and Cards of Virulence 
Across Aspergillus Species. Genetics. 2020 Oct 1;216(2):481–97. 

80. Keller NP, Turner G, Bennett JW. Fungal secondary metabolism — from biochemistry to 
genomics. Nat Rev Microbiol. 2005 Dec;3(12):937–47. 

81. Zhang X, Leahy I, Collemare J, Seidl MF. Secondary metabolite biosynthetic gene clusters 
and their genomic localization in the fungal genus Aspergillus [Internet]. 2024 [cited 2024 
June 21]. Available from: http://biorxiv.org/lookup/doi/10.1101/2024.02.20.581327

82. Van Santen JA, Jacob G, Singh AL, Aniebok V, Balunas MJ, Bunsko D, et al. The Natural 
Products Atlas: An Open Access Knowledge Base for Microbial Natural Products 
Discovery. ACS Cent Sci. 2019 Nov 27;5(11):1824–33. 

83. Rutz A, Sorokina M, Galgonek J, Mietchen D, Willighagen E, Gaudry A, et al. The LOTUS 
initiative for open knowledge management in natural products research. eLife. 2022 May 
26;11:e70780. 

84. Chemnetbase Dictionary of Natural Products 33.2 [Internet]. 2024. Available from: 
https://dnp.chemnetbase.com/chemical/ChemicalSearch.xhtml?dswid=918

85. Chandrasekhar V, Rajan K, Kanakam SRS, Sharma N, Weißenborn V, Schaub J, et al. 
COCONUT 2.0: a comprehensive overhaul and curation of the collection of open natural 
products database. Nucleic Acids Res. 2025 Jan 6;53(D1):D634–43. 

Page 38 of 41Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 5

:3
5:

38
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5OB01965F

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ob01965f


86. Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, et al. SMURF: 
Genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol. 2010 
Sept;47(9):736–41. 

87. Navarro-Muñoz JC, Selem-Mojica N, Mullowney MW, Kautsar SA, Tryon JH, Parkinson 
EI, et al. A computational framework to explore large-scale biosynthetic diversity. Nat 
Chem Biol. 2020 Jan;16(1):60–8. 

88. Gilchrist CLM, Booth TJ, Van Wersch B, Van Grieken L, Medema MH, Chooi YH. cblaster: 
a remote search tool for rapid identification and visualization of homologous gene clusters. 
Ouangraoua A, editor. Bioinforma Adv. 2021 June 9;1(1):vbab016. 

89. Nuhamunada M, Mohite OS, Phaneuf PV, Palsson BO, Weber T. BGCFlow: systematic 
pangenome workflow for the analysis of biosynthetic gene clusters across large genomic 
datasets. Nucleic Acids Res. 2024 June 10;52(10):5478–95. 

90. Hjörleifsson Eldjárn G, Ramsay A, Van Der Hooft JJJ, Duncan KR, Soldatou S, Rousu J, et 
al. Ranking microbial metabolomic and genomic links in the NPLinker framework using 
complementary scoring functions. Nagarajan N, editor. PLOS Comput Biol. 2021 May 
4;17(5):e1008920. 

91. Chevrette MG, Aicheler F, Kohlbacher O, Currie CR, Medema MH. SANDPUMA: 
ensemble predictions of nonribosomal peptide chemistry reveal biosynthetic diversity 
across Actinobacteria. Birol I, editor. Bioinformatics. 2017 Oct 15;33(20):3202–10. 

92. Johnston CW, Skinnider MA, Wyatt MA, Li X, Ranieri MRM, Yang L, et al. An automated 
Genomes-to-Natural Products platform (GNP) for the discovery of modular natural 
products. Nat Commun. 2015 Sept 28;6(1):8421. 

93. Terlouw BR, Huang C, Meijer D, Cediel-Becerra JDD, He R, Rothe ML, et al. PARAS: 
high-accuracy machine-learning of substrate specificities in nonribosomal peptide 
synthetases [Internet]. Bioinformatics; 2025 [cited 2025 Dec 6]. Available from: 
http://biorxiv.org/lookup/doi/10.1101/2025.01.08.631717

94. Agrawal P, Khater S, Gupta M, Sain N, Mohanty D. RiPPMiner: a bioinformatics resource 
for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-
links. Nucleic Acids Res. 2017 July 3;45(W1):W80–8. 

95. Skinnider MA, Merwin NJ, Johnston CW, Magarvey NA. PRISM 3: expanded prediction of 
natural product chemical structures from microbial genomes. Nucleic Acids Res. 2017 July 
3;45(W1):W49–54. 

96. Spencer NR, Gunabalasingam M, Dial K, Di X, Malcolm T, Magarvey NA. An integrated AI 
knowledge graph framework of bacterial enzymology and metabolism. Proc Natl Acad Sci. 
2025 Apr 15;122(15):e2425048122. 

Page 39 of 41 Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 5

:3
5:

38
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5OB01965F

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ob01965f


97. Ma K, Zhang P, Tao Q, Keller NP, Yang Y, Yin WB, et al. Characterization and 
Biosynthesis of a Rare Fungal Hopane-Type Triterpenoid Glycoside Involved in the 
Antistress Property of Aspergillus fumigatus. Org Lett. 2019 May 3;21(9):3252–6. 

98. Heard SC, Wu G, Winter JM. Discovery and characterization of a cytochalasan biosynthetic 
cluster from the marine-derived fungus Aspergillus flavipes CNL-338. J Antibiot (Tokyo). 
2020 Nov;73(11):803–7. 

99. Li S, Srinivasan K, Tran H, Yu F, Finefield JM, Sunderhaus JD, et al. Comparative analysis 
of the biosynthetic systems for fungal bicyclo[2.2.2]diazaoctane indole alkaloids: the 
(+)/(−)-notoamide, paraherquamide and malbrancheamide pathways. MedChemComm. 
2012;3(8):987. 

100. Ye Y, Du L, Zhang X, Newmister SA, McCauley M, Alegre-Requena JV, et al. Fungal-
derived brevianamide assembly by a stereoselective semipinacolase. Nat Catal. 2020 May 
18;3(6):497–506. 

101. Schümann J, Hertweck C. Molecular basis of cytochalasan biosynthesis in fungi: gene 
cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA 
silencing. J Am Chem Soc. 2007 Aug 8;129(31):9564–5. 

102. Caesar LK, Robey MT, Swyers M, Islam MN, Ye R, Vagadia PP, et al. Heterologous 
Expression of the Unusual Terreazepine Biosynthetic Gene Cluster Reveals a Promising 
Approach for Identifying New Chemical Scaffolds. Davies JE, editor. mBio. 2020 Aug 
25;11(4):e01691-20. 

103. Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, et al. Jupyter 
Notebooks -- a publishing format for reproducible computational workflows. In: 
Positioning and Power in Academic Publishing: Players, Agents and Agendas. 2016. p. 87–
90. 

104. Greg Landrum, Paolo Tosco, Brian Kelley, Ricardo Rodriguez, David Cosgrove, Riccardo 
Vianello, et al. rdkit/rdkit: 2024_09_3 (Q3 2024) Release [Internet]. Zenodo; 2024 [cited 
2024 Dec 2]. Available from: https://zenodo.org/doi/10.5281/zenodo.591637

105. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat 
Methods. 2015 Jan;12(1):59–60. 

106. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. R 
Foundation for Statistical Computing; 2024. Available from: https://www.R-project.org/

Page 40 of 41Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 5

:3
5:

38
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5OB01965F

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ob01965f


Data availability statement 

Analysis code is deposited together with supplementary files in Figshare 

(https://figshare.com/s/a2c267ec94e82e062bdd, private link for reviewing). The genomic and 

metabolomic data for the 16 A. fischeri strains used in this study were published by Rinker et al. 

43 and can be accessed in GenBank via BioProject accession number PRJNA1129834, and in the 

corresponding Figshare repository (https://doi.org/10.6084/m9.figshare.25316452).

Page 41 of 41 Organic & Biomolecular Chemistry

O
rg

an
ic

&
B

io
m

ol
ec

ul
ar

C
he

m
is

tr
y

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

5/
20

26
 5

:3
5:

38
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5OB01965F

https://figshare.com/s/a2c267ec94e82e062bdd
https://doi.org/10.6084/m9.figshare.25316452
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ob01965f

