Open Access Article. Published on 05 June 2025. Downloaded on 1/13/2026 3:39:05 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Organic &

Biomolecular Chemistry

7® ROYAL SOCIETY
P OF CHEMISTRY

View Article Online

View Journal | View Issue

{ M) Check for updates ‘

Cite this: Org. Biomol. Chem., 2025,
23,6373

Received 14th May 2025,
Accepted 5th June 2025

DOI: 10.1039/d50b00798d

Direct electrochemical synthesis of
pentafluorophenyl esters via oxyl-radical-
promoted nucleophilic aromatic substitutiont

Edward G. V. Hilvano, Min-Chieh Liang, Jacob J. Piane and Eric D. Nacsa "= *

An electrochemical coupling between carboxylic acids and pentafluorophenol (PFP—OH) to access syn-
thetically versatile pentafluorophenyl (PFP) esters has been developed. Novel reactivity of PFP-OH was
turned on by modulating its oxidation state, leveraging both its native O-nucleophilicity and its latent, oxi-
dation-induced C-electrophilicity to promote a unique cascade of nucleophilic aromatic and acyl substi-
tutions. Its esterification with acids was thus achieved for the first time without exogenous dehydrating
agents. The acidity of PFP-OH and the oxidizability of its conjugate base enabled its mild and selective
activation via deprotonation—oxidation, readily affording PFP esters that are useful in many applications
(peptide synthesis, chemical biology, etc.) and that contain redox-sensitive functional groups. Finally, we
verified in a unified forum that an amino-acid-derived PFP ester can be converted into a range of acyl-
substitution products while retaining key stereochemical information, and we demonstrated that PFP
esters have excellent stability to hydrolysis, comparing favorably even to N-hydroxysuccinimidyl (NHS)

rsc.li/obc esters.

Introduction

Nucleophilic acyl substitutions are indispensable synthetic trans-
formations, providing access to a range of products such as
amides, esters, thioesters, ketones, aldehydes, and other useful
compounds.'™ Since their development over 50 years ago, penta-
fluorophenyl (PFP) esters have emerged as leading forms of
‘active esters™® designed to undergo these reactions. These acyl
electrophiles contain good leaving groups (conjugate acid pK, =
4-10 in H,0)'*"* and thus react well with a broad range of
nucleophiles to afford the corresponding acid-substitution pro-
ducts while requiring only a mild base to achieve high yields.
Further  notable classes of active esters include
N-hydroxysuccinimidyl (NHS), N-hydroxybenzotriazolyl, and nitro-
phenyl esters, among others. Owing the empowering reactivity of
PFP esters with nucleophiles, as well as their bench- and water
stability (which is superior to that of NHS esters'*'® that are used
for similar applications; see below), they have found use in a
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range of applications, including the synthesis of peptides,'®>°

glycosides,”** materials,”®>' and pharmaceuticals,**>® as
chemical biology reagents,”” ™ and for new synthetic
methods*®™® (Fig. 1a).

PFP esters have exclusively been prepared, however, from
the corresponding acids (2) and pentafluorophenol (PFP-OH,
3) using exogenous electrophilic dehydrating agents (Fig. 1b,
left),"®7°%%67°8:5979 and the native electrophilicity of the latter
additives gives rise to operational hazards beyond those associ-
ated with essential starting materials 2 and 3. For instance,
more-reactive variants that convert acids into acyl chlorides,
such as SOCIl, and oxalyl chloride, are corrosive and acutely
poisonous,®®' and milder variants for direct coupling, like
carbodiimides (DCC, EDC, etc.), are also toxins and dermal
sensitizers.®’

Cognizant of these challenges, we have developed a dehy-
drative electrochemical®®®* coupling of carboxylic acids with
pentafluorophenol (3) to afford the corresponding PFP esters
(1). No reactive electrophiles must be added or handled since
they are all anodically generated in situ from PFP-OH (3),
which must already be used for PFP ester synthesis (Fig. 1b,
right). The only necessary additives (base, electrolyte, and
solvent) are comparatively innocuous. As detailed below, this
approach electrochemically modulates the oxidation state of
PFP-OH to turn on otherwise-elusive reactivity. Moreover, the
facile deprotonation of this reagent and subsequent oxidation
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Fig. 1

(a) Pentafluorophenyl (PFP) esters are versatile acyl electrophiles that have been used in a range of applications. (b) PFP esters are conven-

tionally prepared using electrophilic dehydrating agents. This work avoids the handling of reactive electrophiles since they are electrochemically
generated them in situ from PFP—OH, which must be used anyway to access the desired products. (c) Our reaction design involves the anodic acti-
vation of PFP—OH (3) as the corresponding oxyl radical (4), which activates F atoms to nucleophilic aromatic substitution by acid 2 (as its conjugate
base, 5). Subsequently, resulting intermediate 6 acylates a second equivalent of PFP-OH (as its conjugate base, 7) to generate the desired PFP ester

(2).

of its conjugate base lead to mild conditions and an excellent
scope for this new electrochemical method.

Design plan

Our reaction design (Fig. 1c) is initiated by deprotonation and
single-electron anodic oxidation of PFP-OH (3, pK, = 20.1 for
PFP-OH” and E,* = +0.27 V vs. SCE for PFPO~, both in
MeCN) to generate oxyl radical 4. The ortho- and para-C-F
groups of this intermediate are activated (red shading on C) to
otherwise-challenging nucleophilic aromatic substitution
(SnAr) by carboxylate ion 5, owing to the exceptional electron-
withdrawing character®® of the conjugated oxyl radical (purple
shading) that has an underfilled octet. The resulting, putative
O-aryl ester 6 (or a redox analog thereof) would then contain a
good phenoxide leaving group (purple shading), making it sus-
ceptible to nucleophilic acyl substitution (SyAc, red shading
on C) by PFP-O~ (7). This step would afford desired PFP ester
1 and a quinone-type byproduct (not shown) after another
anodic oxidation. The electrical circuit would be closed by
cathodic proton reduction. Overall, this design uses the PFP-
OH hydroxyl group in two ways: (1) as a latent umpolung elec-
trophile, leading to the SyAr that activates the carboxylic acid,
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and (2) as a native nucleophile for SyAc, which forms the
product.

Results

Starting from this conceptual basis, we identified a simple pro-
tocol that efficiently converted model acid 8 and PFP-OH (3)
into PFP ester 9 (Fig. 2, see scheme). Under optimized con-
ditions, a mixture of 8 and 3, an organic base (N',N',N’ N*-
tetramethylguanidine, TMG, 1.5 equiv.), and an electrolyte
(Ety,NOTs, 2 equiv.) in MeCN (0.05 M in 8) was electrolyzed at a
constant cell potential of 3.0 V between a carbon-felt anode
and a stainless-steel cathode in an undivided cell, affording
PFP ester 9 in 90% yield. Optimal yields of 9 were obtained
with a fivefold excess of PFP-OH, but similar or better yields
were often obtained with a more-modest excess (3 equiv. of
PFP-OH and 1 equiv. of TMG, see below and ESI?).

The impact of key reaction parameters is also shown in
Fig. 2. Carbon anodes proved uniquely effective, and a lower-
porosity material (graphite) was less efficient than C felt (58%
yield, entry 1a). Replacing the stainless-steel cathode with C
felt was counterproductive (34% yield, entry 1b). Only Pt
proved comparable (87% yield, entry 1c), but it was not used

This journal is © The Royal Society of Chemistry 2025
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entry 6 2 15 77 83 42
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atmosphere air N, (no sparge) - - -
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Fig. 2 Control experiments electrolyzed a mixture of acid 8 (0.5 mmol,
1 equiv.), PFP-OH (3, 5 equiv.), TMG (1.5 equiv.), and Et4;NOTs (2 equiv.)
in MeCN (0.05 M in 8) at a constant cell potential of 3.0 V between a
carbon-felt anode and stainless-steel cathode. Yields were determined
by H NMR analysis with an internal standard. Deviations are noted
below the scheme. See ESIT for details.

thereafter owing to its much-higher cost. Tetraalkylammonium
PF, and BF, electrolytes proved inferior to Et,NOTSs (53-64%
yields, entries 2a-c), although Et,NCl performed similarly
(80% yield, entry 2d). Me,NOH could serve the dual role as
electrolyte and base (80% yield without TMG, entry 2e), albeit
in slightly reduced yield. Changes to the cell potential or
switching to constant current gave lower yields (entries 3a-d),
although a 15 mA current proved efficient (88% yield, entry
3c). The only solvent remotely comparable to MeCN was DMF
(67% yield, entry 4a). DMSO (10% yield, entry 4b) represented
the performance of most other solvents assessed. The process
withstood appreciable amounts of water (5 & 10 equiv., giving
75% and 66% yields, respectively, entries 4c & d). The optimal
base, TMG, could be exchanged for Et;N without issue in the
model reaction (89% yield, entry 5a), but alternative organic
bases such as DBU (55% yield, entry 5b) and especially in-
organic bases, all of which were insoluble, were ineffective
(9-15% yield, entries 5c-e). As mentioned above, a fivefold
excess of PFP-OH (3) gave optimal yields when 1.5 equiv. TMG
was used (compare the optimized 90% yield to entries 6a-e),
but a threefold excess of PFP-OH with less TMG (1 equiv.) gave
comparable results (87% yield, entry 7c). Almost all products
obtained throughout this study employed one of these ratios
(see below and ESIt). Finally, reaction mixtures were typically

This journal is © The Royal Society of Chemistry 2025
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sparged with nitrogen and then electrolyzed under a nitrogen
atmosphere. The reaction did not proceed under air (0% yield,
entry 8a), and skipping the sparging step significantly lowered
the efficiency, even if the electrolysis was performed under
inert atmosphere (51% yield, entry 8b).

We then evaluated the range of carboxylic acids that could
undergo this novel electrochemical PFP esterification.
Functionalized aromatic and aliphatic acids were both broadly
viable, as shown in Fig. 3. For example, the PFP ester of
benzoic acid (10a) was obtained in 82% yield, and its para-
halogenated (F, Cl, Br, and I) and CF; analogs were formed in
70-83% yields (10b-f). Benzoic acids with cyano and methoxy
groups at different positions were competent substrates, giving
products 10g-k in 50-72% yields, as were 2,4,6-trimethoxyben-
zoic acid (product 101, 51% yield) and pentafluorobenzoic acid
(product 10m, 46% yield). PFP benzoates with nitrogen-con-
taining para-azido (10n, 61% yield) and NHBoc (100, 85%
yield) groups were similarly effective. A range of extended aro-
matic and heteroaromatic acids were also tolerated, cleanly
affording 2-naphthoic, 3-thienyl, 2- and 3-pyridyl, 6-quinolinyl
PFP esters 10p and 11-14 in 72-81% yields.

In terms of aliphatic acids, 3-phenylpropionate product 15a
was isolated in 82% yield, and its para-methyl, methoxy,
chloro, bromo, iodo, and trifluoromethyl analogs 15b-g were
obtained in 55-92% yields (with only iodo product 15f below
77% yield). Products containing furan, alkene, alkyl bromide,
and benzyl ester groups (16-19, 65-79% yields) were also gen-
erated cleanly. PFP esters pendant from 3-, 4-, and 6-mem-
bered rings (20-22, 64-74% yields), a 4-NHBoc-substituted
cyclohexane (23, 83% yield), and both secondary and tertiary
adamantyl groups (24 & 25, 77% and 71% yields, respectively)
were similarly prepared. Finally, an a-oxy acid and a variety of
benzylic acids, which are potentially sensitive to oxidative
decarboxylation,””®® underwent efficient electrolysis, produ-
cing PFP esters 26-30 in 70-82% yields. The latter two
examples employed the NSAIDs flurbiprofen and ibuprofen as
substrates.

PFP esters derived from amino acids have proven particu-
larly valuable as building blocks in peptide synthesis,"®>°
materials chemistry,®>" and chemical biology,*”*®*"*>*> g0
we also thoroughly verified whether these products were acces-
sible using our electrochemical system. Encouragingly, an
excellent range of these PFP esters were efficiently prepared
(Fig. 4). Boc-protected B-amino product 31 was obtained in
75% yield. The majority of our efforts then focused on
a-amino acids. Common Cbz, Boc, and Fmoc N-protecting
groups were all well-tolerated on alanine, affording products
32-34 in 75-81% yields. The PFP ester of serine (35) bearing a
free OH group was formed in 52% yield, and O-benzyl protec-
tion gave product 36 in higher 72% yield. With appropriate
protecting groups, PFP esters of the functionalized amino
acids cysteine (37, 52% yield), methionine (38, 88% yield),
lysine (39, 74% yield), and arginine (40, 86% yield) were also
cleanly isolated. A gram-scale preparation of arginine product
40 proceeded in nearly identical 81% yield. Functional aro-
matic-containing side chains were also well-tolerated, generat-
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Fig. 3 Scope for PFP esterification of (hetero)aromatic and aliphatic acids. A mixture of acid (0.5 mmol, 1 equiv.), PFP-OH (3, 3-5 equiv.), TMG
(1-1.5 equiv.), and Et4NOTs (2 equiv.) in MeCN (0.05 M in acid) were electrolyzed at a constant cell potential of 3.0 V between a carbon-felt anode
and stainless-steel cathode. Yields of isolated products. See ESIf for details. ? Isolated as the corresponding N-benzylamide. ? Performed on a larger

scale (2 mmol of acid).

ing phenylalanine-, tyrosine-, tryptophan-, and histidine-
derived products 41-45 in 55-72% yields. More-substituted
a-amino acids including proline and unnatural building
blocks afforded products 46-48 in 57-66% yields. Critically,
excellent stereoretention was observed, as all non-racemic pro-
ducts had >96% ee, with most >99% ee. A dipeptide was con-
verted to 49 (64% yield) without epimerization (20:1 dr), and
the PFP ester of biotin (50), which is a useful reagent in chemi-
cal biology,>****>** was isolated in 65% yield. Throughout

these studies, in cases where yields of PFP esters were modest,

6376 | Org. Biomol. Chem., 2025, 23, 6373-6385

acid-derived byproducts were typically not observed. Instead,
unproductive acid remained intact. Oligomeric PFP-OH-
derived byproducts, which owing to their low polarity were
readily removed by chromatography, accounted for the mass
balance.

Having established the broad scope of our electrochemical
PFP ester synthesis, we completed our synthetic work by con-
firming the well-established versatility of these products in
downstream synthetic transformations (Fig. 5a). Amino-acid-
derived product 41 was prepared in 72% yield (see Fig. 4) and

This journal is © The Royal Society of Chemistry 2025
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Fig. 4 Scope for PFP esterification of amino acids and biotin. A mixture of acid (0.5 mmol, 1 equiv.), PFP-OH (3, 3-5 equiv.), TMG (1-1.5 equiv.),
and Et4NOTs (2 equiv.) in MeCN (0.05 M in acid) were electrolyzed at a constant cell potential of 3.0 V between a carbon-felt anode and stainless-

steel cathode. Yields of isolated products. See ESIj for details. ? Isolated as

the corresponding N-benylamide. © Performed on a larger scale (2 mmol

of acid). € 3.5-V cell potential. ¢ Yield determined by °F NMR. ¢ 3 : 1 DMF/MeCN solvent.

>99% ee. Treatment of this PFP ester with a range of nucleo-
philes under simple conditions (1.1 equiv. of nucleophile, 1
equiv. of EtzN, MeCN solvent) rapidly and efficiently produced
the corresponding carboxylic-acid derivatives either without
any or with only a minimal loss of enantiopurity. Specifically,
O-alkyl and O-aryl esters 51 & 52 and S-alkyl and S-aryl thioe-
sters 53 & 54 were isolated in 84-95% yields and 96-99% ees.
N-Alkyl, N-aryl, and Weinreb amides 55-57 were similarly
obtained in 92-98% yields and all in >99% ee. Lastly, using
a-amino acid esters as the nucleophiles afforded dipeptides
58-60 in 70-92% yields and without epimerization (all >99:1
dr), which can be challenging in peptide synthesis.”®**
Although these outcomes are consistent with the well-estab-

This journal is © The Royal Society of Chemistry 2025

lished performance of PFP esters in a range of
applications,'®™> these results showcase that these electro-
philes are highly effective acyl surrogates (i.e., providing high
yield and minimizing racemization) with a broad range of
nucleophiles and without needing to re-optimize reaction
conditions.

We also sought to compare the stability of amino-acid-
derived PFP ester 41 to that of other acyl electrophiles, but we
were unable to prepare any quantity of the acyl chloride
despite reports of its synthesis.'*>™'°® We therefore compared
the stabilities of the acyl chloride, anhydride, NHS ester, and
PFP ester derived from cyclohexane carboxylic acid stored as

neat compounds under air (Fig. 5b) and in aqueous MeCN

Org. Biomol. Chem., 2025, 23, 6373-6385 | 6377
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Fig. 5 (a) Synthetic transformations of amino-acid-derived PFP ester product 36. A range of O-, S-, and N-nucleophiles efficiently generated the
corresponding alkyl and aryl ester, thioester, and amide products, including a selection of dipeptides, with minimal racemization. Conditions: a solu-
tion of PFP ester 36 (0.5 mmol, 1 equiv.), nucleophile (1.1 equiv.), and EtzN (1 equiv.) in MeCN (0.1 M in 36) were stirred at rt. Yields of purified pro-
ducts are reported. See ESI for details. ® Performed with a larger excess of nucleophile (3 equiv.). (b & c) Stabilities of acyl electrophiles (acyl chlor-
ide, anhydride, NHS ester, and PFP ester) derived from cyclohexane carboxylic acid stored (b) under air and (c) in aqueous solution (0.1 M in 4:1
CDsCN/D,0), with % remaining measured by *H NMR analysis.

(Fig. 5¢) by "H NMR analysis. As expected, the acid chloride completely within 72 h. The half-life of the anhydride was
decomposed much more rapidly than all other electrophiles, ~100 h under air, and it fully decomposed within 300 h,
with a half-life of ~24 h stored under air and decomposing whereas neither NHS nor the PFP active esters suffered any

6378 | Org. Biomol. Chem., 2025, 23, 6373-6385 This journal is © The Royal Society of Chemistry 2025


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ob00798d

Open Access Article. Published on 05 June 2025. Downloaded on 1/13/2026 3:39:05 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Organic & Biomolecular Chemistry

detectable decomposition after 300 h. Starker differences were
observed in aqueous solution. The acyl chloride fully decom-
posed within 15 minutes. The anhydride had a surprisingly
long half-life of ~140 h. The active esters again decomposed
much more slowly, but the PFP ester remarkably proved ~6-
fold more stable than the NHS ester. The combined results
across Fig. 5 therefore showcase both the synthetic versatility
and practical robustness of these acyl electrophiles.
Electrochemical studies were then undertaken to account
for the excellent chemoselectivity of this new electrochemical
reaction. First, analysis of the reaction components by cyclic
voltammetry (CV) revealed that phenoxide 7, the anion of PFP-
OH (3), is the most oxidizable species in solution by a signifi-
cant margin (Fig. 6a). Neither PFP-OH (E}* = + 1.58 V vs. SCE)
nor model acid 8 (E;* > +2 V vs. SCE) were readily oxidized,
which is consistent with the need for a base in the electro-

(a) Peak Oxidation Potentials of Reactants
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chemical reaction. The standard base employed throughout
these studies (TMG, pKgy: = 23.4 in MeCN,"'® the standard
reaction solvent) can deprotonate both the carboxylic acid (pK,
= 23.5 for AcOH in MeCN)” and PFP-OH (pK, = 20.1 in
MeCN),”® although given their relative acidities and the stoi-
chiometries employed (either 1:5:1.5 or 1:3:1 of carboxylic
acid/PFP-OH/TMG), PFP-OH should be deprotonated to a
much-greater extent than the carboxylic acid (this acid-base
equilibrium also makes TMG oxidation unlikely, see ESIT).
Even without accounting for this speciation, which would
selectively activate PFP-OH to oxidation, PFP-O~ (7, E)* =
+0.27 V vs. SCE) proved more oxidizable than the carboxylate
derived from acid 8 (61, E;* = +0.96 V vs. SCE) by 0.69 V. We
postulate that this facile oxidation underpins the generality of
the synthetic protocol, which did not lead to undesired oxi-
dation of a-amino acids, benzylic acids, or dialkyl sulfides.

(b) Working Potentials of Electrodes During Electrosynthesis
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Fig. 6 Preliminary mechanistic experiments. (a) CV analyses revealed that the conjugate base of PFP-OH (phenoxide 7) is oxidized at a significantly
lower potential (+0.27 V vs. SCE) than any other possible major species in solution. (b) The potential of the anode varied from +0.64 V to +0.77 V vs.
SCE during electrolysis, which can selectively engage phenoxide 7 while leaving carboxylates and other potentially oxidizable species intact. (c) Both
H, and 62, which contains two ‘OPFP’ units, were formed in equimolar ratios with PFP ester 9. (d) The model reaction forming PFP ester 9 did not
proceed when adding radical trap 63, and oxyl-radical adduct 64 was detected by HRMS and *'P NMR. See ESI+ for details.
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Consistent with this scenario, the potential of the anode
during preparative constant-cell-potential electrolysis under-
went a modest anodic drift, but it stayed within a range of
+0.64 V to +0.77 V vs. SCE (Fig. 6b). Presumably, the anode
selectively oxidizes the PFP-OH/PFP-O™ mixture present at any
given time, but never reaches an energy that would destroy the
carboxylate or other groups.'"!

Finally, preliminary studies were performed to probe the
reaction mechanism. As shown in Fig. 1c, we proposed that a
net oxidation of the organic reactants would be enabled by
cathodic hydrogen evolution. Indeed, preparative experiments
were performed with a vent needle since the reaction vessel
otherwise became noticeably pressurized and occasionally
burst. A hydrogen detector confirmed the formation of this
gas, and semiquantitative estimates indicated that it was pro-
duced in an equimolar amount with PFP ester 9 (Fig. 6c).
Furthermore, when the reaction was monitored by '°F NMR,
an organic byproduct was also formed in a ~1:1 ratio with
desired product 9. Careful isolation enabled its characteriz-
ation and structural assignment as 62, which contains two
‘OPFP’ units. This byproduct explains why a threefold excess of
PFP-OH is needed for the reaction to proceed (see Fig. 2). As
discussed below, it also required a minor revision of our
mechanistic hypothesis (Fig. 1c). On the other hand, the pro-
posed single-electron oxidation to generate PFP-OH-derived

- cathode — F
267+ 2H = H, %

\ F
™G PFP ester 1

acid PFP—OH (3 equtv)
-le” —62 SnAc
—2Ht (byproduct) | +1H*
—anode —
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—HF
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OH
(o) F 62
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made electrophilic
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by Oe

Fig. 7 Revised mechanistic hypothesis. Deprotonation and anodic oxi-
dation of PFP—-OH (3) generates oxyl radical 4, which undergoes SyAr
with carboxylate 5. Resulting open-shell O-aryl ester 6 is oxidized
further and trapped by a second equivalent of PFP-O~ (7), producing
acyl electrophile 65. SyAc by a third equivalent of PFP-O~ (7) affords
PFP ester 1 and byproduct 62.
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oxyl radical 4, which would facilitate the proposed SyAr,’® was
consistent with radical-trapping experiments (Fig. 6d).
Addition of oxyl-radical trap 63''* to a standard preparative
electrolysis completely prevented the formation of PFP ester 9,
and oxyl-radical adduct 64 was detected both by HRMS and
3'p NMR analysis (no adduct formation or substrate conver-
sion of any kind occurred without electrolysis, see ESIT).

These observations led to the revised mechanistic proposal
shown in Fig. 7. As initially suggested in Fig. 1c, deprotonation
and single-electron anodic oxidation of PFP-OH (3) generate
oxyl radical 4, the highlighted C-F bonds of which are acti-
vated to SyAr by carboxylate ion 5.°® Putative intermediate 6
then undergoes a further anodic oxidation and is trapped by a
second equivalent of PFP-O~ (7), generating closed-shell acyl
electrophile 65. Finally, SyAc with a third and final equivalent
of PFP-O~ (7) affords PFP ester 1 and byproduct 62.

Conclusions

We have developed a novel electrochemical coupling of car-
boxylic acids with pentafluorophenol (PFP-OH) to access syn-
thetically versatile pentafluorophenyl (PFP) esters. This system
strategically modulates the oxidation state of the hydroxyl
group in PFP-OH to turn on otherwise-elusive reactivity. By
leveraging both the latent electrophilicity and the native
nucleophilicity of this reagent, a unique SyAr/SyAc cascade
ultimately generates the PFP ester product. As a result, this
useful transformation can be accomplished for the first time
without electrophilic dehydrating agents. Moreover, owing to
the acid-base and electrochemical properties of PFP-OH that
enabled its selective activation under mild conditions, an
excellent range of PFP esters that are useful in a wide range of
applications and that contain oxidation-sensitive functional
groups were efficiently prepared. Finally, we confirmed that an
amino-acid-derived PFP ester reliably affords a range of acyl-
substitution products without any or with only minimal epi-
merization, and we demonstrated that PFP esters have excel-
lent stability to hydrolysis, comparing favorably even to
N-hydroxysuccinimidyl (NHS) esters.
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