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H-bonding, not remote participation, explains
the influence of remote substituents on
stereoselectivity in α-galactosylations
Kate E. Donaghy, Dionissia A. Pepe, Joseph J. Ruddy and
Eoghan M. McGarrigle *

The underlying roles of remote substituents in the stereochemical control of the formation of acetals and

related reactions have been heavily debated. The competing prevailing theories were inconsistent with

some of the trends reported herein. Specifically, electron-poor benzoate groups at the 4-position of a

galactosyl donor gave unexpectedly high α-stereoselectivities in galactosylations. A Hammett study and

DFT calculations led us to propose that non-classical intramolecular hydrogen-bonding to the β-glycosyl
triflate can rationalize the selectivities observed. Using a para-nitrobenzoate protecting group at position

4 of galactosyl donors gave high α-selectivities in the synthesis of galactosides. Benzyl, silyl, allyl and car-

bamate groups were tolerated. The utility of this protocol was demonstrated in >10 examples, including a

gram-scale example and a trisaccharide.

Introduction

The use of substituents remote from a reaction centre to influ-
ence the stereochemical outcome of reactions is widespread in
chemistry.1–7 In the case of reactions proposed to proceed via
oxacarbenium ions, this has been the subject of many
studies.8–16 The role of esters as remote substituents in stereo-
selective glycosylations has been the topic of much controversy
and debate, especially in relation to 4-O-ester-mediated syn-
thesis of biologically important 1,2-cis-galactosides and -fuco-
sides (Fig. 1).17–28 Flowers first proposed that “long-range par-
ticipation”, whereby the axial 4-O-ester of a fucosyl donor
forms a dioxolenium ion intermediate analogous to 1 with an
inaccessible β-face, could explain the high 1,2-cis-selectivity
observed in fucosylations when benzoates were placed at the
4-position.17,18 Many studies have since invoked this inter-
mediate to rationalize stereoselective 1,2-cis-galactosylations
and fucosylations.19,21–23,26–28 Computational studies have been
used to support this hypothesis and, indeed, dioxolenium ions
have been detected experimentally using infrared ion spec-
troscopy and cryogenic vibrational spectroscopy.22,23,29,30

However, these conditions are not representative of experi-
mental conditions in the solution phase. Conversely, Woerpel,
Crich and others have advocated for the hypothesis that
through-space electrostatic stabilization of ion pairs 2 could
explain the high stereoselectivity observed.13,25,31 Crich and co-

workers have provided significant experimental evidence
against dioxolenium ion intermediates for 4-O-esters,25,32,33

and concluded that the evidence supports this alternative

Fig. 1 (A) Prevalence of α-galactosides. (B) Proposed explanations for
the effect of 4-O-benzoates in influencing stereoselective acetal for-
mation. (C) α-Galactosylation via proposed H-bond-stabilized β-triflate
transition state 3 (this work).
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electrostatic stabilization hypothesis. They have rationalized
selectivities reported elsewhere under their theory (e.g., more
electron-rich 4-O-pivalates give higher selectivity than 4-O-acet-
ates because they can better stabilize the partial positive
charge on the anomeric carbon). Crich concluded that for-
mation of a dioxolenium ion was a borderline phenomenon
that, although detectable, was not crucial to stereoinduction in
galactosylations directed by 4-O-esters.25 Under either of the
above theories, the addition of electron-donating groups to the
ester would be expected to improve stereoselectivity, while elec-
tron-withdrawing groups would be expected to be detrimental
to selectivity. Herein we report observation of an unexpected
trend in studies of 1,2-cis-galactosylations, wherein high
α-selectivity is observed using an electron-withdrawing para-
nitrobenzoate ester at position 4.34

Our findings add to other unexplained reports of high
α-selectivities observed using galactosyl donors bearing 4-O-
esters with electron-withdrawing substituents. Lorenço and
Ventura reported a marked increase in α-selectivity when the
more electron-deficient 4,6-O-dichloroacetyl-protected galacto-
syl donor was used relative to the corresponding 4,6-O-acetyl
donor.35 Seeberger and Pagel observed excellent α-selectivity in
glycosylations using a 4-O-trifluoroacetyl-protected galactosyl
donor.23 Independently, Li, Seeberger and Demchenko have
described a requirement for the presence of two ester groups
on the galactosyl donor, either at positions 3 and 4 or 4 and 6,
to achieve significant α-selectivity relative to the corresponding
mono-acetylated donors.36–38 All of these reports seem con-
trary to the idea that the 4-O-ester is involved in stabilizing
positive charge at the anomeric position, or in the formation
of a dioxolenium ion. Herein, we detail our investigations
towards understanding our observed α-selectivity trends that
have led us to a new hypothesis: an SN2-like transition state 3,
involving a H-bond-interaction with the β-glycosyl triflate. We
also detail the usefulness of our findings to practical sacchar-
ide synthesis.

Stereochemical control in glycosylation reactions is a sig-
nificant objective due to the importance of oligosaccharides in
Nature,39 and in the development of vaccines and thera-
peutics.40 For example, the α-galactoside motif is of pivotal
importance in the blood group B antigen and in the manifes-
tation of diseases such as Chagas and Fabry disease
(Fig. 1A).41–45 Thus, α-galactosides are important as targets in the
pharmaceutical industry and as tools for biological research.46,47

In spite of their significance, access to α-galactoside-containing
compounds is limited. Enzymatic methods can be limited by a
low substrate promiscuity,48,49 and methods for the isolation of
α-galactosides from natural sources tend to be low-yielding.50–52

Thus the chemical synthesis of galactosides is the principal way
to access a broad range of compounds.

The 1,2-cis-glycosidic linkage central to these compounds
renders their syntheses challenging; current methods for 1,2-
cis-galactosylation are imperfect, in either the breadth of
scope, the cost of reagents for their synthesis, or the restric-
tions they place on downstream uses.53 The exploitation of
donor protecting groups to control the stereochemical

outcome of α-galactosylations, for example the use of esters
described above, is a widely used approach. However, further
investigation of this mode of stereoselectivity is crucial to
improving our understanding of 1,2-cis-galactosylation so that
efficient and selective methodologies for the synthesis of
complex carbohydrates can be advanced.

A serendipitous discovery prompted us to re-examine the
potential of a single benzoate protecting group to control the
stereochemical outcome of α-galactosylations. Thiogalactoside
donor 4a, featuring a para-nitrobenzoate group at position
four, was observed to afford exclusive α-selectivity in a glycosy-
lation with acceptor 5a (Scheme 1). This result, featuring an
electron-deficient 4-O-ester moiety, was unexpected as it
diverged from hypotheses outlined above involving
α-galactosylation via a cationic dioxolenium or oxacarbenium
ion intermediate. Re-examination of the literature highlighted
the aforementioned reports of enhanced α-selectivities with
depleted electron densities of the donor.23,35–38 To the best of
our knowledge, other than suggestions of SN2-type reaction via
β-glycosyl triflate intermediates, the mode of stereoselectivity
of α-galactosylations using electron-poor donors has not been
investigated in-depth.

Results and discussion

In order to probe the mode of stereoselectivity in our galactosy-
lation system, we performed a Hammett study.54,55 The elec-
tronic effect of the para-substituent of the 4-O-benzoate group
on the α-selectivity of glycosylation was investigated. The effect
of acceptor nucleophilicity on the stereochemical outcome was
also studied, inspired by experiments designed by Codée and
Boltje (Table 1).22 Donors 4a–g were prepared and tested in gly-
cosylations using ethanol (7) and 2-fluoroethanol (8) as model
acceptors. Ethanol is commonly used as a test acceptor, but it
is a stronger nucleophile than most carbohydrate acceptors.56

Thus, the weaker nucleophile, 2-fluoroethanol, was chosen to
better represent carbohydrate acceptor nucleophilicity. The
results are shown in Table 1, and the corresponding Hammett
plots are shown in Fig. 2 and 3.

Our primary observation was that opposing trends were
observed depending on the nucleophile used, suggesting a
change in mechanism or selectivity-determining step with a
change in nucleophilicity.

The trend observed for the ethanol series (Fig. 2) for substi-
tuents with σp values in the range −0.83 to 0 was consistent
with what might be expected under existing proposals for

Scheme 1 α-Glycosylation of acceptor 5a using donor 4a.
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α-galactosylations using donors bearing 4-O-esters (vide supra),
with the most electron-donating para-dimethylamino substitu-
ent affording the highest α-selectivity. However, the substitu-

ents with σp > 0 do not fit this trend. An excellent correlation
(R2 = 0.9964) was also observed with σp

+ for substituents with
σp

+ < 0 (see SI for alternative data treatments).
In contrast, for the more carbohydrate acceptor-representa-

tive 2-fluoroethanol series, there is a trend with a slope of
opposite sign for substituents with σp in the range −0.17 to
0.78 (Fig. 3). In this series, strongly electron-donating substitu-
ents with σp < −0.2 are outliers. Notably, para-nitro-substituted
donor 4a afforded the highest α-selectivity. This result, and the
trend shown in Fig. 3, seemed inconsistent with current ration-
alizations of the role of 4-O-esters and has both theoretical
and practical implications discussed herein.57

We turned to computational chemistry to seek an under-
standing of the surprising α-selectivity afforded by the elec-
tron-poor 4-O-esters presented above.58 Potential pathways
involving SN2-type reactions via α- and β-glycosyl triflate inter-
mediates were considered for donor 4d (Fig. 4).
α-Glycosylations via reactive β-triflate intermediates have been
reported previously and, in recent years, the characterisation
of β-glycosyl triflates has been reported.59–61

We acknowledge that this system is governed by a fine
balance of multiple variables, such as reaction conditions and
substrates. For instance, the introduction of a single fluorine
atom to the acceptor appears to change the selectivity-deter-
mining step. Consequently, energy differences observed were
relatively small. Thus, the aim of this computational investi-
gation was not to find a definitive answer, but rather to explore
mechanistic possibilities. A key question was whether the com-
putational investigations could suggest a rationale for the
LFER observed using 2-fluoroethanol.

The reaction of donor 4d in glycosylations of ethanol and
2-fluoroethanol was investigated starting from the α-glycosyl
triflate intermediate (Fig. 4). Benzyl groups were replaced by
methyl groups for computational feasibility. As expected, the
α-triflate (0 kcal mol−1) was more stable than the β-triflate
(2.5 kcal mol−1), and the latter was more reactive. Consistent

Table 1 Hammett study on the effect of para-substituent (blue ball) and acceptor nucleophilicity on glycosylation selectivity

Entry Donor R Acceptor Product Yielda (%) α : β b Entry Donor R Acceptor Product Yielda (%) α : β b

1 4a NO2 7 9a 52 74 : 26 8 4a NO2 8 9h 42 88 : 12
2 4b CF3 7 9b 48 75 : 25 9 4b CF3 8 9i 35 85 : 15
3 4c Br 7 9c 51 73 : 27 10 4c Br 8 9j 30 84 : 16
4 4d H 7 9d 55 64 : 36 11 4d H 8 9k 46 79 : 21
5 4e Me 7 9e 44 70 : 30 12 4e Me 8 9l 39 78 : 22
6 4f OMe 7 9f 41 77 : 23 13 4f OMe 8 9m 44 86 : 14
7 4g NMe2 7 9g 57 88 : 12 14 4g NMe2 8 9n 29 77 : 23

a Isolated yield. bDetermined by 1H NMR spectroscopy before purification by column chromatography. Results shown are an average of those
obtained from duplicate experiments.

Fig. 2 Hammett plot of the change in galactosylation stereoselectivity
vs. the electronic effect of the para-benzoate substituent using ethanol
as the acceptor (see Table 1 for reaction conditions). A line of best fit for
σp values from −0.83 to 0 is shown (R2 = 0.9568). See SI for a plot of σp

+

with a line of best fit of σp
+ ≤ 0 (R2 = 0.9964) and alternative plots.

Fig. 3 Hammett plot of the change in galactosylation stereoselectivity
vs. the electronic effect of the para-benzoate substituent using 2-fluor-
oethanol as the acceptor (see Table 1 for reaction conditions). A line of
best fit for σp values from −0.17 to 0.78 is shown (R2 = 0.9523).
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with experimental results, a preference for α-glycoside is pre-
dicted. The barrier for SN2 anomerization between α- and
β-triflates was found to be relatively low (TS2, 10.3 kcal
mol−1).61 Anomerization via an SN1-like mechanism was also
considered, and found to be higher in energy (TS3, 16.5 kcal
mol−1). Transition state energies for SN2 glycosylations from
both α- and β-triflates were higher than that of triflate anomer-
ization for glycosylations of both ethanol and 2-fluoroethanol.
Transition states leading to α-product (TS4a, 12.8 kcal mol−1

and TS4b, 13.7 kcal mol−1) were lower in energy than those
leading to β-product (TS1a, 14.7 kcal mol−1 and TS1b,
14.5 kcal mol−1). Thus, the favourable formation of α-product
would be predicted in an SN2-like glycosylation.

Our calculations indicate that the energy of the oxacarbe-
nium ion intermediates tend to be higher than the glycosyla-
tion barriers (see SI), but not high enough to exclude entirely
their involvement or that of a competing SN1 pathway. These
findings support the idea that the stereoselectivity afforded by
this donor type may hinge on a continuum of SN1- and SN2-
type mechanisms. The mechanistic preference likely shifts
with changes in the donor ester substituents and the nucleo-
philicity of the acceptor, providing a plausible explanation for
the outliers observed in the Hammett study.

We also investigated the possibility of reaction via a dioxole-
nium ion intermediate (SI Fig. 2). In this case, we found that
the energy barriers to rotation of the 4-O-ester into the
required geometry for long-range participation (18.7 and
20.2 kcal mol−1) were the highest of this pathway. This was
consistent with Crich’s proposal that rotation to an unfavour-
able antiperiplanar geometry between the ester carbonyl bond
and the α-C–H bond would prevent dioxolenium ion
formation.24,33,62,63 Thus, contrary to the gas phase calcu-

lations of Seeberger and Pagel,23 our calculations do not
support the intermediacy of a dioxolenium ion (but the fine
balance of the system does not allow us to be definitive).

Subsequent examination of transition state images derived
from 4d for triflate anomerization (TS2) and α- and
β-glycosylation (TS4b and TS1b, respectively) revealed a poss-
ible explanation for the LFER observed using 4-O-esters
bearing electron-withdrawing substituents (Fig. 5). We noted
that the β-triflate shows a considerable distortion away from a
chair conformation in the ground state. It was noted that the
ortho-proton of the benzoate was close in space to the anome-
ric oxygen of the triflate group. Aided by non-covalent inter-
action images (SI Table 2), a non-classical H-bonding inter-
action between these atoms was observed computationally.
This type of non-classical H-bonding from a C–H donor has
been reported previously in various contexts.64–68 When the tri-
flate group was in the β-configuration, the interaction was
observed for both the triflate anomerization (TS2, 2.39 Å) and
the α-glycosylation (TS4b, 2.39 Å) steps. However, the inter-
action was not observed when the triflate group was in the
α-configuration. Importantly, this non-classical H-bond would
be impacted by the seemingly remote para-substituent of the
benzoate. The presence of an electron-withdrawing substitu-
ent, such as a nitro-group, should enhance the H-bond donat-
ing ability of the ortho-proton, thus affording a stronger inter-
action. Indeed, TS modelling of the corresponding triflate
derived from nitrobenzoate donor 4a revealed a shorter
H-bonding distance of 2.28 Å in the triflate anomerization step
(Fig. 6). We propose that using 2-fluoroethanol as the acceptor
(and related carbohydrate-based acceptors), this stabilizing
non-classical H-bond shifts the fine balance between reaction
pathways, facilitating an SN2-like reaction of a β-triflate as the

Fig. 4 Reaction energy diagram via glycosyl triflate intermediates for the glycosylation of ethanol and 2-fluoroethanol using donor 4d. Gibbs free
energies (kcal mol−1) are given relative to the anomeric α-OTf intermediate. Computed at the SMD(CH2Cl2)-(TightPNO)DLPNO-CCSD(T)/aug-cc-
pVTZ//SMD(CH2Cl2)-PBE0-D3/def2-TZVP level of theory, thermochemical corrections were applied at 253.15 K (−20 °C). The C-2 substituent is
omitted from all structures for clarity.
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dominant pathway to afford α-product (Scheme 2). The change
in reaction pathways detected here for 4-O-esters bearing elec-
tron-withdrawing substituents might also explain some of the
anomalous results reported by Ventura, Seeberger and
Demchenko among others, mentioned previously.23,35–38

To probe this hypothesis experimentally, we first turned our
attention to the energy barrier for anomerization from
α-triflate to β-triflate necessary for α-galactosylation to occur
(TS2, 10.3 kcal mol−1). We postulated that an increase in tri-
flate concentration should help to encourage the SN2 reaction
via the β-triflate, and thus increase the stereoselectivity of our
reaction. The effect of the equivalents of TMSOTf used in the
glycosylation of donor 4d and ethanol on the stereochemical

outcome was studied (Table 2). These reaction partners were
chosen as this would provide a direct comparison with a reac-
tion studied computationally (Fig. 4). The low selectivity
observed previously in this reaction would also prove useful, as
there was ample room available to observe improvement in the
stereochemical outcome. As shown in Table 2, the concen-
tration of TMSOTf did indeed affect the stereoselectivity of gly-
cosylation. The most significant change in selectivity was
observed from entry 2 to entry 3, with a change from 50 mol%
to a stoichiometric amount of TMSOTf reflecting an increase
from α/β = 64 : 36 to 79 : 21. A further increase in concentration
to 1.5 equivalents of TMSOTf did not provide any further sig-
nificant increase in α-selectivity. These results supported our
hypothesis that a triflate intermediate is important for stereo-
induction in our galactosylation system.

Next, we examined the stereoselectivity of glycosylation
when protons around the 4-O-benzoate ring, proposed to be
involved in the H-bonding interaction, were replaced with fluo-
rine (Table 3). Glycosylation of non-substituted donor 4d was
chosen as a control for comparison. In comparison with non-
substituted compound 9k, a drop in stereoselectivity from
α/β = 79 : 21 to α/β = 70 : 30 was observed when di-ortho-fluoro-
substituted 10b was subjected to glycosylation with 2-fluor-

Fig. 5 Transition state images for (A) β-glycosylation, (B) triflate anomerization and (C) α-glycosylation of donor 4d with 2-fluoroethanol.

Fig. 6 Transition state image for triflate anomerization derived from
para-nitrobenzoate donor 4a.

Scheme 2 Proposed H-bond-stabilized α-glycosyl triflate transition
state 3.

Table 2 Effect of TMSOTf concentration on glycosylation
stereoselectivity

Entry TMSOTf equiv. α :β a

1 0.25 66 : 34
2 0.5 64 : 36
3 1.0 79 : 21
4 1.5 80 : 20

aDetermined by 1H NMR spectroscopy before purification by column
chromatography.
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oethanol. This offers evidence supporting the involvement of
the ortho-protons in a H-bonding interaction with the β-triflate
(Fig. 7). This was further reinforced by the drop in selectivity
observed for pentafluorinated compound 11c (α/β = 68 : 32)
relative to 9k.

The increase in selectivity observed for meta-substituted 11a
(α/β = 83 : 17) is consistent with our hypothesis and suggests
that the meta-protons of the benzoate group are not needed for
H-bonding with the β-triflate. The inductive electron-withdraw-
ing effect of the fluorines should strengthen the proposed
H-bonding interaction from the ortho-protons and thus
explain the increase in selectivity observed. The drop in stereo-
selectivity for 11d (α/β = 65 : 35) was a surprise initially,
however examination of the proposed transition state TS3
suggested a rationale. While the ortho-protons are not dis-
rupted in compound 11d, the decrease in selectivity may be
caused by the introduction of a clash between the trifluoro-
methyl group and the triflate leaving group (through examin-
ation of 3D-model of TS3). The experimental results described
in Table 3 lend significant support to the argument that the
benzoate ortho-protons are involved in H-bonding to β-triflate
in the transition state for α-galactosylation.

Given that the hydrogens proposed to be involved in
H-bonding are positioned meta to the benzoate substituent, a
new Hammet plot using σm with the data from 2-fluoroethanol
as acceptor was examined (Fig. 8). Consistent with our hypoth-
esis, the plot showed better agreement with the data (R2 > 0.99,
excluding para-methoxy-substituted benzoate 4f which
remained an outlier; 4f appears to be a special case and this
should be the subject of future investigations). The corres-
ponding plot with EtOH as acceptor did not show an improved
correlation, consistent with differences in factors influencing
selectivity between the acceptors.

Next, it was hypothesized that the importance of a glycosyl
triflate intermediate in our galactosylation could be demon-
strated by exclusion of a triflate-based promoter system.
Glycosylation of acceptor 5a with either nitro-substituted
donor 4a or methoxy-substituted donor 4f was performed
using two different promoter systems (Table 4). The standard
NIS/TMSOTf promoter system described previously was com-
pared to the use of CuBr2, following a modified procedure to
that reported by Demchenko and colleagues.69

Using nitro-substituted donor 4a, a drop in stereoselectivity
occurred from α-only using the standard NIS/TMSOTf promo-

Table 3 Changes in galactosylation selectivity observed when benzo-
ate protons were replaced with F atoms

α/β-Selectivities were determined by 1H NMR spectroscopy before puri-
fication by column chromatography. Yields indicate isolated yields.

Fig. 7 Loss of H-bonding interaction as a proposed rationalization for
the drop in α-selectivity observed using ortho-fluorine-substituted 4-O-
benzoate protecting groups.

Fig. 8 Hammett plot of the change in galactosylation stereoselectivity
vs. the electronic effect of the benzoate substituent using 2-fluoroetha-
nol as the acceptor (see Table 1 for reaction conditions). A line of best fit
for σm values from −0.16 to 0.71 excluding the para-OMe substituent is
shown (R2 = 0.9966).

Table 4 Effect of triflate vs. non-triflate promoter systems on the
stereoselectivity of galactosylations of acceptor 5a with donors 4a or 4f

Entry Donor Promoter α : β a

1 4a NO2 NIS TMSOTf α-only
2 4a NO2 CuBr2 67 : 33
3 4f OMe NIS TMSOTf α-only
4 4f OMe CuBr2 α-only

a α/β-Selectivities were determined by 1H NMR spectroscopic analysis
before purification by column chromatography.
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ter system (entry 1) to α/β = 67 : 33 using non-triflate promoter
CuBr2 (entry 2). However, for methoxy-substituted 4f, no
change in selectivity from α-only was observed for either pro-
moter system (entries 3 and 4). These results suggest again
that there are different stereo-determining mechanisms at play
in the galactosylations described, with the predominant
mechanism determined by the electronic nature of the benzo-
ate para-substituent. The stereoselectivity of galactosylations
involving electron-poor substituents appears to involve a glyco-
syl triflate intermediate, as evidenced by the drop in selectivity
observed in entry 2 upon exclusion of a triflate promoter.
However, for the donor bearing the para-OMe substituent, the
promoter system does not seem as crucial to stereoselectivity
(entries 3 and 4) and it is likely that the stereochemistry of
these glycosylations is influenced by other factors.

The significance of triflate transition state 3 was scrutinized
further using a 4-O-nitrobenzoate-protected galactosyl trichlor-
oacetimidate in lieu of a thiogalactoside donor (Table 5). It was
anticipated that the α-selectivity of trichloroacetimidate galac-
tosylations, typically promoted by triflate-based systems,
should not deviate from that recorded using thiogalactosides.
This was because a glycosyl triflate was hypothesized to be a
common intermediate to both reactions, and the availability of
the required triflate counterion would remain intact.70

Trichloroacetimidate donor 13 was tested in glycosylation with
primary alcohol acceptor 5a and secondary alcohol acceptor
5b, following a procedure adapted from that reported by Pohl
(Table 5).71 In both cases, exclusive α-selectivity was recorded.
Although the spectroscopic yields (unoptimized) of both 6a
and 6b in these experiments were poor, this demonstrated that
α-selectivity is achievable under triflate-based promotion con-
ditions via 3, regardless of the anomeric leaving group. This 4-
O-nitrobenzoate-mediated α-galactosylation can be carried out
catalytically in the promoter, whereas previously, stochiometric
quantities of promoter were required.

Finally, a competition experiment was carried out to probe
the reactivity of thiogalactoside 4a relative to 4-O-benzoyl
donor 4d. This was to investigate the extent of the stabilizing

effect of the proposed H-bonding interaction between the ben-
zoate ortho-proton and the β-triflate leaving group. According
to Fraser-Reid’s armed-disarmed theory72–74 and stereoelectro-
nic effects,75 it would be expected that benzoate donor 4a,
bearing an electron-withdrawing nitro substituent, should be
more disarmed than non-substituted benzoate 4d and, thus,
less reactive. However, it was hypothesized that the proposed
H-bonding interaction in transition state 3 might be stabilizing
enough to improve the reactivity of 4a relative to traditionally
more armed donor 4d in competition for galactosylation of
acceptor 5a (Scheme 3). Significantly, it was found that the
ratio of disaccharides 6a to 14 was 58 : 42, indicating that para-
nitrobenzoate donor 4a was more reactive in this experiment
than benzoate 4d. This apparent contradiction of the armed-
disarmed theory suggests that the proposed H-bonding in tran-
sition state 3 is stabilizing enough to overcome the disarming
nature of the electron-poor para-nitrobenzoate protecting
group. This work provided further evidence to support our pro-
posed transition state 3. In addition, the experimental
outcome is contrary to predicted RRVs using Wong’s Auto-
CHO software and hopefully will enable an adjustment to
improve its prediction and make such substrates more amen-
able for use in one-pot glycosylations.76 Finally, we note
that the proposed H-Bonding interaction might play a role
in other glycosylations, e.g., Liang’s proposal involving an
N-benzylcarbamoyl group stabilizing a triflate intermediate.77

With a plausible explanation for the excellent α-selectivity
observed in hand, we explored the consequent practical impli-
cations for synthetic carbohydrate chemists. To-date, many solu-
tions involving galactose donors bearing esters have involved
use of multiple esters,38,78 limiting options for regioselective de-
protection towards further glycosylation, or are restricted to
specific esters which have limitations in either subsequent
removal, or cost.79 The ability to install a cheap para-nitrobenzo-
ate group at a single position offers greater synthetic flexibility
and a simple way to control glycosylation selectivity.

We demonstrated that our α-galactosylation methodology
can be reduced to practice with a range of carbohydrate accep-
tors (Table 6). We chose para-nitro-substituted 4a as the model
donor for surveys of acceptor scope due to its high perform-

Table 5 Glycosylation of primary alcohol acceptor 5a and secondary
alcohol acceptor 5b using trichloroacetimidate donor 13

α/β-Selectivities were determined by 1H NMR spectroscopy before puri-
fication by column chromatography. NMR spectroscopic yields were
calculated from the crude reaction mixtures using 1,3,5-trimethoxyben-
zene as an internal standard.

Scheme 3 Competition experiment between donors 4a and 4d for
galactosylation of acceptor 5a. Results shown are the average of dupli-
cate experiments.
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ance in glycosylation with carbohydrate acceptor-like 2-fluor-
oethanol during our Hammett study. Glycosylations of accep-
tors 5a–f showed that galactosyl α-1,2-, -1,3-, -1,4- and -1,6-lin-
kages could be formed in exclusive α-selectivities and moder-
ate to high yields. Benzyl, benzylidene and benzoyl protecting
groups were well-tolerated in the acceptor.

The synthesis of highest-yielding disaccharide 6a was
chosen for the advancement of this glycosylation to gram-
scale. Gram-scale glycosylation between donor 4a and primary
alcohol acceptor 5a afforded a 70% yield of disaccharide 6a
(1.2 g). Crucially, exclusive α-selectivity was maintained in this
experiment. The success of this reaction on gram scale demon-
strates the practicality of this methodology, particularly in
terms of multi-step complex oligosaccharide syntheses.

Next, the donor scope of our α-galactosylation was investi-
gated (Table 7). It is important that the orthogonal protecting
group pattern on the galactosyl donor could be varied,
enabling the donor to become a branching point for further
oligosaccharide synthesis. A variety of orthogonal protecting
groups were installed at position 6 of the donor. Primary glyco-
syl acceptor 5a was chosen as the model acceptor for these gly-
cosylations due to its efficient and accessible 3-step synthesis.
Exclusive α-selectivities and high yields were observed using a
6-O-TIPS-, -allyl- and -(para-methylbenzyl)-protecting group. 4,6-
Di-O-benzoate 16d was prepared in exclusive α-selectivity,
demonstrating the potential for α-selectivity using significantly
disarmed donors. The use of a 6-O-Fmoc group resulted in
slightly lower selectivity, α/β = 85 : 15, for disaccharide 16b but it
remained satisfactorily high. Galactosylation using a 6-O-(para-
methoxybenzyl)-protected donor presented a limitation of this
methodology (complex mixtures were obtained).

To further present the utility of our α-galactosylation, disac-
charide 6a was subjected to orthogonal deprotection of the 4-

O-benzoate group to unmask a new glycosyl acceptor 17 under
basic conditions (Scheme 4). Subsequent glycosylation with
donor 4a afforded trisaccharide 18 in α/β = 86 : 14. While the
stereoselectivity of this glycosylation was lower than the exclu-
sive α-selectivity obtained for other examples in this work, we
feel that the high selectivity was still significant in the broader
context of this report.

Conclusions

In conclusion, a rationale has been developed to explain why
the use of a 4-O-(para-nitrobenzoate)-protected galactosyl
donor afforded up to exclusive α-selectivities in a range of
galactosylations. The excellent α-selectivity observed using this

Table 7 Investigation of glycosyl donor scope using model acceptor 5a

α/β-Ratios were determined by 1H NMR spectroscopic analysis before
purification by column chromatography. Yields indicate isolated yields.

Scheme 4 Synthesis of galactosyl trisaccharide 18.

Table 6 Investigation of glycosyl acceptor scope using model donor 4a

α/β-Ratios were determined by 1H NMR spectroscopic analysis before
purification by column chromatography. Yields indicate isolated
yields.
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electron-poor 4-O-benzoate was inconsistent with existing lit-
erature hypotheses involving α-galactosylation via cationic dioxo-
lenium ion intermediates. Computational and experimental ana-
lyses have led to the proposal of stabilized β-triflate transition
state 3 to explain the α-selectivity, which features a stabilizing
H-bonding interaction between the ortho-proton of the 4-O-ben-
zoate group and the anomeric β-triflate. The utility of this meth-
odology has been demonstrated through a gram-scale example,
the synthesis of a trisaccharide, as well as reaction with a range
of acceptors, to form galactosyl 1,2-, 1,3-, 1,4- and 1,6-linkages in
exclusive α-selectivities. We anticipate that the excellent selecti-
vity and tolerance to a range of widely used protecting groups
should enable this methodology to be used in the synthesis of
branched oligosaccharides containing α-galactosidic linkages.
The capacity of H-bonding interactions to influence the stereo-
chemical outcomes of reactions will continue to be of interest to
our laboratory and others into the future.80–85
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