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Revisiting Mayr’s reactivity database: expansion,
sensitivity analysis, and uncertainty quantification†

Moritz K.-E. Wolff, a Armin R. Ofial b and Jonny Proppe *a

Rate constants for reactions between nucleophiles and electrophiles can be efficiently estimated by the

Mayr–Patz equation, log k = sN(N + E), which relies on three reactivity parameters as input. Utilising this

equation, the Mayr group established a reference set for determining reactivity parameters of uncharged

π-nucleophiles with positively charged electrophiles (benzhydrylium ions). Subsequently, the initial refer-

ence set was expanded by uncharged quinone methide electrophiles and carbanionic nucleophiles,

resulting in an extension of the reactivity scales toward stronger nucleophiles and weaker electrophiles.

For this work, the extended reference set was systematically analysed by automated algorithms to identify

key aspects for future expansions. Lower bounds for reaction-to-species and reaction-to-parameter

ratios were determined, ensuring minimal overfitting during parameter optimisation. It is also shown that

the removal of electrophilic or nucleophilic species with high species-specific model errors in their pre-

dicted rate constants had positive results on the overall model error, with one species having a particularly

great influence. These findings and the proposed methods may help future efforts to determine reliable

data sets for the construction of Mayr-type reactivity scales.

1 Introduction

The feasibility of any chemical transformation from reactants
to products is dictated by two key parameters: the thermo-
chemistry and the energetic barrier of the intended reaction.
Thermochemical differences between reactants and products are
well accessible by experiment or can be reliably calculated by
quantum–chemical methods. Yet, as a consequence of individual
Gibbs activation energies, even reactions with sufficient thermo-
dynamic driving force can proceed fast or slow or they do not
occur at all. Calculation of energetic barriers is by far less accessi-
ble to predictions by quantum-chemical methods, however.
Hence, a general assessment of the feasibility of an organic syn-
thesis often remains unclear without inefficient trial-and-error
approaches. Therefore, widely applicable reactivity scales rep-
resent a valuable tool for synthesis planning since they enable
the prediction of rate constants for unknown reactions.

The majority of reactions in organic chemistry involve a
polar reaction mechanism in which a nucleophile reacts with
an electrophile. Since the introduction of these terms by
Ingold in 1933,1 numerous models have been developed and

refined to quantify polar reactivity.2–7 Currently, the Mayr–Patz
equation (eqn (1)) represents the most comprehensive linear
free energy relationship in organic chemistry and has proven
effective in predicting rate constants of electrophile–nucleo-
phile reactions, in which at least one of the reaction centres is
a carbon atom.8

log k ¼ sNðN þ EÞ ð1Þ

Eqn (1) relates second-order rate constants of inter-
molecular reactions of nucleophiles and electrophiles to only
three empirical parameters, the electrophilicity E, the solvent-
dependent nucleophilicity N, and the nucleophile-specific sen-
sitivity factor sN (Fig. 1).

Based on eqn (1) and by the consistent use of benzhydry-
lium ions as reference electrophiles, Mayr et al. further refined
the reactivity scales in 2001.10 Through least-squares optimi-
sation of the whole set of 209 rate constants for reactions of 38
π-nucleophiles with 23 benzhydrylium ions, reactivity para-
meters were determined for these species, establishing a set of
reference compounds. In 2012, the reference set was slightly
expanded towards less reactive nucleophiles and more reactive
benzhydrylium ions (Fig. S1 and Table S1†), but the majority
of the previously calculated E, N and sN parameters were kept
fixed to avoid insignificant changes.11 The accuracy of this
approach by Mayr et al. was examined by Proppe and Kircher
in 2022 through the implementation of uncertainty quantifi-
cation, using Bayesian bootstrapping and new data filtering
criteria, which were also adopted for this work.12
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Expanding upon the initial reference set, Mayr and co-
workers created a database encompassing a wide array of over
1300 nucleophiles and 360 electrophiles for which Mayr–Patz
parameters were published.13 They were generally calculated
on the basis of experimental rate constants of reactions with
reference species. Alternatively, certain quinone methide elec-
trophiles and carbanionic nucleophiles (Fig. 2) were used
when nucleophiles were too reactive or electrophiles not reac-
tive enough for experimental studies with the reference
species defined in refs.10,11 These pseudo-reference species
constitute a viable, well investigated addition to the initial
reference set, also meaningfully expanding the data available
for analyses.

An alternative approach to that of the Mayr group would be
to relax all fixed parameters of the previously established refer-
ence set so their values may change during optimization.
Determining the extent to which new experimental studies
should be included in fully relaxed correlation analyses to
obtain optimal predictions presents a challenge, however.
Apart from previous parameters not being adjustable in their
original publications, there is the possibility of new species
reducing the overall quality of parameters, e.g., due to steric
effects, which the Mayr–Patz equation does not explicitly
account for.10 For this reason, the parameters of the reference
substances remain fixed when determining the reactivity para-
meters of new compounds, which were subsequently entered
into the database. However, deviations between calculated and

experimental rate constants for reactions outside of the
original reference set are generally higher than for reactions
between reference species.10 The question whether this can be
attributed to error propagation or inferior correlation of the
former with the Mayr–Patz model due to unconsidered factors

Fig. 1 The (pseudo-)reference species in Mayr’s Reactivity Database define comprehensive reactivity scales, into which new electrophiles and
nucleophiles can be systematically integrated. Lighter colours indicate established reference species. Second-order rate constants k for reactions of
electrophiles with anionic nucleophiles (in DMSO)9 and neutral nucleophiles (in dichloromethane)10 were determined at 20 °C. The correlation lines
were constructed by using the reactivity parameters E, N, and sN calculated in this work (section 4.1).

Fig. 2 Nucleophiles and electrophiles expanding the reference set (cf.
Fig. S1 and Table S1†), as well as benzhydrylium ions E1–E6. Nucleophile
IDs refer to reactions in DMSO.
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motivated us to analyse the possible strategies for expanding
the set of Mayr’s reference electrophiles and nucleophiles.

One central consideration is the amount of available data,
with each rate constant from an electrophile–nucleophile reac-
tion serving as an additional data point the model can be opti-
mised on. This is to some extent also reflected in the star
rating of Mayr’s reactivity database, which assigns higher
ratings to parameters calculated with more empirically investi-
gated rate constants, with the highest rating being reserved for
reference species.13 If the reference set is thought of as a
network, the degree of interconnectedness between species
through reactions may also be a factor that impacts the accu-
racy of the results.

Through thorough investigation of the effects of data set
expansion on the parameters and the accuracy of the resulting
predictions, we seek to investigate and possibly enhance the
statistical methodology from the previously analysed domain
of reactions of cationic electrophiles with neutral nucleophiles
in Mayr’s reactivity scale12 to the domain of reactions of
neutral electrophiles (quinone methides) with carbanions.

2 Reference set and reaction data

The data set used in this study expands on the one established
by the Mayr group10,11 as shown in Fig. S1 and Table S1.† This
established reference set is supplemented by quinone
methides (electrophiles) as well as nucleophilic carbanions
(Fig. 2). They are well-investigated and currently used to deter-
mine parameters for new species added to the database,
expanding the available reactivity scales towards more reactive
nucleophiles and less reactive electrophiles. However, they are
not regarded part of the reference set and their parameters
were not calculated through a fully relaxed correlation analysis.
Rate constants for reactions between these species were
sourced from the dissertations of Lucius14 and Loos,15 as well
as two kinetic studies by Lucius and Mayr16 and Lucius et al.9

Additionally, reactions between newly added nucleophiles (in
DMSO) and the benzhydrylium ions E1–E6 contained in the
original reference set were added to ensure connectivity
between new and old reaction data. The total numbers of
species and reactions were increased by 15 and 75, respectively
(as shown in Fig. 1 and 2), leading to a total of 83 species and
287 kinetically studied reactions. In the following, we refer to
this expanded reference set if not otherwise stated.

As established in the original studies, electrophile E15 and
nucleophile N7 serve as anchor species with fixed parameters
E = 0 and sN = 1.00.11 These constraints ensure that the reactiv-
ity scales have a fixed point of reference, which prevents arbi-
trary scale shifting, stretching and compression.

3 Methodology

Methods devised for this work utilise or build upon the
program originally developed by Proppe and Kircher for

their study.12 The original code has been made publicly
available through a GitLab repository.17 An openly accessible
supplementary repository for the modified code and the
methodology developed for this work has also been
released.18

3.1 Data preprocessing

Prior to all parameter optimisations, data selection criteria are
enforced to ensure the quality of the data set. Experimental
rate constants that were not directly measured at 20 °C are
generally disregarded. We also excluded rate constants
exceeding log kexp = 8, above which reaction speed may not be
determined by species reactivity but by diffusion speed in
solution. Further, species are disregarded entirely if they do
not participate in more valid reactions than their associated
number of free parameters γS. This ensures overdetermina-
tion of the linear system of Mayr–Patz equations in accord-
ance with the 3N2E rule introduced by Proppe and Kircher.12

It requires three reactions for nucleophiles with two free para-
meters, N and sN, and two reactions for electrophiles with a
single free parameter E. Anchor species E15 and N7 have one
parameter fixed and thus one free parameter less. A second-
ary requirement for parameter optimisations is full connec-
tivity between all species in the reference set. In the case that
the data contains two or more subsets of species which are
not connected by any reaction, parameters for subsets not
containing the anchor species cannot be related to the point
of reference of the reactivity scale, or any other parameters
for that matter.

Because of an insufficient number of reaction data points
matching the selection criteria, the species N6, N19, N33, N36,
N37, N39, N41, N44, and N45, as well as E33 were not included
in the model. Therefore, as in the study by Proppe and
Kircher,12 no new parameters could be calculated for these
species. For the purpose of model analysis in section 3.3, they
were generally disregarded and effectively removed from the
reference set.

3.2 Parameter optimisation

Mayr–Patz parameters for all species in a given data set are cal-
culated via the method of least squares. However, if species
within the data set are declared as reference species, their
parameters are fixed to their reference value. The objective
function Δ2 constitutes the sum of the squares of the residuals
δ, i.e. the difference between predicted and experimental
values,

Δ2 ¼
XR
r¼1

½δrðlog kÞ�2 ð2Þ

δrðlog kÞ ¼ log kexp;r � log kMPE;r ð3Þ
Here, log kMPE,r represents the logarithm of the rate con-

stant of reaction r predicted via the Mayr–Patz equation and R
corresponds to the total number of reactions in the data set.
The value of R is dependent on the respective analysis and
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therefore not further specified here. The basin-hopping algor-
ithm by Wales and Doye19 as implemented in the SciPy 1.11.1
package20 is utilised for minimising the objective function in
eqn (2). All settings were kept to the default value of this
implementation, except for the number of basin-hopping
steps, governed by the argument “niter”. It was reduced from
“niter = 100” to “niter = 1” as established by Proppe and
Kircher.12

If the total number of reactions R is taken into account, the
model error ε can be defined in such a way that it is compar-
able between analyses:

ε ¼
ffiffiffiffiffi
Δ2

R

r
ð4Þ

Similarly, a measure for the error associated with a single
species can be defined. The variance for each species is
given by:

σS
2 ¼ νS

�1 �
XRS

rS¼1

½δrSðlog kÞ�2 ð5Þ

where νS corresponds to the degrees of freedom (DOF) for
species S, given by the difference between the total number of
reactions S participates in, RS, and the number of non-fixed
Mayr–Patz parameters of S, γS.

νS ¼ RS � γS ð6Þ
As the true underlying variance is unknown and the sample

size for each species is usually small, the sample variance can
be corrected via the t-distribution. The species-specific discre-
pancy d0.95,S is therefore determined by:

d0:95;S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0:95;S2 � σS2

p
ð7Þ

with the t-factor t0.95,S corresponding to the two-sided 95%
interval for the distribution with νS degrees of freedom.
This value describes how well experimental rate constants
of a single species are predicted through a given set of
parameters.

3.3 Methods of analysis

For this work, different methods for analysing the model
behavior resulting from expansion of the investigated data
set were devised to ascertain important criteria for main-
taining parameter quality. However, the expanded refer-
ence set, containing 44 nucleophiles, 39 electrophiles and
287 experimental rate constants after data filtering, already
encompasses arguably the best investigated species of the
database. Therefore, in contrast to adding new data, reac-
tions or species can be removed incrementally from the
set to create a large number of increasingly smaller
subsets, which constitute valid data sets for the calcu-
lation model as long as the data selection criteria are
upheld (Fig. 3 and section 3.1). Larger subsets can in turn
be considered artificial expansions of the smallest valid
data set, enabling the same analysis as a direct expansion
of the former.

4 Results and discussion
4.1 Impact of the reference set expansion on reactivity
parameters

Using the methodology described in sections 3.1 and 3.2, para-
meters for the expanded reference set were calculated, which
are reported in Table S2.† E, N and sN parameters are shown
separately in relation to the values found in the database9,11 in
Fig. 4–6. The latter can be accessed directly through the public
online resource.13

Compared to their original database values, all E para-
meters decreased by an average of 0.57 units. Interestingly,
this effect is more pronounced the less reactive the electro-
phile is, with the least reactive quinone methide E34 decreas-
ing by as much as 2.16 units. This is seemingly compensated
by an equivalent but stronger and inverse shift of N para-
meters, on average increasing by 0.71 units. The most reactive
nucleophile N46 shows the biggest increase by 2.62 units. The
sN parameters decreased by an average of 4.4% overall, with
already unusually high parameters further increasing. Because
of this, the product sNN stayed about the same for all nucleo-
philes, decreasing by 0.16 units on average and changing by
more than 1.00 units in only two cases. Overall, the described
changes effectively elongate the reactivity scales, as the para-

Fig. 3 Algorithms utilised in this study.

Fig. 4 E parameters reported in Mayr’s Reactivity Database13 and this
work. Hollow markers indicate quinone methides.
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meters of the least reactive nucleophiles and the most reactive
electrophiles are approximately constant. This “stretching”
decreases the optimised model error ε by 17.3% from 0.098 to
0.081 compared to the one resulting from the original para-
meters. Even compared to the value of 0.087 derived for the
data set excluding the species added in this study,12 a slight
decrease can be observed.

Central to note is that for species overlapping with the orig-
inal reference set, parameters are nearly indistinguishable
from the results of Proppe and Kircher’s study12 using an iden-
tical methodology (Fig. S4–S6†). Both E and N parameters
differ by less than 0.01 units on average, while sN parameters
deviate by less than 0.1%. The decrease in model error can
therefore be attributed almost entirely to the newly added
species. The trends observed for differences between the data-
base parameters and the parameters of this work also apply to
all species, regardless of whether they were part of the expan-
sion or the established reference set. Combined, these obser-
vations imply that the change in parameters for the added
species can be mainly attributed to the data selection criteria.
Therefore, if the parameters of the established reference set
were fixed to the values reported by Proppe and Kircher, the

optimised parameters for added species would be expected to
differ marginally.12 When adhering to the data selection cri-
teria of the described methodology, these findings validate the
decision by Ammer et al. to keep many parameters constant
during the expansion of the reference set in 2012.11

4.2 Effect of number of reactions on parameter quality

As mentioned before, the interconnectedness of the network
spanning between all nucleophiles and electrophiles is
assumed to be a major factor for parameter accuracy. The sim-
plest measure for interconnectedness is the total number of
reactions, as each represents a direct connection between two
species. The impact of this metric can be analysed by removing
reactions from the model while preserving the total number of
species. At first, the corresponding algorithm coined “least
connective reaction” calculates the degrees of freedom for
every species via eqn (6). The electrophile–nucleophile combi-
nation with the highest sum of degrees of freedom νS that has
an associated valid reaction within the data set is then deter-
mined. If the removal of this reaction results in a subset that
matches the data selection criteria and still contains all orig-
inal species, all operations are repeated for the resulting
subset, until no further removal leads to a viable subset
(Fig. 3, lower path). Correlation analysis is then performed on
the data sets in the resulting sequence. The interconnected-
ness was also investigated by removing species with low
amounts of associated reaction data (section S2†).

For characterising the effect the total number of reactions
has on the model, a sequence of 156 successive reaction
removals was determined with the “least connective reaction”
algorithm, for which all initial species continue to fulfill the
data selection criteria outlined in section 3.1. The number of
remaining valid reactions can be determined by subtracting
the number of removed reactions from 287, the total number
of valid reactions in the reference set.

The model error ε (eqn (4)) for the sequence of subsets
shown in black in Fig. 7 stays nearly constant until 26 reac-
tions are removed, before steadily decreasing to about half of
its original value afterwards. The latter may be a sign of overfit-

Fig. 5 sN parameters reported in Mayr’s Reactivity Database13 and this
work. Hollow markers indicate carbanions.

Fig. 6 N parameters reported in Mayr’s Reactivity Database13 and this
work. Hollow markers indicate carbanions.

Fig. 7 Model error ε for removed reactions (orange), subsets (black)
and the full set (blue) based on optimised subset parameters with a
decreasing number of reactions (“least connective reaction” algorithm).
Optimisation success for subsets highlighted in gray is ambiguous.
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ting caused by a high (and constant) number of free para-
meters in relation to the number of reactions. Fig. 8 shows the
N parameters of all nucleophiles for the sequence. Their
increasingly erratic behavior, especially for small subsets at
the end of the sequence, serves as further evidence for overfit-
ting. Generally, overfitted models poorly match data outside of
the optimisation sample due to parameters adjusting to
random errors, noise or factors irrelevant for the underlying
true relationships.

To verify this hypothesis, reactions previously removed from
the model can be used as a test set. The model error calculated
with the residuals of all reactions in the original set (325 data
points) based on the parameters optimised on the respective
subset is shown in blue in Fig. 7. For large subsets, it matches
the subset error (black curve) closely, but diverges after the
subset errors starts decreasing. A similar behavior is observed for
the error derived from the removed reactions only (orange curve).

This indicates that detrimental overfitting occurs when
more than 26 reactions are removed. The consistency in model
error at the beginning of the sequence indicates that the
number of data points used for the optimisation of the
expanded reference set is sufficiently high to negate overfit-
ting. If the subset for which 26 reactions were removed and
261 remain is determined as the last for which no impactful
overfitting occurs, we can calculate average metrics for the
number of reactions that have to be included in the optimi-
sation procedure to avoid effects of overfitting (Fig. 9). If all 83
species for which parameters were optimised are taken into
account, this subset contains 3.1 reactions per species on
average. The total number of free parameters amounts to 125,
two for each of the 44 nucleophiles and one for each of the 39
electrophiles except for the two fixed parameters of the anchor
species. Therefore, an average value of 2.1 can be determined
for the number of reactions for every free reactivity parameter.
Additionally, 261 reactions make up 15% of all possible reac-
tions between reference set species given by the product of the
total number of electrophiles and nucleophiles. If these lower
bound values are exceeded for a given reference set, the effect
of overfitting is expected to be minor.

Parameter uncertainties derived via Bayesian bootstrapping
can also give an insight into the expected accuracy of rate con-
stant predictions. For this purpose, the experimental data is
assumed to match an underlying probability distribution and
can be used to draw new samples of possible data sets. For
every sample, random weights w given by a uniform Dirichlet
distribution21 are assigned to all reactions. Given that all
weights add up to one, the weight of any reaction can be seen
as the probability of it being selected from the underlying dis-
tribution. These weights are multiplied with the squares of the
residuals defined in eqn (3), resulting in a modified objective
function,

Δ2 ¼
XR
r¼1

wr � ½δrðlog kÞ�2 ð8Þ

For uniform weights wr = R−1, eqn (2) and (8) are equi-
valent. Every set of non-uniform weights yields parameters
slightly deviating from the unweighted solution, in total generat-
ing an empirical probability distribution for every parameter.
The variance of this distribution represents a measure for para-
meter precision and certainty, while confidence intervals
provide estimates of the range in which the true value lies with
a certain probability. For the removal of reactions, the confi-
dence intervals obtained via bootstrapping can be validated by
showing that a corresponding number of predicted rate con-
stants for previously removed reactions fall within these inter-
vals. Calculating uncertainties for the full reference set and
every subset in the previous analysis is too computationally
intensive, however. Therefore, a smaller, well connected subset
was chosen, containing eight nucleophiles and ten electrophiles
with a total of 55 experimental rate constants (section S1†).

Using Bayesian bootstrapping with a sample size of 1000,
95% confidence intervals for all free parameters and every
subset were determined with the 0.25% and 97.5% quantiles
of the set of optimised parameters calculated for all bootstrap
samples. For the largest subset, parameter uncertainties
amount to ±0.05 for sN, ±0.22 for N, and ±0.14 for E on
average. The optimiser did not converge for the majority of
bootstrap samples after more than 28 reactions were removed
and thus, the computational results for smaller subsets were
disregarded. For every subset, the range of these intervals rela-
tive to the initial intervals for the small set are shown in
Fig. 10.

Fig. 8 N parameters for subsets with a decreasing number of reactions
but a constant number of species (“least connective reaction”). Each line
corresponds to one nucleophile. Optimisation success for parameters
highlighted in gray is ambiguous.

Fig. 9 Lower bound metrics to avoid overfitting.
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For the first six subsets, the intervals remain nearly con-
stant on average, before steadily increasing by up to a factor of
6 in the most extreme cases. This provides further evidence
that the accuracy of predicted rate constants is tightly linked to
the number of reactions in the data set. To validate these
results, predicted rate constants for removed reactions were
calculated for every bootstrap sample of a given subset. 95%
confidence intervals for all reactions were again determined
based on the 0.25% and 97.5% quantiles. As the validation
sample is very small, a single predicted rate constant outside
of the confidence interval can lead to a negative hypothesis
test. To account for this, the uncertainties of the confidence
intervals were determined using the standard error of a bino-
mial distribution,21 as in the study by Proppe and Kircher.12

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=Rrm

p
ð9Þ

The variable p represents the fraction of predicted rate con-
stants matching the confidence interval, while Rrm is the
number of removed reactions in the validation set.

The hypothesis tests for every subset are shown in Fig. 11.
For larger sets, the share of experimental rate constants

outside the predicted confidence interval mostly lies slightly
below or just within the uncertainty ranges of the hypothesis,

while smaller subsets show a clearly negative test. This indi-
cates that our analysis underestimates uncertainties in pre-
dicted rate constants, especially for very small data sets. The
decrease in prediction accuracy may therefore be even stron-
ger, and more pronounced towards smaller set sizes.

4.3 Effect of poorly correlating species on parameter quality

Just as the model error represents the overall level of discre-
pancy between predicted and experimental rate constants per-
taining to the whole model, the discrepancy of a species
defined in eqn (7) can indicate how well it individually con-
forms with the Mayr–Patz equation. Removing species with
notably poor correlation between predicted and experimental
rate constants could possibly improve the quality of para-
meters in the remaining data set, while decreasing the amount
of experimental data only slightly. This can be achieved by
deriving parameters for the initial full-size data set, determin-
ing the species-specific discrepancies according to eqn (7), and
removing the species with the highest discrepancy. Repeating
this procedure for a sequence results in the “highest error
species” algorithm (Fig. 3, upper path).

Applying the “highest error species” algorithm to the
expanded reference set yields a subset sequence with removed
species chosen by the highest species-specific discrepancy of
each subset according to eqn (7). The model error ε is shown
in Fig. 12. As expected, the removal of species associated with
high prediction discrepancies results in a consistent trend
towards lower total discrepancies, with the model error conver-
ging to nearly zero for very small sets. Some removals lead to
an error increase, however, indicating that a high discrepancy
for one species can be beneficial to the overall model error,
regardless of the species affected. In contrast, a very sharp
decrease in the model error is observed for the sixth subset,
with the model error decreasing by 23.5% in total from 0.081
to 0.062, the latter being the lowest known value for any set of
this size. The species omitted between subset five and six is
nucleophile N15. If only N15 is removed from the expanded
reference set, the model error amounts to a similar value of
0.069, indicating that the removal of the previous five species
does not strongly contribute to this decrease.

Fig. 12 Model error ε for a subset sequence created by removing
species linked to high prediction discrepancies (“highest error species”).

Fig. 10 95% confidence interval (CI) ranges for every parameter relative
to the range of the initial small set. Every line corresponds to one para-
meter, while the bold line represents the mean over all parameters.

Fig. 11 Fraction p of experimental rate constants for removed reactions
falling in the confidence interval. Error bars represent the uncertainty σ

in the 95% interval according to eqn (9).
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To further substantiate these findings and evaluate the
individual influence of certain species on the overall error, all
data set combinations of all but one species were used to opti-
mize parameters and obtain a model error. The results relative
to the full set error are shown in Fig. 13. Due to the 3N2E rule,
removing a species may lead to multiple species being
removed from the data set. This happened in the case of 13
electrophiles and 2 nucleophiles, indicating that the electro-
philes are on average more integral to the interconnectedness
of the model. These species, as well as the species mentioned
in 3.1 are not shown in Fig. 13.

As indicated previously, leaving out N15 has the highest
impact on the model error, reducing it by 0.013. The second
highest Δε with a notable value of −0.006 is found for E25.
Both species share a reaction, however removing it only
accounts for a difference of −0.002. Further, five species with
Δε ≤ −0.002, N8, N12, E14, N18, E21 seem to disproportionally
contribute to the model error as well. This is not made appar-
ent by the highest error species algorithm, except in the case
of N8, the third species removed. All other species somewhat
evenly spread around Δε = 0. Among the cases of multiple
removals, one stands out: removing E20 results in Δε = −0.014,
with N14, N16 and E32 being removed as well. Both E20 and
E32 share a reaction with N15, together accounting for −0.011
of this difference.

Future modifications of the reference set should therefore
consider reinvestigating the species outlined, especially
nucleophile N15, as they currently show a seemingly poor
match with the Mayr–Patz equation. Species-specific discre-
pancies represent an effective selection criterion to decrease
the overall model error, but basing analysis on them alone
may overlook additional outliers. In combination, the methods
outlined in this chapter may help identify species which nega-
tively impact the quality of Mayr–Patz parameters.

We observed that nucleophiles with the highest sN and
lowest N parameters were removed within the first steps of the
algorithm. This suggests that species at the ends of the reactiv-

ity scale may converge to less optimal parameters to possibly
preserve low discrepancies for the parameters of the data-
heavy scale centers with higher impact on the overall model
error. More importantly, this observation led to the realisation
that the sN and N parameters seemingly show an inverse linear
correlation within our data set, but also throughout the data-
base as a whole.22 This unexpected correlation could provide
motivation for future studies.

5 Conclusion

Mayr’s Reactivity Database represents a valuable resource for
quantifying polar reactivity in accordance with the Mayr–Patz
equation. The approach of partially fixed correlation analysis
to determine parameters may currently lead to error propa-
gation. To investigate the extent to which the parameters of
the underlying linear correlation analysis could be relaxed,
multiple sensitivity analyses were performed on an expanded
reference data set, using newly developed algorithms (Fig. 14).

These investigations indicate a risk for overfitted para-
meters for data sets with less than 3.1 reaction data points per
species or 2.1 per optimised parameter. Bayesian bootstrap-
ping was utilised to obtain parameter uncertainties, which
were clearly amplified by a reduction of the number of rate
constants. The incremental removal of species with high indi-
vidual prediction discrepancies indicated 2-chloropropene
(N15) overproportionally contributes to the model error.
Additionally, an inverse linear correlation between sN and N
parameters was discovered. This study provides a foundation
for future refinements of Mayr’s Reactivity Database.
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Data availability

The data and code supporting this article, including experi-
mental rate constants and analysis algorithms, are available at
https://git.rz.tu-bs.de/proppe-group/revisiting-mayrs-reactivity-
database or https://doi.org/10.5281/zenodo.15724925.

Fig. 13 Shift in model error if a single species is left out of the data set.
All cases in which the removal of exactly one species was not possible
are not shown.

Fig. 14 (a) Lower bound metrics to prevent overfitting. (b) Bayesian
Bootstrapping shows lower parameter uncertainties when the number
of rate constants is high. (c) One nucleophile (2-chloropropene, N15)
accounts for 16% of the model error.
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