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Systematic studies toward the synthesis of
D-galactosamine-containing coumarin glycosides†

Hannah S. Wootton and Gavin J. Miller *

An O-glycosylation method for accessing coumarin glycosides is presented. We report the reaction of

6,8-difluoro-7-hydroxy-4-methylcoumarin and 4-methylumbelliferone with a variety of glycosyl imidate

donors using BF3·Et2O as activator to access a series of coumarin glycosides in 64%−76% isolated yields.

Several reaction parameters are evaluated including promotors, temperature and reagent equivalents.

Following initial methodology development using simple D-glucose donors, D-galactosamino mono- and

disaccharides are explored as substrates, showcasing applicability towards late-stage transformation of

biologically relevant chondroitin sulfate glycosides. Glycosylation diastereoselectivity trends were also

considered, proposing that the identity of the D-galactosamino N-protecting group and the coumarin

acceptor contribute to observed anomeric product ratios. This methodology provides a convenient

access to D-galactosamino-coumarin glycoconjugates and provides a benchmark for the development of

related systems for biological evaluation.

Introduction

Coumarins are naturally occurring heterocycles that have
received attention due to their use as therapeutic agents. For
example, warfarin and acenocoumarol are approved anti-
coagulants, derived from coumarin.1 Relatedly, coumarin gly-
cosides, where coumarin is conjugated to a sugar, have been
evaluated as anti-cancer,2 anti-diabetic,3 anti-inflammatory,4

anti-microbial,5 and anti-viral agents.6 Additionally, coumarin
glycosides contain a fluorogenic reporter group, and have thus
been deployed as probes/inactivators for enzymes.7,8 Notable
examples include esculin, an anti-inflammatory therapeutic,
which undergoes hydrolysis by esculin hydrolase as a rapid
test to detect Gram-positive or negative bacteria.9 Furthermore,
4-methylumbelleriferone-α-D-galactopyranoside has been
used to monitor α-galactosidase-A activity relating to Fabry
disease.10 Access to coumarin-functionalised glycosides is
thus of particular interest to advocate their use as biological
tools in glycoscience. To achieve this, robust methods for
their synthesis are required, particularly those that avoid
harsh reaction conditions and are applicable beyond simple
monosaccharides.

Methods for coumarin attachment to sugars have been
reviewed,11,12 and often involve heating glycosyl acetates (the
Helferich method), exemplified for D-Gal in Fig. 1a, using an

excess of Lewis acid to afford the glycoside. However, these
reactions are often only moderately yielding and not applicable
to more complex/precious saccharides.13 Methods for acces-
sing coumarin conjugates of the aminosugar D-galactosamine
(D-GalN) are surprisingly few. Glycosyl halide 3 has been
employed as a D-GalN monosaccharide donor,14–16 undergoing
appropriate phase-transfer activation to deliver coumarin gly-
coside 5 in 33% yield [Fig. 1b, method (a)].17 However, this
method is incompatible with glycosyl halide substrates prone
to elimination under basic conditions.18 Alternatively, cou-
marin glycoside 5 has been accessed by heating glycosyl
acetate 4 with Cu(OTf)2 under microwave conditions,19 improv-
ing the yield to 53%. Finally, a D-GalN-containing α-linked
4-methylumbelliferone (4-MU) disaccharide (D-Gal-β(1,3)-D-
GalN) 7 was prepared by Kiso and co-workers, who optimised a
Mitsunobu reaction using glycosyl donor 6 containing an
α-directing 4,6-O-di-tert-butylsilylene group. α-Selectivity was
achieved, but as an inseparable mixture (9 : 1 α : β) in 80%
yield, and required high temperature using an excess of 4-MU
(Fig. 1c).20

As part of a wider programme concerning the chemical syn-
thesis of glycosaminoglycan mimetics,21–27 we required a
general synthetic approach to access structurally defined chon-
droitin sulfate fragments containing a D-GalN-coumarin redu-
cing end conjugate, particularly toward materials with orthog-
onal protecting group patterns. Considering the relative spar-
sity of methods available, our approach sought glycosyl
imidate donors, which are reactive, accessible under mild con-
ditions and have been employed previously for saccharide-cou-
marin attachment. For example, Ferro and co-workers syn-
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thesised a fluorogenic heparan sulfate disaccharide (D-GlcN-
α(1,4)-D-GlcA) using a glycosyl D-glucuronate imidate in 76%
yield. Notably this required prior TMS protection of 4-MU, suc-
cessive addition of BF3·Et2O and acetylation of the product to
facilitate purification,28 highlighting further the challenges
associated with this type of transformation. Reported herein is
our development of a methodology to generate coumarin-func-
tionalised chondroitin sulfate disaccharides (D-GlcA-β(1,3)-D-
GlcN).

Results and discussion
D-Glucopyranosyl donors

To initiate a general method for coumarin attachment, a series
of simple D-glucopyranosyl monosaccharide donors were syn-
thesised (see ESI† for details) before exploring D-GalN deriva-
tives. Briefly, commercially available peraacetylated β-D-glucose
8 was diversified at the anomeric position to generate six
different donors, which were then subjected to glycosylation

using 6,8-difluoro-7-hydroxy-4-methylcoumarin (DiFMU) as the
acceptor (Table 1).

Reactions using acetate 8, thioglycoside 9 and phosphate 10
donors were unsuccessful due to no reaction, decomposition
or hemiacetal formation, respectively. Glycosyl bromide 11 and
Ag2O activation was more promising, generating the required
coumarin derivative 14 in 30% yield (Table 1, entry 1), and this
could be improved to 60% using a shorter reaction time (2 h
versus 48 h) and the addition of TMSOTf (Table 1, entry 2), as
adopted from work by Demchenko and co-workers.29 Optimal
results were achieved using D-glucopyranosyl imidate donors
12 and 13. Whilst initially no reaction or donor hydrolysis
occurred when using N-trichloroacetimidate (TCAI) donor 12
with catalytic TMSOTf or tris(pentafluorophenylborane) (BCF),
the adoption of catalytic BF3·Et2O gave the desired β-coumarin
14 in 69% yield (Table 1, entry 3). Increasing the amount of
BF3·Et2O from 0.2 to 1.0 equivalent had little effect on reaction
yield using TCAI donor 12 (Table 1, entry 4); these conditions
could be similarly applied using donor 13 (Table 1, entry 5).
Overall, D-glucopyranosyl donors 11–13 generated the derived

Fig. 1 Methods of O-glycosylation toward accessing D-galactosamine coumarin glycosides and the reaction conditions developed here for a range
of mono- and disaccharides. LG = Cl (3) or OAc (4); X = H = 4-MU; X = F = DiFMU; P = Troc or Phth.
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difluorinated coumarin glucoside 14 in 60–69% yields with
expected β-stereoselectivity and minimal by-product formation.

Towards D-galactosamine-coumarin conjugates

With a glycosylation method established, a panel of monosac-
charide D-GalN imidate donors (15–18) were synthesised,
including N-Phth, N-Ac and N-Troc amine protecting groups
(see ESI† for details).

Glycosylation using N-Phth donor 15 and N-Ac donor 16
were unsuccessful, either generating inseparable mixtures or
no product. Using N-Troc imidate 17, glycosylation was suc-

cessful, generating disaccharide 19 in yields of up to 71%
(Table 2, entries 1–3). β-Diastereoselectivity was improved
using a DCM/MeCN solvent system, from a 1 : 2 α : β mixture
(Table 2, entry 1) to 1 : 4 (Table 2, entry 2). Such mixtures were
separable via column chromatography and displayed clear
differences in derived 3JH1–H2

1H NMR coupling constants [J =
3.2 Hz (α) versus 8.3 Hz (β)] and coupled HSQC [1JC1–H = 183.5
Hz (α) versus 168.8 Hz (β)]. Similar patterns were observed for
PTFAI donor 18 (Table 2, entries 4–7), albeit in reduced yield
and a stochiometric amount of BF3·Et2O proved optimal to
deliver coumarin glycoside 19 in 65% yield (Table 2, entry 7).
Finally, scalability was demonstrated (1.3 mmol, Table 2, entry

Table 1 Development of DiFMu attachment for D-glucopyranosyl donors

Entry Substrate Conditions Promotor Equiv. α : β Yield (%)

1 11 b Ag2O 20 0 : 1 30
2 11 c Ag2O/TMSOTf 3.0 0 : 1 60
3 12 a BF3·Et2O 0.2 0 : 1 69
4 12 a BF3·Et2O 1.0 0 : 1 64
5 13 a BF3·Et2O 1.0 0 : 1 63

Conditions: a 1–2 h, −20 °C–0 °C. b 48 h, RT. c 2 h, RT. General conditions: glycosyl donor (1.0 equiv.); DiFMu (1.2 equiv.); DCM.

Table 2 Exploring coumarin attachment using D-galactosamine donors

Entry Substrate Solvent Promotor Equiv. α : β Yield

1 17 a BF3·Et2O 0.2 1 : 2 60%
2 17 b BF3·Et2O 0.2 1 : 4 71%
3 17 b BF3·Et2O 1.0 1 : 4 66%
4 18 a BF3·Et2O 0.2 1 : 2 50%
5 18 b BF3·Et2O 0.2 1 : 5 54%
6 18 c BF3·Et2O 0.2 1 : 3 52%
7 18 b BF3·Et2O 1.0 1 : 4 65%
8d 18 b BF3·Et2O 1.0 1 : 4 66%

Solvent conditions: aDCM. bDCM/MeCN (10/1). cDCM/MeCN (5/1). General conditions: glycosyl donor (1.0 equiv.); DiFMu (1.2 equiv.); 1–2 h,
−20–0 °C. d 1.3 mmol scale.
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8). Despite a less-than-optimal diastereoselectivity, these
results using TCAI or PTFAI D-GalN donors encouraged us to
explore disaccharide substrates.

Coumarin glycosylation with disaccharide D-GalN donors

The compatibility of late-stage disaccharide glycosylation with
both DiFMu and 4-MU was explored next, utilising a selection
of available chondroitin sulfate disaccharide precursors con-
taining a variety of protecting groups (Table 3, see ESI† for
details of donor preparation).21 Glycosyl donor 20 containing a
N-Phth group generated β-24 in 70% yield (Table 3, entries 1 &
2) with stochiometric activator (using 0.2 equivalents of Lewis
acid reduced the yield to 50%). Full characterisation of β-24
was obtained, with notable coupling constants deduced from
the relevant 1D and 2D NMR spectra. The β-configuration at
the reducing end was determined by a 3JH1–H2 coupling of 8.4
Hz and a large 1JC–H coupling of 169.4 Hz. Furthermore,
characteristic 19F coupling was observed, with 1JC–F,

3JH–F and
4JF–F values of 251.5, 10.1 and 3.6 Hz respectively (Fig. 2).

Reaction with N-Troc TCAI donor 21 generated glycoside 25
(1 : 2 α : β) firstly in 20% yield (Table 3, entry 3) then 28% yield
(Table 3, entry 4) using stoichiometric activator. The major
product isolated from this reaction (in 50% yield) was the
N-glycoside, formed through return nucleophilic addition of the
acetamide leaving group at C1. Switching to N-Troc PTFAI donor
22 and DiFMu generated disaccharide 25 in a moderately
improved 39% yield (Table 3, entry 5). Reducing the temperature
to −50 °C had a minimal impact on yield or diastereoselectively
(Table 3, entry 6). Stoichiometric activator afforded 25 in an
improved 73% yield but was poorly diastereoselective, affording a
separable 2 : 1 α : β mixture (Table 3, entry 7). Furthermore, when
donor 22 was reacted with 4-MU under identical conditions, the

reaction again proceeded smoothly to generate 26 in 76% yield,
but now as a 1 : 2 α : β mixture (Table 3, entry 8). Finally, 4,6-O-
acetylated imidate 23 was reacted with DiFMu (Table 3, entry 9)
which afforded disaccharide 27 in 64% yield in a 1.5 : 1 α : β ratio.

Several factors can influence the rate and stereochemical
outcome of a glycosylation reaction, including the choice of
anomeric leaving group, promotor system and acceptor nucleo-
philicity. For aminosugars, donor reactivity and glycosylation
stereoselectivity can also be influenced by participation of a
C2-amine protecting group. Indeed, this has been noted pre-
viously for D-GlcN derivatives, but less so for D-GalN.30 Herein
we observed that the outcome (20%–76% yields; 2 : 1–0 : 1 α : β
ratio) of glycosylation reactions to install a coumarin aglycon
was dependent upon both the identity of the galactosamino
N-protecting group and the phenol nucleophilicity. An N-Phth
protecting group effected complete β-stereoselectivity and an
N-Troc group also promoted β-stereoselectivity using a mono-
saccharide donor. However, at disaccharide level a decrease in
β-selectivity was observed; reaction of N-Troc disaccharide
donor 22 with DiFMU generated compound 25 as a 2 : 1 α : β

Table 3 Optimisation of coumarin attachment to generate disaccharides 24–27

Entry Substrate Conditions Promotor Equiv. Product α : β Yield

1 20 c BF3·Et2O 0.2 24 0 : 1 50%
2 20 c BF3·Et2O 1.0 24 0 : 1 70%
3 21 c BF3·Et2O 0.2 25 1 : 2 20%
4 21 c BF3·Et2O 1.0 25 1 : 2 28%
5 22 c BF3·Et2O 0.2 25 1 : 1 39%
6 22 d BF3·Et2O 0.2 25 1 : 1 42%
7 22 c BF3·Et2O 1.0 25 2 : 1 73%
8 22 c BF3·Et2O 1.0 26 1 : 2 76%
9 23 c BF3·Et2O 1.0 27 1 : 1 64%

Reaction conditions: aDCM, RT. bMeCN, RT. aDCM/MeCN (10/1, v/v), −20 °C to 0 °C. bDCM/MeCN (10/1, v/v), −50 °C to 0 °C. General conditions:
glycosyl donor (1.0 equiv.); coumarin (1.2 equiv.); 1–2 h.

Fig. 2 Chemical structure of coumarin glycoside 24, highlighting the
key coupling constants observed in NMR spectroscopic data.
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mixture. Notably reaction with 4-MU saw an improvement in
glycosylation diastereoselectivity (to 1 : 2, α : β for 26). Related
studies have noted the effects of acceptor reactivity within gly-
cosylation reactions, observing weaker nucleophiles to gene-
rate more α-product.31–34 Using a DiFMU acceptor, containing
electron withdrawing fluorine appears to follow this trend, pro-
moting α-selectivity. Shifting to 4-MU acceptor improved
β-selectivity (2 : 1, α : β in 25 to 1 : 2, α : β in 26). Additionally, it
has been proposed that an axial C4-O-acetate in D-Gal sub-
strates promotes α-selectivity, due to participation.35 Our
results partially support this, evidenced by β-selectivity being
reduced when D-GalN monosaccharide donors are used versus
D-GlcN (Tables 1 and 2). However, at disaccharide level, reac-
tion of DiFMU with 4,6-O-acetyl donor 23 showed an increase
in β-selectivity compared to C4-benzylated donor 22 (2 : 1, α : β
for 22 to 1 : 1, α : β for 23). Whilst this methodology did not
always afford diastereomerically pure glycosylation outcomes,
disaccharide anomers were separable using conventional
chromatography (see ESI† for details), providing access to
stereopure materials for wider deprotection and biological
evaluations.

Compared to previously reported methods (Table 4), this
methodology requires low equivalents of both coumarin (1.2
equiv.) and glycosyl donor (1.0 equiv.) which is helpful for
purification. Also, a low reaction temperature is employed
compared to methods (a), (b) or (d) in Table 4 (−25 °C versus
60 °C or 130 °C), the reaction is scalable (1.3 mmol) and has a
short duration. Furthermore, this methodology is applicable to
a range of substrates utilising different O- and N-protecting
groups which is useful for late-stage functionalisation. Notably
here, β-selectivity is achieved in preference, whereby methods
(a), (c) and (d) in Table 4 generate the α-anomers as the major
product. Method (b) is β-selective but is lower yielding (33%)
and incompatible with glycosyl substrates prone to elimination
under basic conditions.

Conclusion

We have developed an O-glycosylation protocol for installing
the commonly used aglycon coumarin onto D-GalN monosac-
charides and disaccharides (chondroitin sulfate precursors).
First optimising a methodology towards simple D-Glc donors,
we selected imidates as the leaving group and BF3·Et2O as
Lewis acid activator. Moving to D-GalN, the protecting group

used on nitrogen proved optimal as N-Troc at monosaccharide
level and either N-Phth or N-Troc for disaccharides containing
a D-GlcA-(1,3)-β-D-GalN motif. Here the diastereoselectivity
outcome was also dependant on the coumarin acceptor used,
with higher β-selectivity observed for 4-MU versus a difluori-
nated analogue. Overall, the methodology is accessible and
applicable, harnessing mild reaction conditions, short reaction
times and delivering good yields (64%−76%) across a panel of
fourteen glycosyl donors screened. Furthermore, access to
orthogonally protected disaccharides used in late-stage oligo-
saccharide synthesis is shown and serves to demonstrate a
broader application potential for glycosidation of fluorogenic
motifs to study carbohydrate active enzymes.
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