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Xenobiotic cytochrome P450 enzymes have been shown to hydroxylate testosterone at various positions
in the steroid backbone, including C1 to produce 1f-hydroxytestosterone. Despite the potential appli-
cation to study the biochemistry of these enzymes, 1p-hydroxytestosterone is not commercially available.
A synthesis of 1p-hydroxytestosterone from commercially available boldione (androst-1,4-dien-3,17-
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dione) was accomplished in eight steps. The key step to functionalize C1 was a borylation reaction cata-
lyzed by an in situ generated copper carbene complex. The synthetic strategy reported will be used to
access other biologically relevant C1-hydroxylated steroids to explore the biochemistry of drug metabo-
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Background

Testosterone has been used as a substrate to biochemically
characterize human xenobiotic P450 enzymes."” For instance,
cytochrome P450 3A4, which is a drug metabolizing liver
enzyme, incorporates a hydroxy group at the 1p-, 2f-, 6f-, and
15p-positions of testosterone - the product distribution is in a
ratio of 6.7:13:73:6.7 based on the reported k.. values,
respectively (Fig. 1).> In contrast, P450 3A7, which is over-
expressed in fetal liver, has been shown to monohydroxylate
testosterone with a different regioselectivity.” Due to its poten-
tial application to study xenobiotic drug metabolizing P450
enzymes, authentic standards of hydroxylated testosterone
derivatives would be useful to study their biochemistry.
However, enzymatic conversion could be low yielding® and
restricted to specialized laboratory equipment and plasmid
strains,® which directed our focus to accessing the compound
through chemical synthesis.

The prior reports for the syntheses of
1p-hydroxytestosterone” and 1oa-hydroxytestosterone® both
involved 7 steps from 5a-dihydrotestosterone benzoate with
yields of 8.5% and 1.8%, respectively. The incorporation of the
1-oxygen was obtained from the epoxidation using t-butylhy-
droperoxide in the presence of molybdenum hexacarbonyl or
NaOH to eventually yield the 1p-hydroxy or the 1la-hydroxy
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derivatives, respectively. Our research laboratory previously
reported the direct C-H hydroxylation at C1 using the
Schonecker oxidation conditions,’ but this method would be
restricted to the 5a-reduced and 19-oxo steroid backbone.

Here, we report the synthesis of 1f-hydroxytestosterone (2)
beginning with a key 1,4-borylation at C1 onto commercially
available boldione (androst-1,4-dien-3,17-dione) (Fig. 2, 6 to 7
to 2). The synthesis of 1p-hydroxytestosterone (2) from bol-
dione (6) was achieved in eight total steps.

Results and discussion

Optimization of the 1,4-borylation reaction onto androst-1,4-
dien-3,17-dione using DBU

Although others have reported the conjugate addition of pinaco-
latoborane onto a,f-unsaturated carbonyls,'”'" our efforts to
replicate the various reaction conditions onto androst-1,4-dien-
3,17-dione resulted in either no reaction or low yield"> with the
copper—carbene system. We hypothesized that the low yield of
the copper-catalyzed reaction was due to the base (potassium
tert-butoxide), which made the reaction mixture viscous and
cloudy with the presence of precipitate when stirring. Therefore,
the base was switched to 1,8-diazabicyclo-(5.4.0)-undec-7-ene
(DBU), which resulted in a homogeneous mixture. Table 1 sum-
marizes the optimization conditions (see Fig. S2-2 for the NMR
spectroscopic overlay of the 5 entries). Unlike a prior report,'
the presence of copper was required in our system for the reac-
tion to occur. The use of DBU as the base optimized the yield of
the C1-borylated product to 90% (Scheme 1, 6 to 7).

This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Testosterone (1) hydroxylation catalyzed by cytochrome P450 3A4 yields monohydroxylated products at C1, C2, C6, and C15 (2, 3, 4, and 5).°
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Fig. 2 Overall strategy in this report to synthesize 1p-hydroxytestosterone (2) from boldione (androst-1,4-dien-3,17-dione, 6) through a borylated
intermediate (7).

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Table 1 Optimization of Step 1: C1-borylation of boldione (6) to yield 7

Entry Conditions Yield”
1 (PinB), (1.0 eq.), PPh; (0.76 eq.), CH;OH, Wilkinson’s Catalyst (0.3 eq.) 18%
2 (PinB), (1.1 eq.), THF, DBU (45 eq.), [EMIM][ESO,] (45 eq.) —b
- 3 (PinB)2 (3.5 eq.), THF, KOtBu (7.1 eq.), CuBr (9.3 eq.), [EMIM][ESO,] (4.2 eq.) 39%
k) 4 (PinB), (1.3 eq.), THF, DBU (1.8 eq.), CuBr (0.2 eq.), [EMIM][ESO,] (1.8 eq.) 75%
5 (PinB), (1.5 eq.), 1,4-D," DBU (1.0 eq.), CuBr (0.2 eq.), [EMIM][ESO,] (1.0 eq.) 88%

?Yield of 7 was calculated by integration of the C4-protons of 6 and 7 of the "H NMR spectra of the crude reaction mixtures (§ 6.3 and 5.8,
respectively. Also see Fig. $2-2). ®No C4-vinyl proton corresponding to 7 in the crude reaction mixture was detected by "H NMR spectroscopy.
“(1,4-D): 1,4-dioxane.

CuBr
[EMIM][ESOy4]
DBU
Pin282

1,4-dioxane
90%

Scheme 1 Successful 1,4-borylation of androst-1,4-dien-3,17-dione (6) to yield borane adduct 7. [EMIM][ESO,]: 1-ethyl-3-methylimidazolium ethyl
sulfate (Step 1 of 8 steps).
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Similar to other reports of the borylation at C1 of the
steroid, the boron substituent was added in the a-orientation,
presumably to avoid the steric clash with the C19-axial methyl
of the starting material. A crystal structure of the boron adduct
is shown in Scheme 1, which confirms the stereochemistry at
C1. To test the versatility of the borylation reaction, androst-
2,4-dien-1-one was also used as the substrate, which under-
went conjugate addition at C3 (see SI).
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A 2-step sequence to 1o-hydroxytestosterone from C1-borane
adduct 7

Treatment of borane 7 with stoichiometric H,O, and NaOH in
THF gave lo-hydroxyandrostenedione (Scheme 2, 8, Step 2 of 8
steps). This oxidation of the Cil-boryl substituent to the
alcohol was stereospecific and retained the Cla-orientation of
the substituent (i.e. the la-borane substituent was oxidized to

NaBH,

CH4OH
85%

NaOH/ |: 7 R =BPin
H,O
e 8 R=OH 95%

Scheme 2 Synthesis of 1la-hydroxytestosterone (9) from C1-borylated steroid intermediate (7).

PCC

CH,ClI,
94%

OH
TBSCI
H 11 pyridine
90%

82%

Scheme 3 Synthesis of 3-tert-butyldimethylsiloxy-1,17-diketo-androst-4-ene (13) from la-hydroxyandrostenedione (8) (Steps 3—5 of 8 steps). The
intermediate in brackets explains the stereoselective reduction at C3 through the chelation of the calcium Lewis acid with the Cla-hydroxy group

and the borohydride to deliver the hydride at the bottom face, yielding 11.
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the 1o-hydroxy substituent with H,0,). Reduction of the C17-
ketone of lo-hydroxyandrostenedione with NaBH, in CH;OH
gave  lo-hydroxytestosterone  (9).  This  route to
la-hydroxytestosterone from the boron intermediate contrasts
with the previous strategy”® to incorporate the 1-hydroxy
group, which involved the nucleophilic epoxidation of the
3-keto-A" steroid followed by reduction with LiAlH, to yield
the Clo-hydroxy steroid.

Conversion of 1a-hydroxyandrostenedione to
1p-hydroxytestosterone (8 to 2)

For the synthesis of 1p-hydroxytestosterone (2), various
methods were performed to incorporate the 1p-hydroxy group
(see section S12) but the ultimate strategy involved the oxi-
dation of the 1la-hydroxy group to the C1-ketone, which was
stereoselectively reduced to the 1p-hydroxy group (Scheme 3).
To begin, la-hydroxyandrostenedione was treated with CaCl,
and NaBH, in CH;OH' to primarily afford the 3p-hydroxy
epimer 11 in 82% yield with a minor amount of the 3a-hydroxy
epimer 10 (Scheme 3, 2 to 11, Step 3 of 8 steps). The presence

Table 2 Optimization of Step 6: stereoselective reduction of C1-ketone
(13) to yield primarily the 1p-hydroxy epimer

la-Hydroxy 1p-Hydroxy
Entry Reaction conditions (12) (14)
14 L-Selectride, THF, —78 °C 74% 26%
2¢ NaBH,, CH;0H, rt 54% 46%
3%¢  NaBH,, CeCl;-7H,0, CH;OH/THF,  6.0% 94%
—78 °C
474 NaBH,, CeCl;-7H,0, CH;OH/THF, 1t 47% 53%

“The ratio of the a- and B-hydroxy epimers (12 and 14) were deter-
mined by integrating the A* proton at § 5.32 and 5.27. ” The ratio of
the o- and p-hydroxy epimers (12 and 14) were determined by TLC ana-
lysis Re: 0.634 and 0.846, respectively (1 to 1 ethyl acetate/hexanes, v/v).
“1 to 1 ratio of CH3;OH/THF, 2 mol eq. of NaBH,, 2 mol eq. of
CeCl;7H,0. 91 to 1 ratio of CH;OH/THF, 3 mol eq. of NaBH,, 2 mol
eq. of CeCl;-7H,0.

NaBH,
CeCI3.7H20

THF/MeOH,
-78°C
97%
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of the CaCl, forms Ca(BH,),, which in turn enables calcium to
chelate'®'® with the C1-hydroxy group of the substrate and the
borohydride reducing agent. This chelation directs the hydride
to attack on the bottom face giving the 3p-hydroxy epimer (11)
as the major product. Alternatively, the Luche reduction con-
ditions (NaBH, in the presence of CeCl;-7H,0) yielded an epi-
meric mixture of the triols 10 and 11 (45 : 55 ratio, see SI for
details) due to the lack of a chelation with the Cl-oxygen.
Triol 11 was regioselectively protected at C3 as the TBS ether
12 using TBSCI and pyridine as both the base and the solvent
(11 to 12, Step 4 of 8 steps). Pyridine was required to dissolve
the triol (11). The resulting 1,17-diol (12) was oxidized with
3 mol eq. of PCC in CH,Cl, to yield the diketone 13 (12 to 13,
Step 5 of 8 steps), which was used as the precursor to intro-
duce the key 1p-hydroxy group in the steroid backbone.

The stereoselective reduction of the C1-ketone intermediate
(13) to yield the 1p-hydroxy epimer was not trivial. Our past
work in the stereoselective reduction of a C12-ketone guided
us in this optimization process."” Table 2 shows a set of reac-
tion conditions, which led us to conclude that the Luche
reduction at —78 °C was the optimal method to yield the
desired 1f-hydroxy stereoisomer. The use of r-selectride as a
sterically hindered hydride source (Table 2, entry 1), gave
mostly the 1a-hydroxy epimer product (12) (74: 26, 12 to 14).
On the other hand, a smaller reducing agent such as NaBH,
gave more of the desired 1p-hydroxy epimer product (14) rela-
tive to r-selectride (entry 2, 54: 46, 12 to 14). In addition, three
factors to optimize this reaction followed (see entry 3): (i) low-
ering the temperature to —78 °C, (ii) the use of THF as a co-
solvent to enhance solubility of the C1-ketone starting material
(13), and (iii) the addition of CeCl;-7H,O to ensure reactivity of
the hydride at —78 °C. The successful stereoselective reduction
of 1,17-diketone 13 using CeCl;-7H,0 and NaBH, in CH;0H
and THF at —78 °C gave the desired 1p,17f-diol 14 (Table 2,
entry 3, 6.0: 94, 12 to 14, Step 6 of 8 steps). When the reaction
was performed at rt, the Cl-epimers (1o/1f hydroxy epimers)
were obtained in a 1 to 1 ratio (entry 4). The low temperature
of the reduction with a small reducing agent (Luche con-

TBAF

THF
87%

PDC
pyridine
80%

Scheme 4 Synthesis of 1-hydroxytestosterone (2) from 1,17-diketone 13 (Steps 6—8 of 8 steps).
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ditions) avoids torsional strain between C9 and the oxygen (see
Fig. $3-3).

Deprotection of the 3-TBS group with excess TBAF in THF
afforded triol 15 (Step 7 of 8 steps). Triol 15 was regioselec-
tively oxidized at C3 with PDC (1 mol equivalent) in pyridine to
furnish 1p-hydroxytestosterone (2) in 80% isolated yield (Step 8
of 8 steps). When pyridine was used as the solvent, the triol
was completely soluble and the main product isolated was the
desired oxidation product at C3 to yield 1f-hydroxytestosterone
(2). The C3-hydroxy group is the least sterically hindered
alcohol among the three positions of triol 15 (i.e. C1, C3, and
C17) where C1 and C17 are both adjacent to a quaternary
carbon center (C10 and C13, respectively). The regioselective
oxidation of the less hindered C3 alcohol over the more con-
gested alcohols at C1 and C17 is reminiscent of a prior study,
which used cholesterol oxidase'® to selectively oxidize the C3-
position of 7a-hydroxycholesterol to yield 7a-hydroxy-cholest-4-
en-3-one.

Conclusion

In conclusion, a synthesis of 1p-hydroxytestosterone (2) was
achieved from commercially available androst-1,4-dien-3,17-
dione (6) through a 1,4-borylation reaction (Scheme 1). The
use of DBU as the base to generate the carbene was necessary
to optimize the yield for the conjugate borylation (see Fig. S2-
2). Other key steps include: (i) the regioselective and stereo-
selective reduction of a 3-keto-A'-intermediate to yield a
3p-hydroxy A* product using CaCl, and NaBH, in CH;OH"
(Scheme 3, 8 to 11) and (ii) stereoselective reduction of a C1-
ketone intermediate to yield primarily the 1f-hydroxy epimer
under Luche reduction conditions at —78 °C (Scheme 4, 13 to
14). Furthermore, la-hydroxytestosterone was accessed in 3
steps from commercially available starting materials (Schemes
1 and 2, 6 to 9), which contrasts from the previously reported
synthesis of 1a-hydroxytestosterone involving 9 steps.® The C1-
borylation strategy can be used to access other naturally occur-
ring steroids,'® including those that are not commercially
available and have important biological applications.>*?!
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of the synthesized compounds (Section $4, 7, 9, 10, 12, 13, and
15. See DOI: https://doi.org/10.1039/d50b01218j.
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