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Desferrioxamine B (DFOB, 1) is a clinical hydroxamic acid siderophore used as a chelator to treat acute
and secondary iron overload disease, with further applications in metal-based radiopharmaceuticals,
medicinal chemistry, and chemical biology. Its current production method uses whole-organism fermen-
tation which results in the co-production of other hydroxamic acid analogues, and the need to purify
complex mixtures to produce clinical grade 1. Here, we have exploited the elastic properties of the
Salinispora tropica CNB-440 recombinant NRPS-independent siderophore (NIS) synthetase DesD
(StDesD) responsible for the late-stage biosynthesis of 1, in combination with N-Boc protected substrates,
to direct the production of 1 as a single product. Mixtures of StDesD and native amine-bearing substrates
followed either a C-to-N or N-to-C directionality to assemble appreciable quantities of 1 alongside
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higher order homo- and/or hetero-oligomeric products. Substituting the native amine substrates for the
N-Boc protected counterparts generated N-Boc protected desferrioxamine B (N-Boc 1) as the sole
enzyme-mediated product in exceptional yields exceeding 80%, which following an in situ deprotection
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Introduction

Siderophores are low-molecular-weight, secondary metabolites
secreted by microbial organisms that have high affinity for
ferric iron (Fe*"). These natural products operate to solubilise
and import essential Fe’" from the environment to overcome
its limited bioavailability under pH neutral and aerobic
conditions.’™ This class of natural product chelator encom-
passes members with different metal-binding functional
groups, namely hydroxamates, catecholates, a-hydroxy-carboxy-
lates, thiazoli(di)ne, N-nitroso-N-hydroxyl-amine, or mixed
systems. Of this diverse collection, desferrioxamine B (DFOB,
1) is prominent due to its listing as a World Health
Organization (WHO) Essential Medicine for acute iron toxicity
and secondary iron overload disease, with the latter a result of
transfusion-dependent blood disorders like p-thalassemia.? In
addition to its longstanding clinical use, 1 has an emerging
profile as a metal chelator in Zr-89 radiopharmaceutical agents
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for immunological positron emission tomography (immuno-
PET) imaging,”” medicinal chemistry as an import vector for
Trojan Horse antibiotic strategies,® and in chemical biology to
probe bacterial proteomes.*® Commercial production of 1 is
by fermentation of Fe**-depleted Streptomyces pilosus cultures,
which can generate other hydroxamic acid-containing sidero-
phores as byproducts, including chain-extended 1 variants.

The co-production of other siderophore byproducts means
that a series of purification steps, including removal of Fe*" by
competition, multiple iterations of chromatography, crystalli-
sation, and salt metathesis,"®'" are necessary to generate 1 in
sufficient purity for -clinical use. Exploring alternative
approaches to access 1 could alleviate current production
limitations, with the possibility of selectively generating 1
using a facile chemoenzymatic approach particularly appealing
and the focus of this study.

The biosynthesis of 1 and other hydroxamic acid sidero-
phores is regulated by the biosynthetic cluster DesABCD
(Scheme 1).">™** This pathway begins with the decarboxylation
of 1-lysine by DesA, a pyridoxal 5'-phosphate (PLP)-dependent
decarboxylase, generating 1,5-diaminopentane (cadaverine).
DesB, an FAD-dependent amine monooxygenase, then cata-
lyses the N-hydroxylation of cadaverine generating N'-hydroxy-
cadaverine (HC). Acyltransferase DesC next generates two
different monomeric units, N'-acetyl-N'-hydroxycadaverine
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Scheme 1 DesABCD biosynthetic cascade generating 1 and other
hydroxamic acid-containing siderophore byproducts (not shown).

(HAC, 2) and N'-succinyl-N'-hydroxycadaverine (HSC, 3),
employing the co-factors acetyl-CoA and succinyl-CoA, respect-
ively.'® Finally, a nonribosomal peptide synthetase (NRPS)-
independent siderophore (NIS) synthetase, DesD, catalyses
iterative condensation reactions between monomers 2 and 3 to
generate 1. Onward DesD-catalysed reactions between 1 and 3
or 3 oligomers generate chain-extended 1 analogues.'”” DesD
from other species, including the marine bacterium
Salinispora tropica CNB-440 (StDesD), catalyse the production
of sets of 3 oligomers and the cognate macrocycles.'”'® A
recent study has implicated additional enzymes in the biosyn-
thetic pathway of 1 which are proposed to regulate the concen-
tration of 2 and thereby 2-dependent products, including 1."°
The ability of StDesD to perform iterative rounds of conden-
sation reactions suggests some degree of elasticity and relaxed
substrate specificity to accommodate the growing hydroxamic
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acid oligomers,"” which also accords with the broad substrate
flexibility of enzyme homologues.>**! This enzyme plasticity has
potential to be exploited in a chemoenzymatic approach by
introducing non-native substrates containing bulky protecting
groups to control the siderophore profile. Chemoenzymatic pro-
cesses are an attractive approach to access natural products and
pharmaceutical agents.>*>*> These biocatalytic processes provide
benefits, particularly in relation to amide bond formation, as a
green alternative to traditional chemical synthesis with increased
atom economy, improved safety and lower environmental
impacts.?28

Here, a chemoenzymatic strategy using recombinant
StDesD and non-native substrates containing an amine pro-
tecting group has been examined as a directed approach to
produce 1 as a single product.

Results and discussion

Monomeric and dimeric hydroxamic acid substrates with free
or N-Boc-protected amine groups were prepared synthetically
using methods adapted from the literature (ESI,
Scheme $17).%° N-Boc-DFOB (N-Boc 1) was prepared (ESIt) as
an authentic standard. Recombinant StDesD was generated
using previously established methods (ESI, Fig. $11)*° and its
function was confirmed by control reactions with the native
substrate 3 (ESI, Fig. S2 and 31)."”

Typical chemoenzymatic reactions involved incubation of
mixtures of StDesD and the co-factors MgCl, and ATP with
equimolar quantities of the hydroxamic acid substrate(s) at
37 °C for 4 h. Reaction mixtures were then quenched with
formic acid and analysed by LC-HRMS/MS.

Chemoenzymatic reactions using free amine-bearing
substrates

Initial chemoenzymatic reactions probed the formation of 1
with StDesD using native substrates with free amine groups to
mimic the final condensation reaction in the biosynthetic
cascade. Two potential pathways exist for the generation of 1,
whereby 2 is condensed with homodimer 4 (Scheme 2a) (with
4 equivalent to 3-3 in which the first amide bond is formed
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Scheme 2 Chemoenzymatic assembly of 1 employing free (3 or 4) or N-Boc protected (N-Boc 3 or N-Boc 4) hydroxamic acid substrates in an (a)

N-to-C or (b) C-to-N direction.
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proximal to the terminal amine group of the ultimate product
1 (N-to-C direction)), or 3 with heterodimer 5 (Scheme 2b)
(with 5 equivalent to 2-3 in which the first amide bond is
formed proximal to the acetyl group of the ultimate product 1
(C-to-N direction)).* LC-MS analysis of the reaction mixtures
containing the free amine substrates 2 and 4 (Fig. 1) or 3 and 5
(Fig. 2) in the presence of StDesD and cofactors showed
signals with m/z values attributable to enzyme-mediated
product formation, as compared with the no enzyme controls,
which contained signals only for residual starting materials.
Since dimer 4 and monomer 3 contain flanking amine and
carboxylic acid termini, each co-substrate system gave products
(ESI, Fig. S27) resulting from enzyme-mediated self-oligomeri-
sation and ring-closing reactions. Alongside this set of homo-
oligomeric and macrocyclic products, 1 and 1-extension pro-
ducts were detected, as described in turn for each co-substrate
system.

Reaction solutions containing StDesD in the presence of
blunt-ended 2 and homodimer 4 as co-substrates showed the
formation of 1, oligomers of 4, and 1-extended oligomers,
including DFOB-(HSC), (7) and DFOB-(HSC), (9) (Fig. 1). The
formation of 1 from 2 and 4 correlates with a N-to-C biosyn-
thetic directionality. Neither 7 nor 9 have a unique assembly
pathway. The 1-extended oligomer 7 could be assembled from
the condensation of 1 (itself the condensation product of 2
and 4) with 4, or from 2 with (4),. The 1-extended oligomer 9
could be formed from the condensation reaction between 7
and 4, or 1 and (4),, or 2 and (4);. The identities of 7 and 9
were confirmed by MS/MS fragmentation patterns (ESI,
Fig. S4T) and comparison to prior literature where similar 1-
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extended oligomers were generated in reaction solutions of
StDesD and co-substrates 1 and 3."7

In comparison to the 2 and 4 co-substrate system, solutions
with 3 and the heterodimer 5 showed the formation of 1 along-
side three 1-extended oligomers 6-8 (Fig. 2). The observation
of 1 from co-substrates 3 and 5 differed from a previous study,
which used the same co-substrate combination and similar
reaction conditions, but did not observe 1.'® The formation of
1 from 3 and 5 correlates with a C-to-N biosynthetic direction-
ality. The 1-extended oligomers, DFOB-HSC (DFO*) 6,>> 7, and
DFOB-(HSC); 8 could be formed by iterative condensation reac-
tions of 3 with the growing 1 oligomer, or combinations of 5
with (3),, (3)s, or (3),, or combinations of the above.

The production of 1 from each of these chemoenzymatic
approaches (2 and 4; 3 and 5) was quantified by using a standard
curve (ESI, Fig. S5at) and by spiking reaction solutions with an
authentic standard of 1 of known concentration. Co-substrates 2
and 4 produced 1 in a 30% yield, with co-substrates 3 and 5 pro-
ducing 1 in a 17% yield. Significant production of 1 was seen in
both co-substrate systems, which suggests StDesD has capacity to
assemble 1 in both the N-to-C and C-to-N directions. This gives
new insight into reports that suggest the 1 assembly pathway has
a directional preference,*** or is uni-directional.'®

Reactions using the homodimer 4 showed close to twice the
amount of 1 produced compared to reactions using the hetero-
dimer 5. This could be due to the increased diffusion rate of
monomer 2 than dimer 5 into the enzyme active site, thereby
increasing the concentration of nucleophile for reaction with
the respective AMP-activated carboxylic acid co-substrate (4 or
3). Alternatively, or in conjunction, differences between the
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Fig. 1 LC-MS traces from solutions of 2 and 4 with MgCl, and ATP incubated (37 °C, 4 h) in the presence (a and c—h) or absence (b) of StDesD as

detected by TIC (a and b) or shown as an EIC (c, e and g) with values set
ponding mass spectra (d, f and h). Signals marked with an asterisk (*) in (a)
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to detect the [M + HI* adducts of 1 (c), 7 (e), and 9 (g), with their corres-
are due to homo-oligomeric products of 4 (ESI Fig. S27).
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Fig. 2 LC-MS traces from solutions of 5 and 3 with MgCl, and ATP incubated (37 °C, 4 h) in the presence (a and c—j) or absence (b) of StDesD as
detected by TIC (a and b) or shown as an EIC (c, e, g and i) with values set to detect the [M + H]* adducts of 1 (c), 6 (e), 7 (g), and 8 (i), with their

corresponding mass spectra (d, f, h and j). Signals marked with an asterisk

diffusion rates, and/or reactivity of the dimer 4 and monomer
3, including differences in self-oligomerisation and macrocy-
clisation, could moderate levels of the cognate AMP-activated
substrate. Furthermore, we have observed the susceptibility of
substrates 3 and 4 to undergo hydrolytic degradation to gene-
rate des-succinyl products that are no longer viable substrates
for AMP activation. The decomposition and decreased avail-
ability of 3 and 4 would moderate the DesD-catalysed reaction
profile. These potential pathways warrant further investigation
using modelling and experimental approaches and informed
by available DesD X-ray crystal structures.™**

The complexity of the product profile using native substrates
highlighted the opportunity to use N-protected substrates to
control the chemoenzymatic assembly of 1. Should the steric
bulk of the N-tert-butoxycarbonyl group not impede substrate
binding, the use of N-Boc 3 and N-Boc 4 would prevent the for-
mation of homo-oligomers from 3 or 4 and 1-extended oligo-
mers to simplify the product profile and increase 1 production.

Chemoenzymatic reactions of N-protected substrates

Directing the chemoenzymatic assembly of 1 was interrogated
by using either the N-Boc protected homodimer N-Boc 4, or

7184 | Org. Biomol. Chem., 2025, 23, 7181-7187

(*) in (a) are due to homo-oligomeric products of 3 (ESI, Fig. S27).

the N-Boc protected monomer N-Boc 3, in reactions with the
corresponding blunt-ended substrate (2 and 5, respectively), to
drive the formation of N-Boc 1 as a single product.

Solutions containing 2 and N-Boc 4 with StDesD gave a sim-
plified product profile (Fig. 3) compared to the chemoenzymatic
reaction employing the free amine counterparts (Fig. 1). While
the TIC from the LC-MS analysis of this solution (Fig. 3b)
appeared to be similar with that of the no enzyme control
(Fig. 3a), the EIC traces showed the formation of N-Boc 1, which
was confirmed by a spike experiment using a synthesised stan-
dard (Fig. 3h). The retention time of N-Boc 1 was similar to that
of N-Boc 4, with efforts to resolve these co-eluting species unsuc-
cessful. It was envisaged upon in situ N-Boc deprotection of N-
Boc 1 and N-Boc 4 that 1 and 4 would separate.

The concentration of N-Boc 1 produced in the chemoenzy-
matic reaction mixtures was measured using EIC traces of
native solutions and following spiking with a known quantity
of authentic N-Boc 1, alongside a N-Boc 1 standard curve (ESI,
Fig. S5bt). This analysis showed the 2 and N-Boc 4 co-substrate
system gave N-Boc 1 in a 9% yield, which assuming a quanti-
tative conversion to 1, was significantly less than the 30% yield
of 1 produced from the 2 and 4 co-substrate system. This indi-

This journal is © The Royal Society of Chemistry 2025
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Fig. 3 LC-MS traces from solutions of 2 and N-Boc 4 with MgCl, and ATP incubated (37 °C, 4 h) in the absence (a, d and g) or presence (b, e and h)
of StDesD and then treated with TFA (c, f and i) as detected by TIC (a, b and c¢) or shown as an EIC (d—i) with values set to detect the [M + H]*
adducts of N-Boc 4 (d and e), 4 (f), N-Boc 1 (g and h), and 1 (i).

cated the N-Boc group in N-Boc 4 impeded the condensation
reaction, likely due to steric interference at the enzyme active
site. Furthermore, N-Boc 4 was seen to degrade to a product
with the loss of the C-terminal succinate group. The propensity
for N-Boc 4 to degrade together with its decreased aqueous
solubility are probable contributors to this decreased yield.
The in situ addition of TFA to this solution liberated 1 from N-
Boc 1 (Fig. 3i), which was well resolved from other reaction
components. Alongside 1, 4 was produced from the de-
protection of N-Boc 4 (Fig. 3f), together with the des-succinyl

degradation product of 4.

The directed chemoenzymatic assembly of 1 was next
explored using co-substrates N-Boc 3 and 5. Reaction mixtures
using N-Boc 3 and 5 showed a simplified product profile
(Fig. 4) compared to the equivalent free-amine system 3 and 5.
Furthermore, N-Boc 1 (Fig. 4h) was well resolved from N-Boc 3
(Fig. 4e), and was produced in higher quantities than the co-
substrate system 2 and N-Boc 4.

The N-Boc 3 and 5 co-substrate system generated N-Boc 1 in
83% yield, which surpassed both the corresponding free
amine co-substrate system with 3 and 5 (Fig. 2) and the

alternative 2 and N-Boc 4 co-substrate system (Fig. 3). The
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Fig. 4 LC-MS traces from solutions of 5 and N-Boc 3 with MgCl, and ATP incubated (37 °C, 4 h) in the absence (a, d and g) or presence (b, e and h)
of StDesD and then treated with TFA (c, f and i) as detected by TIC (a, b and c) or shown as an EIC (d-i) with values set to detect the [M + H]*
adducts of N-Boc 3 (d and e), 3 (f), N-Boc 1 (g and h), and 1 (i).
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Table 1 Yields of 1 or N-Boc 1 from chemoenzymatic reactions using
free-amine bearing substrates or N-protected substrates, respectively

Reaction Direction Yield® (%)
2+4 N-to-C 30 (1)

3+5 C-to-N 17 (1)

2 + N-Boc 4 N-to-C 9 (N-Boc 1)
N-Boc 3 +5 C-to-N 83 (N-Boc 1)

“Determined by standard curve of 1 or N-Boc 1 (ESI, Fig. S51).

increase in reaction efficiency using N-Boc 3 over N-Boc 4
suggests an increased affinity of N-Boc 3 over N-Boc 4 for the
active site governing AMP activation and/or higher available
concentrations of N-Boc 3 than N-Boc 4 due to potential differ-
ences in hydrolytic stability. The in situ deprotection of N-Boc
1 with TFA liberated 1 (Fig. 4i) as the major product alongside
small quantities of 3 and its des-succinyl degradation product.
This directed approach significantly improved the yield of 1
compared to the reactions using the free amine substrates
(Table 1) by preventing the ability to form 1-extension pro-
ducts, and 3 and 4 homo-oligomers and macrocycles.

Conclusions

The recombinant NIS synthetase StDesD from Salinispora
tropica CNB-440 was used to explore the chemoenzymatic
assembly of 1 using either free amine or N-Boc protected sub-
strates. Alongside, the work provided new insight into 1 assem-
bly pathways. Chemoenzymatic reactions using substrates with
free amine groups showed complex product profiles reflecting
those from whole organism fermentation.”> 1 was formed
from the reaction between 2 and 4 (N-to-C direction) (yield
30%) or 3 and 5 (C-to-N direction) (yield 17%) and although
yields were different, supports StDesD is able to assemble 1
using a bi-directional pathway, suggesting the N-to-C direction-
ality of 1 biosynthesis proposed as universal for Streptomyces
has a species dependence among actinomycetes.

A directed chemoenzymatic assembly approach using N-Boc
protected amine substrates, N-Boc 4 (replacing 4) or N-Boc 3
(replacing 3) was successful in simplifying the product profile.
In each instance, N-Boc 1 was the single enzyme-mediated
product observed and was readily deprotected in situ with TFA
to give 1. The trend in yield in the N-Boc protected system was
interconverted (2 and N-Boc 4 (yield 9%); N-Boc 3 and 5 (yield
83%)) compared to the matched free amine substrate systems.
This remains consistent with the proposition of a bi-direc-
tional assembly pathway, although the different trends in
yields and/or substrate stabilities makes it difficult to draw
conclusions of a directional preference. The 83% yield of N-
Boc 1 from N-Boc 3 and 5, as converted to 1 upon de-
protection, demonstrates the merit of using a directed che-
moenzymatic approach with N-Boc protected substrates to
generate 1 as a pure product.
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