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Synthesis of o, a-difluoro-f-amino amides using
aldimines and bromodifluoroacetamides via the
Reformatsky reactiont
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a,a-Difluoro-B-amino amides are attractive building blocks of biologically active compounds such as

fluorinated pharmaceutical mimics and oligopeptides. Herein, we describe the zinc-promoted
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Reformatsky reaction of aldimines using bromodifluoroacetamides which provides a direct synthetic
approach to o,a-difluoro-p-amino amides. This method gave various N-PMP protected o,a-difluoro-
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B-amino-p-aryl amides in 64-95% yields. Furthermore, these amides were efficiently converted into 2,2-
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Introduction

Fluorine atoms are nearly the same size as hydrogen atoms
and are often used as isosteres of hydrogen in medicinal
chemistry." For example, C-F bond containing molecules are
less likely to undergo oxidative metabolism than fluorine-free
molecules, and in some cases exhibit superior metabolic stabi-
lity.> Since p-amino amides are attractive scaffolds for various
bioactive molecules such as andrimid, sitagliptin and
-carnosine,’ fluorinated p-amino amides such as a,a-difluoro-
f-amino amides are also expected to be a scaffold that can be
used to design novel biologically active compounds.* As fluori-
nated analogues of natural products and pharmaceuticals with
a f-amino amide moiety, antifungal tetrapeptides, renin
inhibitory peptides and selective TAF1(2) bromodomain
inhibitors have already been reported (Fig. 1).”

In general, o,a-difluoro-f-amino amides have been syn-
thesized by a condensation reaction between an amine and
a,a-difluoro-p-amino acids (Fig. 2a)°® or a,a-difluoro-p-lactams
(Fig. 2b),” but their synthesis requires several steps from
readily available substrates such as imines and halodifluoroa-
cetic acid esters. In recent years, the Mannich-type reaction of
imines using a,o-difluoro-a-trimethylsilylacetoamide (Fig. 2c),®
the three-component reaction of (bromodifluoromethyl)tri-
methylsilane, imines, and isocyanides (Fig. 2d),” and the
Reformatsky-type reaction of amides and bromodifluoroaceta-
mides using an iridium catalyst (Fig. 2e)'° have been devel-
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difluoropropane-1,3-diamines under reductive conditions using a combination of NaBH,4 and BFs.

oped as direct synthesis methods for a,a-difluoro-f-amino
amides. Herein, we report the zinc-promoted Reformatsky
reaction of bromodifluoroacetamides with aldimines as a
simpler synthetic method to directly access «o,a-difluoro-
f-amino amides (Fig. 2f).

Results and discussion

At first, we examined and optimized a zinc-mediated
Reformatsky reaction of N-(4-methoxybenzylidene)aniline 1a
and bromodifluoroacetamide 2a (Table 1). The reaction was
carried out using 0.8 equivalents of trimethylsilyl chloride'" as
an activator of zinc powder in THF to give a,a-difluoro-f-amino
amide 3a in 95% yield (entry 1). The yield decreased to 86% on
reducing the amount of trimethylsilyl chloride to 0.4 equiva-
lents, and the yield decreased drastically to 44% in the
absence of trimethylsilyl chloride (entries 2 and 3). The use of
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Fig. 1 Examples of biologically active o,a-difluoro-f-amino amides.
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Previous Works: HN_R? HN-R2 other ether solvents such as 2-Me-THF and 1,4-dioxane
R o R 0 reduced the yields to 63% and 38% respectively (entries 4 and
,3_/( hydrolysis £~ L "oy 5). DMSO promoted the reaction moderately, but other highly
R FOoR HN/RB polar solvents such as acetonitrile and DMF were not suitable

N"" BrCF,COOEt \ . .
I \ R* for the reaction (entries 6-8). Less polar solvents such as
R Zn R3 condensation (@) toluene and hexane were also ineffective in this reaction

; F o HN:R P HN‘R; (entries 9 and 10).
t,f\ DPEA | F ®) Recently, Blum reported that trimethylsilyl chloride aids to
R" R® GF,CH,OH F R{“_Rs solubilise organozinc intermediates from zinc(0) metal after
0 s o - 0 oxidaFive addif:ion., and. that this .solubilisation ‘can be
NS /S 24 XS\NH o sufficiently maintained with a catalytic amount of trimethyl-
JJ j< — R® © silyl chloride.'” Based on Blum’s report, we propose a plaus-
R’ TBAT R FF 24 ible mechanism for this type of imino-Reformatsky reaction in
HNof2 Scheme 1. As trimethylsilyl chloride facilitates the oxidative
S 1) TBAB RL;_<O addition of bromodifluoroacetamide to zinc(0) and the solubil-
+ R3NC + TMSCF,Br (d) S . .
R 1U 2HClaa  Fl g 1sa.t1.0n of .21.nc enolates on th.e r'netal zinc surface, the nucleo-
philic addition of enolates to imines proceeded smoothly.

Q RS Under the optimized conditions, we synthesized various
o I(CO)(PPhy), cat. %LN’R ” N_R; functionalized a,a-difluoro-pf-amino amides 3 and clarified the
R1JJ\N’R2 TMDS FF R '3—/( () scope and limitations of aldimines 1 and bromodifluoroaceta-
RS F R{;‘_R3 mides 2 (Table 2). Benzaldimines bearing sterically hindered
o-methoxyphenyl and 2-naphthyl groups were converted into
This Work: o] R the corresponding aminoamides 3b and 3g in moderate yields
e BF%N'RB R HN_RO of 70% and 63%, respectively. The substituents at the posi-
N’ FF R E M tions distant from the imino group of benzaldimines did not
R1J Zn, TMSCI F R""\l R have a significant effect on the reaction, whether they were

electron-donating groups such as the p-methoxy group or elec-
tron-withdrawing groups such as p-methoxycarbonyl, p-chloro
and p-cyano groups, and the desired aminoamides 3c—f were
obtained in high yields. An aliphatic imine such as 1-cyclo-
hexyl-N-(4-methoxyphenyl)methanimine was not suitable for
this reaction, and the product 3h was afforded in only 25%
yield. Other aliphatic aldimines derived from acetaldehyde
and pivalaldehyde were difficult to purify and handle, so we
were unable to use them in this reaction. Heteroaryl imines

Fig. 2 Previous methods and our approach for the synthesis of
o,a-difluoro-B-amino amides.

Table 1 Optimization of reaction conditions for the Reformatsky reac-
tion with N-(4-methoxybenzylidene)aniline 1a and bromodifluoroaceta-

mide 2a
from 2-thiophenecarboxaldehyde or furfural reacted smoothly
F (\o and afforded the desired products 3i and 3j in good yields.
F . .. .
N Replacing the PMP group of aldimine 1a with a benzyl grou
Br p g group yl group
0 HNOOMG dramatically reduced its reactivity and the corresponding
/NOOMe 2a F amine 3k was obtained in a poor yield. The tertiary amides
F
< > o
Zn (2.3 mmol) N
1 mmol TMSCI (0, 40 or 80 mol%) O
Solvent (1.5 mL) fo)
50°C, 24 h
1a 3a F R3
F N .
E TMSCI (mol% Sol ield (% Br*( o] §
nt M mo olvent Yie N
Iy (mol%) (%) meel 6 ;>§T Re
n n
1 80 THF 95° @ — — — o
oxidative addition
2 40 THF 864 activation
3 0 THF 44?
a
4 80 Z-Me-_THF 63 b solubilisation
5 80 1,4-Dioxane 38
6 80 Acetonitrile 16” N,Rz
b
7 80 DMF 8 R o ) F RS
8 80 DMSO 45 2 P R! F Ill
9 80 Toluene 11° R‘NMN’R <~——  BrZn “R*
10 80 Hexane 13° H FF R nucleophilic addition 0
then work-up
“Isolated yield. ® Determined by 'H NMR using triphenylmethane as
an internal standard. Scheme 1 Plausible mechanism of the imino-Reformatsky reaction.
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Table 2 Scope and limitations of the zinc-mediated Reformatsky
reaction with aldimines 1 and bromodifluoroacetamides 2

3
AR
Br Rt HN-RZ |
, o R | PMP = —%OOMe
N'R 1.5 mmol i |
El Zn (2.3mmol) o= B T
R TMSCI (80 mol%) N-R* !
. | THF (1.5 mL) R® :
L 50°C, 24 h Isolated yield :

OMe

HN—PMP HN—PMP HN—PMP
F F MeO F
F F F
o o o
N N N

o (¢] o
3b:70% 3c:85%

HN—PMP HN—PMP HN—PMP
MeOOC F ¢ FNC F
F F F
o o o
N N

3a:95%

o o o
3d:74% 3e:87% 3f.78%
HN—PMP HN PMP S HN-PMP
O}
O O
39:63% 3h:25% 3i:66%

HN—PMP

0 = HN—PMP
| )< F F F
F F F
o o o

N‘> N‘> N—\
g N\ Q
3j:64% 3k:37% 31:77%
HN—PMP HN—-PMP
F F
F F
(o) (e}
N—> HN—:
H@
3m:74 % 3n:Complex mixture

gave the desired products 31 and 3m regardless of whether the
alkyl group on the nitrogen had a linear or cyclic structure, but
when a secondary amide was used as the substrate, a complex
mixture 3n was obtained.

In general, amide groups can be easily converted into
aminomethylene groups using hydride reducing agents such
as LiAlH,, BH; and others."® Hence, one application of fluori-
nated p-amino amides would be their conversion into fluori-
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nated 1,3-diamines, which are used as building blocks for a
wide range of biologically active compounds such as antisense
agents,'* selective TAF1(2) bromodomain inhibitors,> and
adenosine monophosphate-activated kinase activators."”

Table 3 shows the results of the reduction of a,a-difluoro-
f-amino amide 3a using conventional hydride reagents. As
reported by Leclerc,® the use of NaBH, resulted in negligible
formation of 1,3-diamine 4a and gave y-amino alcohol 5 in a
moderate yield (entry 1). LiAlH, is a typical reductant for
amides, but like NaBH, it gave y-amino alcohol 5 instead of
1,3-diamine 4a (entry 2). Staas et al. reported that BH;-Me,S
was effective in the reduction of a,a-difluoro-p-amino amides,
but under their conditions, the reaction time was long and the
yield was moderate.®” BH;-Me,S was suitable for the reduction
of amides, but it also produced y-amino alcohol 5 along with
1,3-diamine 4a (entry 3). Interestingly, when BH; produced by
the combination of NaBH, and BF;-Et,0 was used for the
reduction,’® the yield of 4a was improved to 69%, and the by-
product y-amino alcohol 5 was suppressed (entry 4).
Furthermore, when the reaction using NaBH,/BF; was carried
out for 1 hour at room temperature and then for 2 hours at
75 °C, the yield increased to 94% (entry 5). The yields of the
reduction gradually decreased as the equivalent amount of
NaBH, was reduced (entries 6 and 7).

Next, we demonstrated the applicability of the NaBH,/BF;
reduction system for several o,a-difluoro-p-amino amides 3
(Table 4). Amide 3d with a methoxycarbonyl group, which is
readily reduced by BHj;, gave the corresponding amine 4b in a
yield of 63% when reacted at room temperature. Additionally,
a complex mixture of by-products was also formed under these
conditions. The reduction of amides containing chlorine or
heteroaromatic rings, such as thiophene and furan, proceeded
smoothly and the desired amines 4c-e were obtained in excel-

Table 3 Optimization of reduction with a,a-difluoro-p-amino amide 3a

HN—PMP HN—PMP
F F
F Reductant F HN;PMP
(¢}
+
N‘> THF (0.1M) N~> F
(s (s o
3a 4a 5
Reaction temp. 4a“
Entry Reductant (equiv.) and time (%) 5% (%)
1 NaBH, (6) rt,2h Trace” 49
2 LiAlH, (6) rt,2h Trace’? 47
3 BH;-Me,S (6) rt,2h 51 16
4 NaBH, (6) and rt,2h 69 Trace®
BF;-Et,0 (4)
5 NaBH, (6) and r.t., 1 h, then 94 Trace’
BF;-Et,0 (4) 75°C,2h
6 NaBH, (4) and r.t, 1h, then 91 Trace®
BF,-Et,0 (4) 75°C,2h
7 NaBH, (2) and r.t., 1 h, then 83 Trace’
BF;-Et,0 (2) 75°C,2h

“Isolated yield. ® Determined by *°F NMR of a crude mixture.

This journal is © The Royal Society of Chemistry 2025
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Table 4 Reduction of a,a-difluoro-p-amino amides 3 using NaBH4/BF3

HN—PMP HN—-PMP
R'< F NaBH, (6 equiv.) R'< F
F BF3+Et,0 (4 equiv.) F
o}
N—R2 0.1 M THF N—R2
; rt, 1h, then 75°C, 2 h /
R2 R2
4b—g
Isolated yield
HN—PMP HN—PMP S.  HN-PMP
MeOOC F Cl F | / F
F F F
N‘> Nﬁ> N_>
4b:63%2) 4c:93% 4d:88%

5 H“EZMP i a
&é SRR

0
49:90% @

(5%)b, c

4e:76% 4f:91%

(27%)P

“The reaction was carried out at r.t. for 2 h. ? LiAlH, was used instead
of NaBH,/BF;-Et,0.  The yield was determined by *°F NMR using ben-
zotrifluoride as an internal standard.

lent yields. Even when the morpholine moiety of the amide
was replaced with diethylamine or 1-phenylpiperazine, the
amines 4f and 4g were still provided in satisfactory yields of
91% and 90%, respectively. The reduction of amides 31 and
3m with LiAlH, instead of NaBH,/BF; gave a complex mixture
containing unidentified products and the corresponding 1,3-
diamines 4f and 4g were obtained in low yields. In addition,
y-amino alcohol 5 was not detected in either of these crude
products by "°F NMR.

Conclusions

In conclusion, we have achieved a one-step synthesis of
a,a-difluoro-f-amino amides from aldimines and bromodi-
fluoroacetamides via the Reformatsky reaction using zinc and
trimethylsilyl chloride as a zinc activator under mild con-
ditions. The a,a-difluoro-p-amino amides were converted into
2,2-difluoropropane-1,3-diamines with high selectivity and
excellent yields using the combination of NaBH, and BF; as
reducing agents.
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