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Solid-phase synthesis was employed to construct a library of thiazolo[4,5-dlpyrimidine derivatives. The
free amide at the 5-position of the thiazole, which was previously difficult to introduce via the Thorpe—
Ziegler reaction, was successfully optimized in solid-phase synthesis using a 2,4-dimethoxy-substituted
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scaffold, and using iodine as a catalyst, the reaction with aldehyde successfully synthesized thiazolo-pyri-
midinone derivatives. To synthesize thiazolo[4,5-dlpyrimidine derivatives, the direct amination reaction
using BOP was successfully optimized. By applying the optimized conditions to solid-phase synthesis, a
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Introduction

In drug development, the primary focus in the early stages is
identifying potential active compounds through screening
various structures, such as High Throughput Screening (HTS)
and DNA-Encoded Library Technology (DELT)." Building a
chemical library with diverse compounds has recently gained
increasing attention as an essential aspect of drug develop-
ment.” Solid-phase synthesis is a common method for build-
ing chemical libraries, valued for its simplified purification
process. Solid-phase synthesis offers the advantage of reducing
synthesis time because purification is carried out after each
reaction through washing steps using solvents such as water,
DMF, and methanol. Solid-phase synthesis also enables the
synthesis of many compounds within a short period of time.?
Therefore, due to the advantages of solid-phase synthesis,
research has been conducted not only on peptides but also
more recently on the synthesis of heterocycles.” However,
solid-phase synthesis has several limitations, including the
need to use excess reagents, reaction temperature, and the
swelling effect of solvents.” Accordingly, we are focusing on
optimizing reactions using solid-phase synthesis to overcome
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library of 36 derivatives was constructed, achieving average yields of 63-93% over six steps.

its synthetic limitations, aiming to synthesize a variety of struc-
turally diverse derivatives. In particular, we are building a
chemical library based on various five-membered hetero-
cycles.® Five-membered heterocycles such as thiazole, imid-
azole, thiophene, and pyrrole have already been shown to have
pharmacological activity through extensive research and are
used as initial candidates.” In addition, recent drug develop-
ment research has focused on modifying natural product
scaffolds with verified bioactivity to synthesize compounds
exhibiting a wide range of biological activities.® This research
explores the incorporation of five-membered heterocycles by
modifying natural product scaffolds with validated biological
activity. Even though purine has a relatively simple structure
among natural products, it shows a broad spectrum of
pharmacological activities.” Purine has been widely studied by
medicinal chemists because of its various biological activities.
For instance, purine derivatives are not only a fundamental
constituent of nucleic acids in the human body but also
exhibit significant potential pharmacological activities in a
wide range of therapeutic areas, including anticancer, anti-
viral, antioxidant, and antimicrobial applications.'® Due to the
pharmacological activities of these purine derivatives, many
have been synthesized and pharmacologically evaluated.
Notable examples include olomoucine, a reversible and selec-
tive inhibitor of CDKs, istradefylline, which is used alongside
levodopa/carbidopa in the treatment of Parkinson’s disease,
and mercaptopurine, which is used as a chemotherapeutic
agent (Fig. 1A)."""'? Because of these activities, not only purine
derivatives but also various bioisosteres of purine have been
synthesized and studied. Notable examples include thiazolo
[4,5-d]|pyrimidine derivatives, where the imidazole of purine
is replaced with thiazole. These derivatives are actively
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Fig. 1 Bioactive purine or thiazolo[4,5-d]pyrimidine derivatives and the synthetic pathway.

researched as potential inhibitors of SecA,'® potent and selec-
tive antagonists of the fractalkine receptor (CX3CR1),"* potential
adenosine A; receptor antagonists,”> TRPV1 antagonists etc.
(Fig. 1B).'**° Due to the diverse biological activities of thiazolo
[4,5-d]pyrimidine derivatives, various synthetic approaches have
been developed and reported. Sun’s group substituted an aryl
group at the C-2 position of thiazole using thiazolo[4,5-d|pyrimi-
dine derivatives and aryliodides.”* Additionally, Bayomi’s group
synthesized thiazolo[4,5-d|pyrimidine derivatives by reacting
thiazolo-aminonitrile with malonitrile.*

Shaaban’s group utilized thiazolo-aminoamide and acetic
anhydride to synthesize pyrimidinone structures via a cycliza-
tion reaction.”® Furthermore, Herdewijn’s group synthesized
2-aminothiazole structures by reacting 5-thiocyanatopyrimidine-
2,4-diamine derivatives with DMF and water.'*
group synthesized thiazolo[4,5-d]pyrimidine derivatives using
solid-phase synthesis with Merrifield resin (Fig. 1C).>*
trast to the previous methods, we introduce a synthesis of thia-
zolo[4,5-d|pyrimidine derivatives with three diversities. To syn-
thesize the thiazole structure, we primarily use the Thorpe-
Ziegler reaction.> However, the Thorpe-Ziegler reaction requires
the presence of an electron-withdrawing group (EWG) for the

adopted an alternative method to synthesize thiazole. Building
upon our previous work with thiazolo-pyrimidinone derivatives,
we now introduce a method for constructing a thiazolo[4,5-d]
pyrimidine derivative library through solid-phase synthesis, uti-
lizing thiazolo-aminoamide intermediates.

Table 1 Optimization of the hydrolysis reaction

ves—( I e ves— 2“:

cyclization reaction, which limits the synthesis to EWGs only at
The amide group, however, is
somewhat restricted in the Thorpe-Ziegler reaction, so we have

the 5-position of the thiazole.>
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; :
Base Time Temp.
Entry®  (eq.) Solvent (min) (°C) Yield® (%)
Recently, Gong’s DBU (1.2) H,0 10 100 65
2 DBU (0.6) H,O 10 100 39
In con- 3 DBU (0.3)  H,O 10 100 22
4 DBU (1.2)  H,O/dioxane 10 100 84
5 DBU (1.2)  H,O 30 100 96
6 DBU (1.2) H,0 10 150 Quantitative
7 DBU (0.3)  H,O 10 150 91
8 NaOH (1.2) NH;-H,0/DMSO 180 80 84
9° NaOH (1.2) H,0/DMSO 180 80 85
10° NaOH (1.2) NH;-H,0 20h 80 14
11° DBU (1.2)  H,O/DMSO 120 80 54

“All reactlons were performed on 3 (100 mg) in solvent (2 mL) using
MW. ? Reaction was performed in an oil bath. ¢ Isolated yield.

This journal is © The Royal Society of Chemistry 2025
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Results and discussion

Two synthetic routes were considered for the synthesis of the
thiazolo-aminoamide 4 core intermediate. The first involved
reacting potassium-methyl cyanocarbonimidodithioate 2 with
bromoacetonitrile to synthesize thiazolo-aminonitrile 3, fol-
lowed by hydrolysis of the nitrile to functionalize the com-
pound with an amide group. However, most of the synthesis
conditions involved the presence of water, which made it
unsuitable for solid-phase synthesis under microwave (MW)
conditions. Additionally, the swelling effects of solvents like
water or DMSO were not favorable for the reaction (Table 1).

View Article Online

Paper

Therefore, a new synthetic route was selected. Using the pre-
viously studied method for synthesizing thiazolo-aminoamide,
compound 8 was synthesized with an 87% yield. Next, the 2,4-
dimethoxy group was removed by reacting with TFA, resulting
in the thiazolo-aminoamide core structure 4 with an 81%
yield.

To synthesize a thiazolo[4,5-d]pyrimidine 5 structure with
diversity in R', iodine was used as a catalyst to react with the
aldehyde.?® In the case of direct annulation reactions using
iodine, various conditions were tested to optimize the reaction,
and an aldehyde scope experiment for solid-phase synthesis
was conducted under the optimized conditions (Table S17).
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Fig. 2 Oxidative cyclization reaction scope.”” ?All reactions were performed on 4 (0.53 mmol) using iodine (0.053 mmol), aldehyde (0.636 mmol),
and DMSO (3 mL) at 100 °C under open air. °Purification was carried out by precipitation using water. All compounds were isolated, and the yields
were measured. “Isolation was carried out through silica gel column chromatography.
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Most compounds were precipitated using water without the
need for work-up or column chromatography and were con-
firmed to have very high purity.

For aldehydes such as benzaldehyde, anisaldehyde, tolual-
dehyde, and 4-nitrobenzaldehyde, yields of 90-95% were
achieved (Fig. 2, 5a, 5b, 5c¢, and 5d). Benzaldehydes with
methoxy groups, such as 3,4-dimethoxy, 2,4,6-trimethoxy, and
piperonal, were obtained with yields from 78 to 91% (5e, 5f,
and 5g). Additionally, when halogen groups like F and Br were
present on the phenyl group, the yields remained unchanged
(5h and 5i). However, phenylacetaldehyde showed significant
impurities when analysed by NMR, suggesting that side reac-
tions occurred. This is presumed to be due to the activation of
the benzylic position of the pyrimidine ring, leading to
additional reactions (5))- Moreover, 4-dimethyl-
aminobenzaldehyde was obtained with a yield of 78% and
3-thiophenecarboxyaldehyde was obtained with a high yield of
88% (5k and 51). In contrast to aryl aldehydes, aliphatic alde-
hydes, except for cyclohexanecarboxyaldehyde, could not be
precipitated with water and had to be isolated by column
chromatography (5m, 5n, and 50). Next, to synthesize thiazolo-
pyrimidine 9 from thiazolo-pyrimidinone 5, various conditions
were tested to introduce substituents at the R® position
(Table S2f). When coupling reagents such as HATU, EDC,
DCC, and BOP were used, reactions proceeded only with HATU
and BOP. Using these reagents, direct amination with butyla-
mine at the R® position allowed for the synthesis of 9aa with a
yield of 90%.

To substitute various nucleophiles at the R® position,
mCPBA was used to oxidize the compound to a sulfone, fol-
lowed by a desulfonative nucleophilic substitution reaction
to substitute the sulfone with butylamine, resulting in the
synthesis of 1laaa with an 80% yield (Scheme 1). Next, a
library of thiazolo[4,5-d]pyrimidine derivatives was con-
structed using solid-phase synthesis based on the optimized
solution-phase synthesis conditions (Scheme 2). The

7168 | Org. Biomol. Chem., 2025, 23, 7165-7171

L‘ = T,

= Morpholine, R® = Piperidine, 42%)

View Article Online

Organic & Biomolecular Chemistry

o)

14

l I, CHO-
DMSO

BOP, DBU 15a ( )

15b ( )
15c¢ ( )

, R? = NHBu)
2 = Methylbenzylamine)
R? = Morpholine)

Merrifield resin and the 4-amino-N-(2,4-dimethoxybenzyl)-2-
mercaptothiazole-5-carboxamide 12 the
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resin 13. Amine and amide bond stretching were observed
at 3488, 3428, and 3339 cm™' in the FT-IR spectrum
(Fig. 1St). To remove the 2,4-dimethoxybenzyl group from
resin 12, TFA was used, and the mixture was stirred in
CH,Cl,. The disappearance of the amine bond stretching at
3428 cm™!
stretching at 1649 cm
midinone resin 13 was synthesized through an oxidative

and the appearance of a new amide carbonyl

~! were confirmed. Next, thiazolo-pyri-

cyclization reaction using iodine and benzaldehyde. During
this process, the carbonyl stretching shifted to 1690 ecm™,
and the amine and amide IR peaks disappeared, as
observed in the FT-IR spectrum. To substitute butylamine at

the R? position of thiazolo-pyrimidinone resin 15, thiazolo-
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Fig. 3 Diversity elements of thiazolo[4,5-d]lpyrimidine 1 derivatives via
solid-phase synthesis.
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pyrimidine resin 16 was synthesized through a direct amin-
ation reaction using BOP. During this process, the carbonyl
bond stretching at 1690 cm™" was confirmed to disappear.
No significant spectral changes were observed during the
sulfone oxidation reaction with mCPBA. Compound 1laaa
was synthesized in six steps with a yield of 36% by reacting
sulfone resin 17aa with butylamine (Scheme 2). Using opti-
mized solid-phase synthesis conditions, we selected several
building blocks to construct a compound library (Fig. 3). In
desulfonative nucleophilic substitution reactions, secondary
amines generally showed higher yields than primary
amines. When R' was phenyl, no clear trend in yield was

Table 2 Solid-phase synthesis of thiazolo[4,5-d]pyrimidine derivatives

SiX_StipS 3 /N NS
Q R _<s | )N
Merrifield resin
(0.94 mmol/g) R?
Entry” R! R? R® Yield® (%)
1 Ph a a 36
2 Ph a b 19
3 Ph a c Trace
4 Ph a f 38
5 Ph a g 25
6 Ph a h NR
7 Ph a i 34
8 Ph b b 16
9 Ph b c Trace
10 Ph b d 42
11 Ph b e 21
12 Ph b f 49
13 Ph b g 63
14 Ph b h NR
15 Ph c e 42
16 Ph c g 59
17 4-OMe-Ph b b 10
18 4-OMe-Ph b e 33
19 4-OMe-Ph b f 36
20 4-OMe-Ph c b 7
21 4-OMe-Ph c d 10
22 4-OMe-Ph c g 38
23 4-Me-Ph a e 39
24 4-Me-Ph a g 34
25 4-Me-Ph b b 6
26 4-Me-Ph b e 19
27 4-Me-Ph b g 22
28 4-Me-Ph c a Trace
29 4-Me-Ph c e 42
30 4-Me-Ph c g 42
31 4-F-Ph a e 60
32 4-F-Ph a f 28
33 4-F-Ph a g 74
34 4-F-Ph b a 56
35 4-F-Ph b b 38
36 4-F-Ph b e 66
37 4-F-Ph b f 38
38 4-F-Ph b g 51
39 4-F-Ph c a 17
40 4-F-Ph c e 23
41 4-F-Ph c g 23

“All reactions were performed on resin 17 (300 mg) at room tempera-
ture. ? Isolated yield.

This journal is © The Royal Society of Chemistry 2025
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observed with respect to the substituents on R> (Table 2,
entries 1-16). In the case of nucleophiles with low nucleo-
philicity, such as N-methylaniline, the reaction did not
proceed (entries 6 and 14). Additionally, in the case of
amines with steric hindrance, such as phenylethanamine,
the reaction proceeded to a limited extent; however, the
desired product was obtained in a very low yield (entries 3
and 9). In contrast to other nucleophiles, benzylamine
exhibited poor solubility regardless of the R' and R* substi-
tuents, which made separation difficult and led to a low iso-
lated yield. When R' was 4-methoxyphenyl, typical yields
were obtained for R® groups except for benzylamine (entries
17 and 20). Similarly, when R' was 4-methylphenyl, yields
comparable to those obtained with phenyl were observed
for all R® groups except for benzylamine and butylamine
(entries 23-30). When R' was 4-fluorophenyl, overall yields
were found to be higher compared to other R' substituents
(entries 32-41).

Conclusions

In summary, a library of thiazolo[4,5-d]pyrimidine 1 derivatives
was constructed through solid-phase synthesis. The com-
pounds in the library exhibited three diversity elements, and
the previously limited free-amide at the 5-position of the thia-
zole, synthesized via the Thorpe-Ziegler reaction, was intro-
duced using 2,4-dimethoxybenzylamine. Furthermore, by opti-
mizing the oxidative annulation reaction, which showed high
yields when using the iodine catalyst, and applying this
method to solid-phase synthesis, a total of 36 thiazolo[4,5-d]
pyrimidine 1 derivatives were successfully synthesized. This
thiazolo[4,5-d|pyrimidine library is expected to be useful in the
early stages of drug development for identifying hit
compounds.
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